首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eukaryotic cytosolic chaperonin TRiC (TCP-1 Ring Complex), also known as CCT (Cytosolic Chaperonin containing TCP-1), is a hetero-oligomeric complex consisting of two back-to-back rings of eight different subunits each. The general architecture of the complex has been determined, but the arrangement of the subunits within the complex remains an open question. By assuming that the subunits have a defined arrangement within each ring, we constructed a simple model of TRiC that analyzes the possible arrangements of individual subunits in the complex. By applying the model to existing data, we find that there are only four subunit arrangements consistent with previous observations. Our analysis provides a framework for the interpretation and design of experiments to elucidate the quaternary structure of TRiC/CCT. This in turn will aid in the understanding of substrate binding and allosteric properties of this chaperonin.  相似文献   

2.
《Cell》2022,185(25):4770-4787.e20
  1. Download : Download high-res image (377KB)
  2. Download : Download full-size image
  相似文献   

3.
Hypoxia-inducible factor-1 (HIF) is regulated by oxygen-dependent prolyl hydroxylation. Of the three HIF prolyl hydroxylases (PHD1, 2 and 3) identified, PHD3 exhibits restricted substrate specificity in vitro and is induced in different cell types by diverse stimuli. PHD3 may therefore provide an interface between oxygen sensing and other signalling pathways. We have used co-purification and mass spectrometry to identify proteins that interact with PHD3. The cytosolic chaperonin TRiC was found to copurify with PHD3 in extracts from several cell types. Our results indicate that PHD3 is a TRiC substrate, providing another step at which PHD3 activity may be regulated.  相似文献   

4.
5.
The malaria parasite exports numerous proteins into its host red blood cell (RBC). The trafficking of these exported effectors is complex. Proteins are first routed through the secretory system, into the parasitophorous vacuole (PV), a membranous compartment enclosing the parasite. Proteins are then translocated across the PV membrane in a process requiring ATP and unfolding. Once in the RBC compartment the exported proteins are then refolded and further trafficked to their final localizations. Chaperones are important in the unfolding and refolding processes. Recently, it was suggested that the parasite TRiC chaperonin complex is exported, and that it is involved in trafficking of exported effectors. Using a parasite‐specific antibody and epitope‐tagged transgenic parasites we could observe no export of Plasmodium TRiC into the RBC. We tested the importance of the parasite TRiC by creating a regulatable knockdown line of the TRiC‐θ subunit. Loss of the parasite TRiC‐θ led to a severe growth defect in asexual development, but did not alter protein export into the RBC. These observations indicate that the TRiC proteins play a critical role in parasite biology, though their function, within the parasite, appears unrelated to protein trafficking in the RBC compartment.  相似文献   

6.
The accuracy of ribosomal translation is achieved by an initial selection and a proofreading step, mediated by EF-Tu, which forms a ternary complex with aminoacyl(aa)-tRNA. To study the binding modes of different aa-tRNAs, we compared cryo-EM maps of the kirromycin-stalled ribosome bound with ternary complexes containing Phe-tRNAPhe, Trp-tRNATrp, or Leu-tRNALeuI. The three maps suggest a common binding manner of cognate aa-tRNAs in their specific binding with both the ribosome and EF-Tu. All three aa-tRNAs have the same ‘loaded spring' conformation with a kink and twist between the D-stem and anticodon stem. The three complexes are similarly integrated in an interaction network, extending from the anticodon loop through h44 and protein S12 to the EF-Tu-binding CCA end of aa-tRNA, proposed to signal cognate codon–anticodon interaction to the GTPase centre and tune the accuracy of aa-tRNA selection.  相似文献   

7.
The eukaryotic cytosolic chaperonins are large heterooligomeric complexes with a cylindrical shape, resembling that of the homooligomeric bacterial counterpart, GroEL. In analogy to GroEL, changes in shape of the cytosolic chaperonin have been detected in the presence of MgATP using electron microscopy but, in contrast to the nucleotide-induced conformational changes in GroEL, no details are available about the specific nature of these changes. The present study identifies the structural regions of the cytosolic chaperonin that undergo conformational changes when MgATP binds to the nucleotide binding domains. It is shown that limited proteolysis with trypsin in the absence of MgATP cleaves each of the eight subunits approximately in half, generating two fragments of approximately 30 kDa. Using mass spectrometry (MS) and N-terminal sequence analysis, the cleavage is found to occur in a narrow span of the amino acid sequence, corresponding to the peptide binding regions of GroEL and to the helical protrusion, recently identified in the structure of the substrate binding domain of the archeal group II chaperonin. This proteolytic cleavage is prevented by MgATP but not by ATP in the absence of magnesium, ATP analogs (MgATPyS and MgAMP-PNP) or MgADP. These results suggest that, in analogy to GroEL, binding of MgATP to the nucleotide binding domains of the cytosolic chaperonin induces long range conformational changes in the polypeptide binding domains. It is postulated that despite their different subunit composition and substrate specificity, group I and group II chaperonins may share similar, functionally-important, conformational changes. Additional conformational changes are likely to involve a flexible helix-loop-helix motif, which is characteristic for all group II chaperonins.  相似文献   

