首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Recent data suggest that the adhesion docking protein NEDD9/HEF1/Cas-L is a critical regulator of adhesion-dependent signalling pathways during mammary tumour development. Multiple phosphorylation modifications of NEDD9 regulate interaction with downstream protein partners, thus the regulation of NEDD9 phospho-forms is an important point of control for NEDD9 function. As estradiol (E2) plays a central role in the development and progression of breast cancer, we have investigated NEDD9 phospho-form regulation in MCF-7 estrogen receptor (ER)-positive breast cancer cells in response to estrogen. We find that levels of the 105-kDa NEDD9 phospho-form are significantly increased after 3 days of estrogen exposure, and this is suppressed by the anti-estrogen tamoxifen. Analysis of protein decay kinetics following treatment with the protein synthesis inhibitor cycloheximide indicates that increased 105-kDa levels are due to a slower rate of protein decay. Moreover, exogenous expression of NEDD9 failed to induce spreading in the presence of E2, and this was reversed by tamoxifen treatment. Finally, we show that the 105-kDa NEDD9 phospho-form appears to predominate in ER-positive versus ER-negative breast cancer cell lines. Taken together, our results suggest that estradiol may suppress phospho-form-specific functions of NEDD9.  相似文献   

2.
The speed of cell migration on 2-dimensional (2D) surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics. The focal adhesion protein NEDD9 is a key signalling intermediary in mesenchymal cell migration, however whether NEDD9 plays a role in regulating focal adhesion dynamics has not previously been reported. As NEDD9 effects on 2D migration speed appear to depend on the cell type examined, in the present study we have used mouse embryo fibroblasts (MEFs) from mice in which the NEDD9 gene has been depleted (NEDD9 -/- MEFs). This allows comparison with effects of other focal adhesion proteins that have previously been demonstrated using MEFs. We show that focal adhesion disassembly rates are increased in the absence of NEDD9 expression and this is correlated with increased paxillin phosphorylation at focal adhesions. NEDD9-/- MEFs have increased rates of migration on 2D surfaces, but conversely, migration of these cells is significantly reduced in 3D collagen gels. Importantly we show that myosin light chain kinase is activated in 3D in the absence of NEDD9 and is conversely inhibited in 2D cultures. Measurement of adhesion strength reveals that NEDD9-/- MEFs have decreased adhesion to fibronectin, despite upregulated α5β1 fibronectin receptor expression. We find that β1 integrin activation is significantly suppressed in the NEDD9-/-, suggesting that in the absence of NEDD9 there is decreased integrin receptor activation. Collectively our data suggest that NEDD9 may promote 3D cell migration by slowing focal adhesion disassembly, promoting integrin receptor activation and increasing adhesion force to the ECM.  相似文献   

3.
The proline-rich tyrosine kinase 2, Pyk2, is a focal adhesion related kinase expressed in T cells that is tyrosine phosphorylated and activated by integrin, chemokine or T cell receptor stimulation. Ligation of the cell adhesion molecule CD44 also induces Pyk2 phosphorylation and T cell spreading, and this is negatively regulated by the protein tyrosine phosphatase CD45. Here, we identify the activation requirements for Pyk2 and demonstrate its requirement for CD44-mediated elongated T cell spreading. Upon CD44-mediated cell spreading, Pyk2 was recruited to CD44 clusters in both CD45+ and CD45 T cells, yet was more strongly phosphorylated in T cells lacking CD45. In these cells, Pyk2 phosphorylation was dependent on Src family kinase activity and required actin polymerisation, phosphatidylinositol-3 kinase and phospholipase C activity as well as extracellular calcium. Inhibition of any of these events prevented Pyk2 phosphorylation and T cell spreading. Transfection of a truncated form of Pyk2 lacking the kinase domain, PRNK, inhibited CD44-mediated cell spreading, demonstrating an important role for Pyk2. However, inhibition of microtubule turnover by Taxol prevented elongated T cell spreading but did not affect Pyk2 phosphorylation, indicating that microtubule reorganisation is downstream, or independent, of Pyk2 phosphorylation. Together this demonstrates that multiple factors are required for CD44-induced Pyk2 activation, which plays a critical role in CD44-mediated elongated T cell spreading.  相似文献   

