首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
alpha-Lipoic acid (LA) has been found previously to accelerate wound repair in patients affected by chronic wounds who underwent hyperbaric oxygen (HBO) therapy. Because proteinases are important in wound repair, we hypothesized that LA may regulate matrix metalloproteinase (MMP) expression in cells that are involved in wound repair. Patients undergoing HBO therapy were double-blind randomized into two groups: the LA group and the placebo group. Gene expression profiles for MMPs and for angiogenesis mediators were evaluated in biopsies collected at the first HBO session, at the seventh HBO session, and after 14 days of HBO treatment. ELISA tests were used to validate microarray expression of selected genes. LA supplementation in combination with HBO therapy downregulated the inflammatory cytokines and the growth factors which, in turn, affect MMPs expression. The disruption of the positive autocrine feedback loops that maintain the chronic wound state promotes progression of the healing process.  相似文献   

2.
3.
Hyperbaric oxygen (HBO) is thought to confer protection to cells via a cellular response to free radicals. This process may involve increased expression of heat shock proteins, in particular the highly inducible heat shock protein 72 (Hsp72). Healthy male volunteers (n = 16) were subjected to HBO for 1 h at 2.8 ATA. Inducible Hsp72 expression was measured by flow cytometry pre-, post- and 4 h-post HBO. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood via density centrifugation pre-, post- and 4 h post-HBO. PBMC were then subjected to an in vitro heat shock at 40°C or hypoxia at 37°C (5% O2) with a control at 37°C. Cells were then analysed for Hsp72 expression by flow cytometry. Monocytes showed no significant changes in Hsp72 expression following HBO. No detectable Hsp72 was seen in lymphocytes or neutrophils. Following in vitro hypoxic exposure, a significant increase in Hsp72 expression was observed in monocytes isolated immediately post- (p = 0.006) and 4 h post-HBO (p = 0.010) in comparison to control values. HBO does not induce Hsp72 expression in PBMC. The reported benefits of HBO in terms of pre-conditioning are not due to inducement of Hsp72 expression in circulating blood cells, but may involve an enhancement of the stress response.  相似文献   

4.
5.
6.
Delayed wound healing is a chronic problem in opioid drug abusers. We investigated the role chronic morphine plays on later stages of wound healing events using an angiogenesis model. Our results show that morphine treatment resulted in a significant decrease in inflammation induced angiogenesis. To delineate the mechanisms involved we investigate the role of hypoxia inducible factor 1 alpha (HIF-1 alpha), a potent inducer of angiogenic growth factor. Morphine treatment resulted in a significant decrease in the expression and nuclear translocation of HIF-1 alpha with a concurrent suppression in vascular endothelial growth factor (VEGF) synthesis. Cells of the innate immune system play a dominant role in the angiogenic process. Morphine treatment inhibited early recruitment of both neutrophils and monocytes towards an inflammatory signal with a significant decrease in the monocyte chemoattractant MCP-1. Taken together, our studies show that morphine regulates the wound repair process on multiple levels. Morphine acts both directly and indirectly in suppressing angiogenesis.  相似文献   

7.
Syndecans are important cell surface proteoglycans with many functions; yet, they have not been studied to a very large extent in primary human endothelial cells. The purpose of this study was to investigate syndecan-4 expression in cultured human umbilical vein endothelial cells (HUVECs) and assess its role in inflammatory reactions and experimental wound healing. qRT-PCR analysis revealed that syndecan-3 and syndecan-4 were highly expressed in HUVECs, whereas the expression of syndecan-1 and -2 was low. HUVECs were cultured with the inflammatory mediators lipopolysaccharide (LPS) and interleukin 1β (IL-1β). As a result, syndecan-4 expression showed a rapid and strong increase. Syndecan-1 and -2 expressions decreased, whereas syndecan-3 was unaffected. Knockdown of syndecan-4 using siRNA resulted in changes in cellular morphology and focal adhesion sites, delayed wound healing and tube formation, and increased secretion of the pro-inflammatory and angiogenic chemokine, CXCL8. These data suggest functions for syndecan-4 in inflammatory reactions, wound healing and angiogenesis in primary human endothelial cells.  相似文献   

8.

Background

Platelets are rich in mediators able to positively affect cell activity in wound healing. Aim of this study was to characterize the effect of different concentrations of human pooled allogeneic platelet lysate on human cells involved in the different phases of wound healing (inflammatory phase, angiogenesis, extracellular matrix secretion and epithelialization).