8.
The chaperonin CCT (chaperonin containing t-complex polypeptide 1 (TCP-1)) from bovine testis was mixed rapidly with different concentrations of ATP and the time-resolved change in fluorescence emission, upon excitation at 280 nm, was followed. Two kinetic phases were observed and assigned by (i) analyzing the dependence of the corresponding observed rate constants on ATP concentration; and (ii) by carrying out mixing experiments also with ADP, ATPgammaS and ATP without K(+). The values of the observed rate constants corresponding to both phases are found to be dependent on ATP concentration. The observed rate constant corresponding to the fast phase displays a bi-sigmoidal dependence on ATP concentration with Hill coefficients that are similar to those determined in steady-state ATPase experiments. This phase most likely reflects ATP binding-induced conformational changes. The rate constant of the conformational change in the presence of excess ATP is about 17s(-1) (at 25 degrees C) and is tenfold slower than the corresponding rate constant of GroEL. The observed rate constant corresponding to the second slower phase displays a hyperbolic dependence on ATP concentration. This phase is not observed in mixing experiments of CCT with ADP, ATPgammaS or ATP without K(+) and it, therefore, reflects a conformational change associated with ATP hydrolysis. Taken together, our results indicate that the kinetic mechanism of the allosteric transitions of CCT differs considerably from that of GroEL.  相似文献   

9.
The cytosolic chaperonin TRiC was isolated from ovine testes using ultracentrifugation and heparin-Sepharose chromatography. The molecular mass of the obtained preparation was shown to exceed 900 kDa (by Blue Native PAGE). SDS–PAGE yielded a set of bands in the range of 50–60 kDa. Electron microscopy examination revealed ring-shaped complexes with the outer diameter of 15 nm and the inner diameter of approximately 6 nm. The results suggest that the purified chaperonin is an oligomeric complex composed of two 8-membered rings.The chaperonin TRiC was shown to assist an ATP-dependent refolding of recombinant forms of sperm-specific glyceraldehyde-3-phosphate dehydrogenase, an enzyme that is expressed only in precursor cells of the sperms in the seminiferous tubules of the testes. In contrast, TRiC did not influence the refolding of muscle isoform of glyceraldehyde-3-phosphate dehydrogenase and assisted the refolding of muscle lactate dehydrogenase by an ATP-independent mechanism. The obtained results suggest that TRiC is likely to be involved in the refolding of sperm-specific proteins.  相似文献   

10.
The three-dimensional structure of protein is encoded in the sequence, but many amino acid residues carry no essential conformational information, and the identity of those that are structure-determining is elusive. By circular permutation and terminal deletion, we produced and purified 25 Bacillus licheniformis beta-lactamase (ESBL) variants that lack 5-21 contiguous residues each, and collectively have 82% of the sequence and 92% of the non-local atom-atom contacts eliminated. Circular dichroism and size-exclusion chromatography showed that most of the variants form conformationally heterogeneous mixtures, but by measuring catalytic constants, we found that all populate, to a greater or lesser extent, conformations with the essential features of the native fold. This suggests that no segment of the ESBL sequence is essential to the structure as a whole, which is congruent with the notion that local information and modular organization can impart most of the tertiary fold specificity and cooperativity.  相似文献   

11.
Previous investigation has shown that at 22 degrees C and in the presence of the chaperonin GroEL, the slowest step in the refolding of Escherichia coli dihydrofolate reductase (EcDHFR) reflects release of a late folding intermediate from the cavity of GroEL (Clark AC, Frieden C, 1997, J Mol Biol 268:512-525). In this paper, we investigate the effects of potassium, magnesium, and MgADP on the release of the EcDHFR late folding intermediate from GroEL. The data demonstrate that GroEL consists of at least two conformational states, with apparent rate constants for EcDHFR release that differ by four- to fivefold. In the absence of potassium, magnesium, and ADP, approximately 80-90% of GroEL resides in the form with the faster rate of release. Magnesium and potassium both shift the distribution of GroEL forms toward the form with the slower release rate, though cooperativity for the magnesium-induced transition is observed only in the presence of potassium. MgADP at low concentrations (0-50 microM) shifts the distribution of GroEL forms toward the form with the faster release rate, and this effect is also potassium dependent. Nearly identical results were obtained with a GroEL mutant that forms only a single ring, demonstrating that these effects occur within a single toroid of GroEL. In the presence of saturating magnesium, potassium, and MgADP, the apparent rate constant for the release of EcDHFR from wild-type GroEL at 22 degrees C reaches a limiting value of 0.014 s(-1). For the single ring mutant of GroEL, the rate of EcDHFR release under the same conditions reaches a limiting value of 0.024 s(-1), suggesting that inter-ring negative cooperativity exists for MgADP-induced substrate release. The data suggest that MgADP preferentially binds to one conformation of GroEL, that with the faster apparent rate constant for EcDHFR release, and induces a conformational change leading to more rapid release of substrate protein.  相似文献   