4.
Centrosome duplication occurs under strict spatiotemporal regulation once per cell cycle, and it begins with cartwheel assembly and daughter centriole biogenesis at the lateral sites of the mother centrioles. However, although much of this process is understood, how centrosome duplication is initiated remains unclear. Here, we show that cartwheel assembly followed by daughter centriole biogenesis is initiated on the NEDD1-containing layer of the pericentriolar material (PCM) by the recruitment of SAS-6 to the mother centriole under the regulation of PLK4. We found that PLK4-mediated phosphorylation of NEDD1 at its S325 amino acid residue directly promotes both NEDD1 binding to SAS-6 and recruiting SAS-6 to the centrosome. Overexpression of phosphomimicking NEDD1 mutant S325E promoted cartwheel assembly and daughter centriole biogenesis initiations, whereas overexpression of nonphosphorylatable NEDD1 mutant S325A abolished the initiations. Collectively, our results demonstrate that PLK4-regulated NEDD1 facilitates initiation of the cartwheel assembly and of daughter centriole biogenesis in mammals.  相似文献   

5.
In endothelial cells (ECs) beta1 integrin function-blocking antibodies inhibit alphavbeta3 integrin-mediated adhesion to a recombinant alpha4-laminin fragment (ralpha4LN fragment). beta1 integrin sequestration of talin is not the mechanism by which beta1 integrin modulates alphavbeta3 integrin ligand binding. Rather, treatment of the ECs with beta1 integrin function-blocking antibodies enhances cAMP-dependent protein kinase (PKA) activity and increases beta3 integrin serine phosphorylation. The PKA inhibitor H-89 abrogates the effect of beta1 integrin function-blocking antibodies on beta3 integrin serine phosphorylation and EC-ralpha4LN fragment binding. beta3 integrin contains a serine residue at position 752. To confirm the importance of this residue in alphavbeta3 integrin-ralpha4LN fragment binding, we mutated it to alanine (beta3S752A) or aspartic acid (beta3S752D). Chinese hamster ovary (CHO) cells expressing wild type or beta3S752A integrin attach robustly to ligand. CHO cells expressing beta3S752D integrin do not. Because the beta3 cytoplasmic tail lacks a PKA consensus site, it is unlikely that PKA acts directly on beta3 integrin. Instead, we have tested an hypothesis that PKA regulates beta3 integrin serine phosphorylation indirectly through phosphorylation of inhibitor-1, which, when phosphorylated, inhibits protein phosphatase 1 (PP1). Treatment of ECs with beta1 integrin function-blocking antibodies significantly increases phosphorylation of inhibitor-1. Furthermore, blocking PP1 activity pharmacologically inhibits alphavbeta3-mediated cell adhesion to the ralpha4LN fragment when both PKA and beta1 integrin function are inhibited. Concomitantly, there is an increase in serine phosphorylation of the beta3 integrin cytoplasmic tail. These results indicate a novel mechanism by which beta1 integrin negatively modulates alphavbeta3 integrin-ligand binding via activation of PKA and inhibition of PP1 activity.  相似文献   

6.
The focal adhesion docking protein NEDD9/HEF1/Cas-L regulates cell migration and cancer invasion. NEDD9 is a member of the Cas family of proteins that share conserved overall protein-protein interaction domain structure, including a substrate domain that is characterized by extensive tyrosine (Y) phosphorylation. Previous studies have suggested that phosphorylation of Y253 in the substrate domain of the Cas family protein p130Cas is specifically required for p130Cas function in cell migration. While it is clear that tyrosine phosphorylation of the NEDD9 substrate domain is similarly required for the regulation of cell motility, whether individual NEDD9 tyrosine residues have discrete function in regulating motility has not previously been reported. In the present study we have used a global sequence alignment of Cas family proteins to identify a putative NEDD9 equivalent of p130Cas Y253. We find that NEDD9 Y189 aligns with p130Cas Y253 and that it is conserved among NEDD9 vertebrate orthologues. Expression of NEDD9 in which Y189 is mutated to phenylalanine results in increased rates of cell migration and is correlated with increased disassembly of GFP.NEDD9 focal adhesions. Conversely, mutation to Y189D significantly inhibits cell migration. Our previous data has suggested that NEDD9 stabilizes focal adhesions and the present data therefore suggests that phosphorylation of Y189 NEDD9 is required for this function. These findings indicate that the individual tyrosine residues of the NEDD9 substrate domain may serve discrete functional roles. Given the important role of this protein in promoting cancer invasion, greater understanding of the function of the individual tyrosine residues is important for the future design of approaches to target NEDD9 to arrest cancer cell invasion.  相似文献   