Methodology/Principal Findings

Platelet lysate effect was studied on endothelial cells, monocytes, fibroblasts and keratinocytes, in terms of viability and proliferation, migration, angiogenesis, tissue repair pathway activation (ERK1/2) and inflammatory response evaluation (NFκB). Results were compared both with basal medium and with a positive control containing serum and growth factors. Platelet lysate induced viability and proliferation at the highest concentrations tested (10% and 20% v/v). Whereas both platelet lysate concentrations increased cell migration, only 20% platelet lysate was able to significantly promote angiogenic activity (p<0.05 vs. control), comparably to the positive control. Both platelet lysate concentrations activated important inflammatory pathways such as ERK1/2 and NFκB with the same early kinetics, whereas the effect was different for later time-points.

Conclusion/Significance

These data suggest the possibility of using allogeneic platelet lysate as both an alternative to growth factors commonly used for cell culture and as a tool for clinical regenerative application for wound healing.  相似文献   

9.
Nitric oxide and wound repair: role of cytokines?   总被引:5,自引:0,他引:5  
Wound healing involves platelets, inflammatory cells, fibroblasts, and epithelial cells. All of these cell types are capable of producing nitric oxide (NO), either constitutively or in response to inflammatory cytokines, through the activity of nitric oxide synthases (NOSs): eNOS (NOS3; endothelial NOS) and iNOS (NOS2; inducible NOS), respectively. Indeed, pharmacological inhibition or gene deletion of these enzymes impairs wound healing. The wound healing mechanisms that are triggered by NO appear to be diverse, involving inflammation, angiogenesis, and cell proliferation. All of these processes are controlled by defined cytokine cascades; in many cases, NO appears to modulate these cytokines. In this review, we summarize the history and present state of research on the role of NO in wound healing within the framework of modulation of cytokines.  相似文献   

10.

Background

Recent studies shows that hyperbaric oxygen (HBO) therapy exerts some protective effects against neural injuries. The purpose of this study was to determine the neuroprotective effects of HBO following sciatic nerve transection (SNT).

Methods

Rats were randomly divided into five groups (n?=?14 per group): Sham-operated (SH) group, SH?+?HBO group, SNT group, and SNT?+?pre- and SNT?+?post-HBO groups (100% oxygen at 2.0 atm absolute, 60 min/day for five consecutive days beginning on 1 day before and immediately after nerve transaction, respectively). Spinal cord segments of the sciatic nerve and related dorsal root ganglions (DRGs) were removed 4 weeks after nerve transection for biochemical assessment of malodialdehyde (MDA) levels in spinal cord, biochemical assessment of superoxide dismutase (SOD) and catalse (CAT) activities in spinal cord, immunohistochemistry of caspase-3, cyclooxigenase-2 (COX-2), S100beta (S100ß), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) in spinal cord and DRG.

Results

The results revealed that MDA levels were significantly decreased in the SNT?+?pre-HBO group, while SOD and CAT activities were significantly increased in SNT?+?pre- and SNT?+?post-HBO treated rats. Attenuated caspase-3 and COX-2 expression, and TUNEL reaction could be significantly detected in the HBO-treated rats after nerve transection. Also, HBO significantly increased S100ß expression.

Conclusions

Based on these results, we can conclude that pre- and post-HBO therapy had neuroprotective effects against sciatic nerve transection-induced degeneration.
  相似文献   

11.
Macrophages are an important source of angiogenic activity in wound healing, cancer, and chronic inflammation. Vascular endothelial growth factor (VEGF), a cytokine produced by macrophages, is a primary inducer of angiogenesis and neovascularization in these contexts. VEGF expression by macrophages is known to be stimulated by low oxygen tension as well as by inflammatory signals. In this study, we provide evidence that Vegfa gene expression is also regulated by activation of liver X receptors (LXRs). VEGF mRNA was induced in response to synthetic LXR agonists in murine and human primary macrophages as well as in murine adipose tissue in vivo. The effects of LXR ligands on VEGF expression were independent of hypoxia-inducible factor HIF-1alpha activation and did not require the previously characterized hypoxia response element in the VEGF promoter. Rather, LXR/retinoid X receptor heterodimers bound directly to a conserved hormone response element (LXRE) in the promoter of the murine and human Vegfa genes. Both LXRalpha and LXRbeta transactivated the VEGF promoter in transient transfection assays. Finally, we show that induction of VEGF expression by inflammatory stimuli was independent of LXRs, because these effects were preserved in LXR null macrophages. These observations identify VEGF as an LXR target gene and point to a previously unrecognized role for LXRs in vascular biology.  相似文献   