12.
Assembly Quality Control (AQC) E3 ubiquitin ligases target incomplete or incorrectly assembled protein complexes for degradation. The CUL4‐RBX1‐DDB1‐DCAF12 (CRL4DCAF12) E3 ligase preferentially ubiquitinates proteins that carry a C‐terminal double glutamate (di‐Glu) motif. Reported CRL4DCAF12 di‐Glu‐containing substrates include CCT5, a subunit of the TRiC chaperonin. How DCAF12 engages its substrates and the functional relationship between CRL4DCAF12 and CCT5/TRiC is currently unknown. Here, we present the cryo‐EM structure of the DDB1‐DCAF12‐CCT5 complex at 2.8 Å resolution. DCAF12 serves as a canonical WD40 DCAF substrate receptor and uses a positively charged pocket at the center of the β‐propeller to bind the C‐terminus of CCT5. DCAF12 specifically reads out the CCT5 di‐Glu side chains, and contacts other visible degron amino acids through Van der Waals interactions. The CCT5 C‐terminus is inaccessible in an assembled TRiC complex, and functional assays demonstrate that DCAF12 binds and ubiquitinates monomeric CCT5, but not CCT5 assembled into TRiC. Our biochemical and structural results suggest a previously unknown role for the CRL4DCAF12 E3 ligase in overseeing the assembly of a key cellular complex.  相似文献   

13.
The chaperonin containing TCP-1 (CCT) is required for the production of native actin and tubulin and numerous other proteins, several of which are involved in cell cycle progression. The mechanistic details of how CCT acts upon its folding substrates are intriguing: whilst actin and tubulin bind in a sequence-specific manner, it is possible that some proteins could use CCT as a more general binding interface. Therefore, how CCT accommodates the folding requirements of its substrates, some of which are produced in a cell cycle-specific manner, is of great interest. The reliance of folding substrates upon CCT for the adoption of their native structures results in CCT activity having far-reaching implications for a vast array of cellular processes. For example, the dependency of the major cytoskeletal proteins actin and tubulin upon CCT results in CCT activity being linked to any cellular process that depends on the integrity of the microfilament and microtubule-based cytoskeletal systems.  相似文献   

14.
We describe an extensive test of Geocore, an ab initio peptide folding algorithm. We studied 18 short molecules for which there are structures in the Protein Data Bank; chains are up to 31 monomers long. Except for the very shortest peptides, an extremely simple energy function is sufficient to discriminate the true native state from more than 10(8) lowest energy conformations that are searched explicitly for each peptide. A high incidence of native-like structures is found within the best few hundred conformations generated by Geocore for each amino acid sequence. Predictions improve when the number of discrete phi/psi choices is increased.  相似文献   

15.
The conformational transitions of a small oncogene product, p13(MTCP1), have been studied by high-pressure fluorescence of the intrinsic tryptophan emission and high-pressure 1D and 2D 1H-15N NMR. While the unfolding transition monitored by fluorescence is cooperative, two kinds of NMR spectral changes were observed, depending on the pressure range. Below approximately 200 MPa, pressure caused continuous, non-linear shifts of many of the 15N and 1H signals, suggesting the presence of an alternate folded conformer(s) in rapid equilibrium (tau相似文献   

16.
Liu X  Zhao YP  Zheng WM 《Proteins》2008,71(2):728-736
CLEMAPS is a tool for multiple alignment of protein structures. It distinguishes itself from other existing algorithms for multiple structure alignment by the use of conformational letters, which are discretized states of 3D segmental structural states. A letter corresponds to a cluster of combinations of three angles formed by C(alpha) pseudobonds of four contiguous residues. A substitution matrix called CLESUM is available to measure the similarity between any two such letters. The input 3D structures are first converted to sequences of conformational letters. Each string of a fixed length is then taken as the center seed to search other sequences for neighbors of the seed, which are strings similar to the seed. A seed and its neighbors form a center-star, which corresponds to a fragment set of local structural similarity shared by many proteins. The detection of center-stars using CLESUM is extremely efficient. Local similarity is a necessary, but insufficient, condition for structural alignment. Once center-stars are found, the spatial consistency between any two stars are examined to find consistent star duads using atomic coordinates. Consistent duads are later joined to create a core for multiple alignment, which is further polished to produce the final alignment. The utility of CLEMAPS is tested on various protein structure ensembles.  相似文献   