7.
Ccc2, the yeast copper-transporting ATPase, pumps copper from the cytosol to the Golgi lumen. During its catalytic cycle, Ccc2 undergoes auto-phosphorylation on Asp(627) and uses the energy gained to transport copper across the cell membrane. We previously demonstrated that cAMP-dependent protein kinase (PKA) controls the energy interconversion (Cu)E~P → E-P + Cu when Ser(258) is phosphorylated. We now demonstrate that Ser(258) is essential in vivo for copper homeostasis in extremely low copper and iron concentrations. The S258A mutation abrogates all PKA-mediated phosphorylations of Ccc2, whereas the S971A mutation leads to a 100% increase in its global regulatory phosphorylation. With S258A, the first-order rate constant of catalytic phosphorylation by ATP decreases from 0.057 to 0.030 s(-1), with an 8-fold decrease in the burst of initial phosphorylation. With the S971A mutant, the rate constant decreases to 0.007 s(-1). PKAi(5-24) decreases the amount of the aspartylphosphate intermediate (EP) in Ccc2 wt by 50% within 1 min, but not in S258A, S971A, or S258A/S971A. The increase of the initial burst and the extremely slow phosphorylation when the "phosphomimetic" mutant S258D was assayed (k = 0.0036 s(-1)), indicate that electrostatic and conformational (non-electrostatic) mechanisms are involved in the regulatory role of Ser(258). Accumulation of an ADP-insensitive form in S971A demonstrates that Ser(971) is required to accelerate the hydrolysis of the E-P form during turnover. We propose that Ser(258) and Ser(971) are under long-range intramolecular, reciprocal and concerted control, in a sequential process that is crucial for catalysis and copper transport in the yeast copper ATPase.  相似文献   

8.
9.
10.
Malignant transformation results in abnormal cell cycle regulation and uncontrolled growth in head and neck squamous cell carcinoma (HNSCC) and other cancers. S100A8/A9 (calprotectin) is a calcium-binding heterodimeric protein complex implicated in cell cycle regulation, but the specific mechanism and role in cell cycle control and carcinoma growth are not well understood. In HNSCC, S100A8/A9 is downregulated at both mRNA and protein levels. We now report that downregulation of S100A8/A9 correlates strongly with a loss of cell cycle control and increased growth of carcinoma cells. To show its role in carcinogenesis in an in vitro model, S100A8/A9 was stably expressed in an S100A8/A9-negative human carcinoma cell line (KB cells, HeLa-like). S100A8/A9 expression increases PP2A phosphatase activity and p-Chk1 (Ser345) phosphorylation, which appears to signal inhibitory phosphorylation of mitotic p-Cdc25C (Ser216) and p-Cdc2 (Thr14/Tyr15) to inactivate the G2/M Cdc2/cyclin B1 complex. Cyclin B1 expression then downregulates and the cell cycle arrests at the G2/M checkpoint, reducing cell division. As expected, S100A8/A9-expressing cells show both decreased anchorage-dependent and -independent growth and mitotic progression. Using shRNA, silencing of S100A8/A9 expression in the TR146 human HNSCC cell line increases growth and survival and reduces Cdc2 inhibitory phosphorylation at Thr14/Tyr15. The level of S100A8/A9 endogenous expression correlates strongly with the reduced p-Cdc2 (Thr14/Tyr14) level in HNSCC cell lines, SCC-58, OSCC-3 and UMSCC-17B. S100A8/A9-mediated control of the G2/M cell cycle checkpoint is, therefore, a likely suppressive mechanism in human squamous cell carcinomas and may suggest new therapeutic approaches.  相似文献   

11.
BCAR3 binds to the carboxy-terminus of p130Cas, a focal adhesion adapter protein. Both BCAR3 and p130Cas have been linked to resistance to anti-estrogens in breast cancer, Rac activation and cell motility. Using R743A BCAR3, a point mutant that has lost the ability to bind p130Cas, we find that BCAR3-p130Cas complex formation is not required for BCAR3-mediated anti-estrogen resistance, Rac activation or discohesion of epithelial breast cancer cells. Complex formation was also not required for BCAR3-induced lamellipodia formation in BALB/c-3T3 fibroblasts but was required for optimal BCAR3-induced motility. Although both wildtype and R743A BCAR3 induced phosphorylation of p130Cas and the related adapter protein HEF1/NEDD9, chimeric NSP3:BCAR3 experiments demonstrate that such phosphorylation does not correlate with BCAR3-induced anti-estrogen resistance or lamellipodia formation. Wildtype but not R743A BCAR3 induced lamellipodia formation and augmented cell motility in p130Cas−/− murine embryonic fibroblasts (MEFs), suggesting that while p130Cas itself is not strictly required for these endpoints, complex formation with other CAS family members is, at least in cells lacking p130Cas. Overall, our work suggests that many, but not all, BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. These studies also indicate that disruption of the BCAR3-p130Cas complex is unlikely to reverse BCAR3-mediated anti-estrogen resistance.  相似文献   