12.
Angiogenesis is vitally important in diabetic wound healing. We had previously demonstrated that a Chinese 2-herb formula (NF3) significantly stimulated angiogenesis of HUVEC in wound healing. However, the molecular mechanism has not yet been elucidated. In line with this, global expression profiling of NF3-treated HUVEC was performed so as to assess the regulatory role of NF3 involved in the underlying signaling pathways in wound healing angiogenesis. The microarray results illustrated that different panels of differentially expressed genes were strictly governed in NF3-treated HUVEC in a time-regulated manner. The microarray analysis followed by qRT-PCR and western blotting verification of NF3-treated HUVEC at 6 h revealed the involvement of various genes in diverse biological process, e.g., MAP3K14 in anti-inflammation; SLC5A8 in anti-tumorogenesis; DNAJB7 in protein translation; BIRC5, EPCAM, INSL4, MMP8 and NPR3 in cell proliferation; CXCR7, EPCAM, HAND1 and MMP8 in migration; CXCR7, EPCAM and MMP8 in tubular formation; and BIRC5, CXCR7, EPCAM, HAND1, MMP8 and UBD in angiogenesis. After 16 h incubation of NF3, other sets of genes were shown with differential expression in HUVEC, e.g., IL1RAPL2 and NR1H4 in anti-inflammation; miR28 in anti-tumorogenesis; GRIN1 and LCN1 in anti-oxidation; EPB41 in intracellular signal transduction; PRL and TFAP2A in cell proliferation; miR28, PRL and SCG2 in cell migration; PRL in tubular formation; and miR28, NR1H4 and PRL in angiogenesis. This study provided concrete scientific evidence in support of the regulatory role of NF3 on endothelial cells involved in wound healing angiogenesis.  相似文献   

13.

Background  

Visfatin, a adipocytokine with insulin-mimetic effect, plays a role in endothelial angiogenesis. Hyperbaric oxygen (HBO) has been used in medical practice. However, the molecular mechanism of beneficial effects of HBO is poorly understood. We sought to investigate the cellular and molecular mechanisms of regulation of visfatin by HBO in human coronary arterial endothelial cells (CAECs).  相似文献   

14.
J. Yuan  A.J. Moody 《BBA》2009,1787(7):828-834
Hyperbaric oxygen therapy (HBO) is suggested to promote angiogenesis during wound healing, but the mechanisms involved are not understood. This study used a novel isolated blood vessel preparation to explore the effects of air, normobaric oxygen or hyperbaric oxygen (2.2 ATA for 90 min) on the angiogenesis factor, vascular endothelial growth factor (VEGF), nitrite and nitrate (NOx), lactate dehydrogenase (LDH) and lactate release from the tissue in normal Krebs Ringer, and the Ringer supplemented with either l-arginine, or 15 mM lactate to mimic a wound environment, or both (l-arginine + lactate). The in vitro blood vessel preparation remained viable during all experiments. There were no effects of HBO treatment on any of the parameters measured in normal Krebs Ringer, but some treatment-dependent effects were observed in supplemented Krebs Ringer. In the lactate supplemented Krebs Ringer, medium LDH levels increased in response to either normobaric oxygen (NBO) or HBO, compared to air alone. There were also small, but statistically significant increases in total glutathione due to HBO treatment, compared to NBO or air in the lactate supplemented medium, and in the combined supplement. There were no effects of HBO on NOx, changes in external medium lactate levels, or tissue VEGF in any of the Krebs Ringers tested. However, post treatment increases in VEGF were observed in the lactate supplemented medium, and for lactate release into the medium for the combined supplement. We conclude that HBO does not cause NO or VEGF production from the blood vessel in normal Krebs Ringer, but the data from supplemented medium show that the response of the tissue is subtly affected by the chemical environment around the blood vessel, and the tissue is more responsive to HBO when wound conditions are mimicked.  相似文献   

15.
暴露于寒冷环境下的皮肤开放性伤口是一种高度危险的战场创伤,威胁在室外作业的人员健康。紧急治疗中,高压氧(hyperbaric oxygen, HBO)治疗已经证实能够安全有效地促进皮肤伤口愈合。然而,HBO治疗的最佳干预时间说法仍然并不统一。使用冷应激下的小鼠背部皮肤全层缺损创面模型,比较了HBO治疗的3种干预策略,即分别为创伤后0、24和48 h介入HBO。结果显示,创后立即实施高压氧治疗(0-hHBO组)降低死亡率的效果最佳,小鼠死亡率为33%,而对照组死亡率为100%,且0-hHBO组创面愈合率第5天已达到85%。进一步的血常规和组织免疫化学检测显示,0-hHBO治疗组改善了血液指标,并发挥了一定的抗凋亡作用,这种作用尤其在表皮干细胞中更为明显。因此,研究结果将为HBO的临床应用提供重要的实验数据和线索。  相似文献   

