首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Three-dimensional (3D) cell culture has developed rapidly over the past 5–10 years with the goal of better replicating human physiology and tissue complexity in the laboratory. Quantifying cellular responses is fundamental in understanding how cells and tissues respond during their growth cycle and in response to external stimuli. There is a need to develop and validate tools that can give insight into cell number, viability, and distribution in real-time, nondestructively and without the use of stains or other labelling processes. Impedance spectroscopy can address all of these challenges and is currently used both commercially and in academic laboratories to measure cellular processes in 2D cell culture systems. However, its use in 3D cultures is not straight forward due to the complexity of the electrical circuit model of 3D tissues. In addition, there are challenges in the design and integration of electrodes within 3D cell culture systems. Researchers have used a range of strategies to implement impedance spectroscopy in 3D systems. This review examines electrode design, integration, and outcomes of a range of impedance spectroscopy studies and multiparametric systems relevant to 3D cell cultures. While these systems provide whole culture data, impedance tomography approaches have shown how this technique can be used to achieve spatial resolution. This review demonstrates how impedance spectroscopy and tomography can be used to provide real-time sensing in 3D cell cultures, but challenges remain in integrating electrodes without affecting cell culture functionality. If these challenges can be addressed and more realistic electrical models for 3D tissues developed, the implementation of impedance-based systems will be able to provide real-time, quantitative tracking of 3D cell culture systems.  相似文献   

2.
3.
De Blasio BF  Laane M  Walmann T  Giaever I 《BioTechniques》2004,36(4):650-4, 656, 658 passim
A new method combining optical and electrical impedance measurements is described that enables submicroscopic cell movements to be monitored. The cells are grown on small gold electrodes that are transparent to light. This modified electrical cell-substrate impedance sensor (ECIS) allows simultaneous microscopic recording of both growth and motility, thus enabling cell confluence on the electrodes to be systematically correlated to the impedance in regular time intervals of seconds and for extended periods of time. Furthermore, the technique provides an independent measure of monolayer cell densities that we compare to calculated values from a theoretical model. We have followed the attachment and spreading behavior of epithelial Madin-Darby canine kidney strain I (MDCK-I) cell cultures on microelectrodes for up to 40 h. The studies reveal a high degree of correlation between the measured resistance at 4 kHz and the corresponding cell confluence in 4- to 6-h intervals with typical linear cross-correlation factors of r equaling approximately 0.9. In summary, the impedance measured with the ECIS technique provides a good quantitative measure of cell confluence.  相似文献   

4.
While traditional cell culture methods have relied on growing cells as monolayers, three-dimensional (3D) culture systems can provide a convenient in vitro model for the study of complex cell–cell and cell–matrix interactions in the absence of exogenous substrates and may benefit the development of regenerative medicine strategies. In this study, mesenchymal stem cell (MSC) spheroids, or “mesenspheres”, of different sizes, were formed using a forced aggregation technique and maintained in suspension culture for extended periods of time thereafter. Cell proliferation and differentiation potential within mesenspheres and dissociated cells retrieved from spheroids were compared to conventional adherent monolayer cultures. Mesenspheres maintained in growth medium exhibited no evidence of cell necrosis or differentiation, while mesenspheres in differentiation media exhibited differentiation similar to conventional 2D culture methods based on histological markers of osteogenic and adipogenic commitment. Furthermore, when plated onto tissue culture plates, cells that had been cultured within mesenspheres in growth medium recovered morphology typical of cells cultured continuously in adherent monolayers and retained their capacity for multi-lineage differentiation potential. In fact, more robust matrix mineralization and lipid vacuole content were evident in recovered MSCs when compared to monolayers, suggesting enhanced differentiation by cells cultured as 3D spheroids. Thus, this study demonstrates the development of a 3D culture system for mesenchymal stem cells that may circumvent limitations associated with conventional monolayer cultures and enhance the differentiation potential of multipotent cells.  相似文献   

5.
Bone marrow-derived mesenchymal stem cells have become an attractive cell source for periodontal ligament regeneration treatment because of their potential to engraft to several tissue types after injury. Most researchers have focused on the transplantation process, but few have paid attention to cell safety concerns and rapid proliferation before transplantation. Using serum-free medium to culture stem cells may be an effective method to avoid problems associated with exogenous serum and the addition of growth factors to promote cell proliferation. Here, we randomly divided our serum-free cultures and treated them with different levels of epidermal growth factor (EGF). We then evaluated changes in rates of cell adhesion, proliferation, apoptosis, and cell cycle ratio as well as their differentiation potential. The data showed that all of these parameters were significantly different when comparing serum-free cultures with and without 10 nM/L EGF (p?<?0.05/0.01); however, cells with 10 nM/L EGF did not respond differently than cells grown in standard serum-containing media without EGF (p?>?0.05). In summary, our results demonstrate that 10 nM/L EGF was the optimal dose for serum-free culture, which can replace traditional standard serum medium for in vitro expansion of miniature pig bone marrow-derived mesenchymal stem cells.  相似文献   