12.
We have previously reported that vitellogenin (Vg) of some female animals contained four polypeptides with molecular mass of 181, 115, 105 and 85 kDa, whereas Vg of most animals contained three polypeptides with molecular mass of 115, 105 and 85 kDa. In the present investigation, we examined whether the 181 kDa polypeptide is the precursor of 115 and 105 kDa Vg and vitellin (Vn) polypeptides. Labeling studies, using [35S]methionine on normal vitellogenic animals, showed that the radioactivity was distributed first among the 181 and 85 kDa polypeptides. SDS-PAGE analysis of purified hemolymph Vg from eyestalk ablated female animals revealed in most animals two polypeptides with an apparent molecular mass of 181 and 85 kDa. These results from in vivo experiments corroborated the view that the 115 and 105 kDa Vg and Vn polypeptides are derived from heaviest 181 kDa polypeptide. In addition it was demonstrated that hepatopancreas and ovary of Potamon potamios incubated in vitro with [35S]methionine synthesized five polypeptides with apparent molecular mass of 224, 181, 115, 105, and 85 kDa while the hepatopancreas appeared to secrete the 181, 115, 105 and 85 kDa polypeptides. The major 115, 105 and 85 kDa polypeptides were found to be components of egg Vn, while the 224 kDa polypeptide was found to be minor component of Vg and Vn from hepatopancreas and ovary extracts, respectively. We conclude that the Vn polypeptides produced by ovary are similar to those produced by hepatopancreas.  相似文献   

13.
The p50 subunit of NF-kappaB is generated by limited processing of the precursor p105. IkappaB kinase-mediated phosphorylation of the C-terminal domain of p105 recruits the SCF(beta-TrCP) ubiquitin ligase, resulting in rapid ubiquitination and subsequent processing/degradation of p105. NEDD8 is known to activate SCF ligases following modification of their cullin component. Here we show that NEDDylation is required for conjugation and processing of p105 by SCF(beta-TrCP) following phosphorylation of the molecule. In a crude extract, a dominant negative E2 enzyme, UBC12, inhibits both conjugation and processing of p105, and inhibition is alleviated by an excess of WT- UBC12. In a reconstituted cell-free system, ubiquitination of p105 was stimulated only in the presence of all three components of the NEDD8 pathway, E1, E2, and NEDD8. A Cul-1 mutant that cannot be NEDDylated could not stimulate ubiquitination and processing of p105. Similar findings were observed also in cells. It should be noted that NEDDylation is required only for the stimulated but not for basal processing of p105. Although the mechanisms that underlie processing of p105 are largely obscure, it is clear that NEDDylation and the coordinated activity of SCF(beta-TrCP) on both p105 and IkappaBalpha serve as an important regulatory mechanism controlling NF-kappaB activity.  相似文献   

14.
alpha 4 integrins mediate increased cell migration and decreased cell spreading because the alpha 4 cytoplasmic domain (tail) binds tightly to paxillin, a signaling adaptor protein. Paxillin binding to the alpha 4 tail is blocked by alpha 4 phosphorylation at Ser988. To establish the biological role of alpha 4 phosphorylation, we reconstituted alpha 4-deficient Jurkat T cells with phosphorylation-mimicking (alpha 4(S988D)) or non-phosphorylatable (alpha 4(S988A)) mutants. alpha 4(S988D) disrupted paxillin binding and also inhibited cell migration and promoted cell spreading. In contrast, the non-phosphorylatable alpha 4(S988A) resulted in a further reduction in cell spreading; however, this mutation led to an unexpected suppression of cell migration. The suppression of cell migration by alpha 4(S988A) was ascribable to enhanced alpha 4-paxillin association, because enforced association by an alpha 4-paxillin fusion led to a phenotype similar to that of the non-phosphorylatable alpha 4(S988A) mutant. These data establish that optimal alpha 4-mediated cell migration requires both phosphorylation and dephosphorylation of the alpha 4 cytoplasmic domain to regulate the reversible binding of paxillin.  相似文献   