16.
17.
Hyperbaric oxygen (HBO) treatment has been found to improve healing in living tissues, especially those poor in oxygen. The effects of HBO have also been tested in rat experiments. However, oxygen partial pressure in rat's arterial blood is normally about twice that in humans. Disregarding this, a human HBO protocol has been applied in previous rat experiments with HBO. Laser Doppler flowmetry (LDF) is a non-invasive means for measuring blood flow. Using LDF, we measured the blood perfusion rate in rats receiving HBO, according to a modified protocol, in a region of healing soft tissue with bone defect. The results indicate that, in rats, shorter HBO treatment with high O2 pressure can significantly improve the blood flow of healing tissues. In this study, an elevated blood perfusion rate was still evident 2 weeks after the ending of HBO therapy, which indicates improved revascularization in the wound area. A short HBO protocol would save time and effort in future HBO experiments on rats.  相似文献   

18.
创面愈合是由炎性细胞、细胞因子等多种因素共同参与,涉及组织修复、再生、重建的一个复杂有序的病理生理过程。皮肤慢性创面的愈合仍然是临床研究的重点与热点,随着分子生物学的发展,对皮肤创面愈合机制的认识也逐渐深入。Wnt信号通路是一条由Wnt蛋白及其受体、调节蛋白等组成的高度保守的信号通路,参与细胞增殖、凋亡、分化等多种生物学过程。Wnt信号通路作为参与皮肤愈合的信号通路之一,被认为具有调控皮肤及其附属器的发育、诱导皮肤附件的形态发生、调节毛囊的周期生长、促进创面血管新生及上皮重塑等多方面的功能。因此本文试从炎性细胞、成纤维细胞、干细胞、血管新生、表皮新生与毛囊新生等方面对Wnt信号通路与皮肤创面愈合的关系作一综述。  相似文献   

19.
Several mitogens such as vascular endothelial growth factor (VEGF) have been implicated in mammalian vascular proliferation and repair. However, the molecular mediators of human blood-nerve barrier (BNB) development and specialization are unknown. Primary human endoneurial endothelial cells (pHEndECs) were expanded in vitro and specific mitogen receptors detected by western blot. pHEndECs were cultured with basal medium containing different mitogen concentrations with or without heparin. Non-radioactive cell proliferation, Matrigel?-induced angiogenesis and sterile micropipette injury wound healing assays were performed. Proliferation rates, number and total length of induced microvessels, and rate of endothelial cell monolayer wound healing were determined and compared to basal conditions. VEGF-A165 in the presence of heparin, was the most potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. 1.31 nM VEGF-A165 induced ~110 % increase in cell proliferation relative to basal conditions (~51 % without heparin). 2.62 pM VEGF-A165 induced a three-fold increase in mean number of microvessels and 3.9-fold increase in total capillary length/field relative to basal conditions. In addition, 0.26 nM VEGF-A165 induced ~1.3-fold increased average rate of endothelial wound healing 4–18 h after endothelial monolayer injury, mediated by increased cell migration. VEGF-A165 was the only mitogen capable of complete wound closure, occurring within 30 h following injury via increased cell proliferation. This study demonstrates that VEGF-A165, in the presence of heparin, is a potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. VEGF-A165 may be an important mitogen necessary for human BNB development and recovery in response to peripheral nerve injury.  相似文献   

20.
Skin wound healing in mammals is a complex, multicellular process that depends on the precise supply of oxygen. Hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2) serves as a crucial oxygen sensor and may therefore play an important role during reepithelialization. Hence, this study was aimed at understanding the role of PHD2 in cutaneous wound healing using different lines of conditionally deficient mice specifically lacking PHD2 in inflammatory, vascular, or epidermal cells. Interestingly, PHD2 deficiency only in keratinocytes and not in myeloid or endothelial cells was found to lead to faster wound closure, which involved enhanced migration of the hyperproliferating epithelium. We demonstrate that this effect relies on the unique expression of β3-integrin in the keratinocytes around the tip of the migrating tongue in an HIF1α-dependent manner. Furthermore, we show enhanced proliferation of these cells in the stratum basale, which is directly related to their attenuated transforming growth factor β signaling. Thus, loss of the central oxygen sensor PHD2 in keratinocytes stimulates wound closure by prompting skin epithelial cells to migrate and proliferate. Inhibition of PHD2 could therefore offer novel therapeutic opportunities for the local treatment of cutaneous wounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号