17.
The family of conserved colicin DNases E2, E7, E8, and E9 are microbial toxins that kill bacteria through random degradation of the chromosomal DNA. In the present work, we compare side by side the conformational stabilities of these four highly homologous colicin DNases. Our results indicate that the apo-forms of these colicins are at room temperature and neutral pH in a dynamic conformational equilibrium between at least two quite distinct conformers. We show that the thermal stabilities of the apo-proteins differ by up to 20 degrees C. The observed differences correlate with the observed conformational behavior, that is, the tendency of the protein to form either an open, less stable or closed, more stable conformation in solution, as deduced by both tryptophan accessibility studies and electrospray ionization mass spectrometry. Given these surprising structural differences, we next probed the catalytic activity of the four DNases and also observed a significant variation in relative activities. However, no unequivocal link between the activity of the protein and its thermal and structural stability could easily be made. The observed differences in conformational and functional properties of the four colicin DNases are surprising given that they are a closely related (> or =65% identity) family of enzymes containing a highly conserved (betabetaalpha-Me) active site motif. The different behavior of the apo-enzymes must therefore most likely depend on more subtle changes in amino acid sequences, most likely in the exosite region (residues 72-98) that is required for specific high-affinity binding of the cognate immunity protein.  相似文献   

18.
Translocases of the AAA+ (ATPases Associated with various cellular Activities) family are powerful molecular machines that use the mechano‐chemical coupling of ATP hydrolysis and conformational changes to thread DNA or protein substrates through their central channel for many important biological processes. These motors comprise hexameric rings of ATPase subunits, in which highly conserved nucleotide‐binding domains form active‐site pockets near the subunit interfaces and aromatic pore‐loop residues extend into the central channel for substrate binding and mechanical pulling. Over the past 2 years, 41 cryo‐EM structures have been solved for substrate‐bound AAA+ translocases that revealed spiral‐staircase arrangements of pore‐loop residues surrounding substrate polypeptides and indicating a conserved hand‐over‐hand mechanism for translocation. The subunits' vertical positions within the spiral arrangements appear to be correlated with their nucleotide states, progressing from ATP‐bound at the top to ADP or apo states at the bottom. Studies describing multiple conformations for a particular motor illustrate the potential coupling between ATP‐hydrolysis steps and subunit movements to propel the substrate. Experiments with double‐ring, Type II AAA+ motors revealed an offset of hydrolysis steps between the two ATPase domains of individual subunits, and the upper ATPase domains lacking aromatic pore loops frequently form planar rings. This review summarizes the critical advances provided by recent studies to our structural and functional understanding of hexameric AAA+ translocases, as well as the important outstanding questions regarding the underlying mechanisms for coordinated ATP‐hydrolysis and mechano‐chemical coupling.  相似文献   

19.
Kinetics of refolding and unfolding of staphylococcal nuclease and its six mutants, each carrying single or double amino acid substitutions, are studied by stopped-flow circular dichroism measurements. A transient kinetic intermediate formed within 10 ms after refolding starts possesses a substantial part of the N-domain core β-structure, whereas helices are formed at the later stages. The structure of the kinetic intermediate is less organized than the structure that is known to be formed by a nuclease 1-136 fragment. Only the refolding kinetics are affected by the mutations in all the mutants except two in which the mutations have changed the native structure. From this result and also from the locations of the mutation sites, the major N-terminal domain of the nuclease in the transition state of folding has a structure nearly identical to the native one. On the other hand, the minor C-terminal domain has previously been shown to be still disorganized in the transition state. The effects of the amino acid substitutions on the stability of the native and the transition states are in good agreement with the changes in the hydration free energy, expected for the corresponding amino acid replacements in the unfolded polypeptide. Since side chains of all the mutated residues are not accessible to solvent in the native structure, the result suggests that it is the unfolded state that is mainly affected by the mutations. © 1995 Wiley-Liss, Inc.  相似文献   

20.
A G Anderson  J Hermans 《Proteins》1988,3(4):262-265
A direct attack on the protein-folding problem has been initiated with the free energy perturbation methods of molecular dynamics. The complete conformational probability map for the alanine dipeptide is presented. This work uses the SPC model for the explicit hydration of the dipeptide. Free energy differences for the four observed minima (beta, alpha R, alpha L, C7ax) are given, and the free energy barriers between minima are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号