15.
16.
17.
Cdc25A phosphatase regulates cell cycle progression by removing the inhibitory phosphates from cyclin-dependent kinases. Activity of Cdc25A depends on its phosphorylation status. During normal cell cycle progression and after DNA damage phosphorylation by Chk1 (or Chk2) triggers Cdc25A degradation via ubiquitin-proteasome pathway. In this study we investigate the role of various phosphorylation sites (Ser123, Ser75, Ser17 and Ser115) in the regulation of Cdc25A stability. We have shown that only S75A mutation abrogates Cdc25A degradation both in normal and stress conditions. We also studied the influence of stable form of Cdc25A on checkpoint progression after DNA damage. We have found out that delay in DNA synthesis after UV and IR does not depend on Cdc25A activity. However, the presence of stable Cdc25A increases the number of mitotic cells after these stresses.  相似文献   

18.
DNA replication in higher eukaryotes requires activation of a Cdk2 kinase by Cdc25A, a labile phosphatase subject to further destabilization upon genotoxic stress. We describe a distinct, markedly stable form of Cdc25A, which plays a previously unrecognized role in mitosis. Mitotic stabilization of Cdc25A reflects its phosphorylation on Ser17 and Ser115 by cyclin B-Cdk1, modifications required to uncouple Cdc25A from its ubiquitin-proteasome-mediated turnover. Cdc25A binds and activates cyclin B-Cdk1, accelerates cell division when overexpressed, and its downregulation by RNA interference (RNAi) delays mitotic entry. DNA damage-induced G(2) arrest, in contrast, is accompanied by proteasome-dependent destruction of Cdc25A, and ectopic Cdc25A abrogates the G(2) checkpoint. Thus, phosphorylation-mediated switches among three differentially stable forms ensure distinct thresholds, and thereby distinct roles for Cdc25A in multiple cell cycle transitions and checkpoints.  相似文献   

19.
Endothelial nitric-oxide synthase (eNOS) function is fundamentally modulated by protein phosphorylation. In particular, phosphorylation of serine 1179 (bovine)/1177 (human) by Akt has been shown to be the central mechanism of eNOS regulation. Here we revealed a novel role of proteasome in controlling eNOS serine 1179 phosphorylation and function. Rather than affecting eNOS turnover, proteasomal inhibition specifically dephosphorylated eNOS serine 1179, leading to decreased enzymatic activity. Blocking protein phosphatase 2A (PP2A) by okadaic acid or PP2A knockdown restored eNOS serine 1179 phosphorylation and activity in proteasome-inhibited cells. Although total PP2A expression and activity in cells were not affected by proteasome inhibitors, proteasomal inhibition induced PP2A ubiquitination and ubiquitinated PP2A translocated from cytosol to membrane. Further biochemical analyses demonstrated that eNOS associated with PP2A on cell membranes. Proteasomal inhibition markedly enhanced PP2A association to eNOS, and this increase of PP2A dephosphorylated eNOS and its upstream kinase Akt. Taken together, these studies identified a novel pathway in which proteasome modulates eNOS phosphorylation by inducing intracellular PP2A translocation.  相似文献   

20.
In chicken embryo fibroblasts, phosphorylation of the 40S ribosomal protein S6 increases during G1 but returns to basal level by mitosis. In contrast, in Rous sarcoma virus (RSV)-transformed fibroblasts, S6 remains highly phosphorylated throughout mitosis. This study investigated the mechanism by which RSV alters the pattern of S6 phosphorylation. Pulse-chase experiments demonstrate that phosphate turnover in S6 is rapid in normal cells and in cells infected with an RSV transformation-defective virus. In contrast, phosphate turnover in S6 is severely reduced in cells infected with temperature-sensitive RSV at a temperature permissive for transformation, indicating a diminished S6 phosphatase activity. Fractionation of cell lysates by DEAE chromatography showed an almost threefold lower S6 phosphatase activity in RSV-transformed versus normal cells. The S6 phosphatase was sensitive to inhibitor 2 and specifically recognized by an antibody to type 1 phosphatase (PP1). The S6 phosphatase activity recovered by immunoprecipitation of PP1 was threefold lower in transformed cells, but the steady-state level of expression and the rate of synthesis of PP1 were not altered by oncogenic transformation. Together, the results show that transformation by RSV reduced the S6-PP1 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号