6.
Bone marrow stromal cells, obtained from postnatal bone marrow, contain progenitors able to differentiate into several mesenchymal lineages. Their use in gene and cell therapy requires their in vitro expansion and calls for the investigation of the culture conditions required to preserve these cells as a stem compartment with high differentiative potential during their life span. Here we report that fibroblast growth factor 2 (FGF-2)-supplemented bone marrow stromal cell primary cultures display an early increase in telomere size followed by a gradual decrease, whereas in control cultures telomere length steadily decreases with increasing population doublings. Together with clonogenic culture conditions, FGF-2 supplementation prolongs the life span of bone marrow stromal cells to more than 70 doublings and maintains their differentiation potential until 50 doublings. These results suggest that FGF-2 in vitro selects for the survival of a particular subset of cells enriched in pluripotent mesenchymal precursors and is useful in obtaining a large number of cells with preserved differentiation potential for mesenchymal tissue repair.  相似文献   

7.
The electrical impedance of the culture medium shows complex changes during the growth and fermentation process of yeast, and this prevents its possible application for the monitoring of certain yeast activities. Clarification of the mechanism of such changes is thus essential for practical use. As a first step toward this aim, the impedance, yeast concentration, and pH of a batch culture medium were measured using special cells with two compartments and also the usual type of cell with one compartment. In the special cells, the yeast was cultured in one compartment only. Conducting ions and nonconducting substances diffused through an intermediate porous membrane sandwiched between the two compartments. The impedances of the two compartments were measured simultaneously by the four-electrode method. The main mechanism responsible for increasing the impedance was the conducting ions produced by the yeast extract added as a nutrient to the culture broth by certain nonconducting substances during the process of growth. The increase in the yeast concentration was also a minor factor increasing the impedance. These increases surpassed the impedance decrease caused by the increase of H(+) ions produced by some accumulated acidic substances, and the impedance thus increased.  相似文献   

8.
Efforts to develop culture technologies capable of eliciting robust human blood stem cell growth have met with limited success. Considering that adult stem cell cultures are complex systems, comprising multiple cell types with dynamically changing intracellular signalling environments and cellular compositions, this is not surprising. Typically treated as single-input single-output systems, adult stem cell cultures are better described as complex, non-linear, multiple-input multiple-output systems wherein the proliferation of subpopulations of cells leads to the formation of intercellular endogenously secreted protein interaction networks. Genomic and proteomic tools need to be applied to generate high-throughput (and ideally high-content) biological measurements of stem cell culture evolution. Datasets describing cellular interaction networks need to be integrated into predictive models of in vitro stem cell development. Ultimately, such models will serve as a starting point for the rational design of blood stem cell expansion bioprocesses utilizing dynamic system perturbations to achieve the preferential expansion of target cell populations.  相似文献   

9.
Ex vivo production of hematopoietic progenitor cells has potential applications for cell therapy to alleviate cytopenias associated with chemotherapy and for gene therapy. In both therapies, progenitor and stem cells are considered crucial factors for therapeutic success. Assays for progenitor cells, however, take 2 weeks to complete, which is similar to the length of a typical culture. Therefore, a real-time estimation of the percentage or number of progenitor cells, based on rapid measurements, would be useful for optimization of feeding and harvest decisions. In this study, metabolic activity assays and flow cytometric analysis were used to estimate the content of progenitor cells. The measured metabolic activities are a collective contribution from all types of cells. Cells in granulomonocytic cultures have been lumped into six cell types and metabolic rates have been modeled as a linear function of cell composition and growth rate and as a nonlinear function of cell density. Data from 24 experiments were utilized to determine the model parameters in a calibration step. These data include flow cytometric analysis of more mature hematopoietic cells, progenitor cell colony assays, total cell content, and metabolite concentrations, and cover a wide range of cell composition, cell density, and growth rate. After calibration, the model is able to deliver good predictions of progenitor cell content for cultures with higher percentages of progenitor cells, as well as the peak progenitor cell content, based only on parameters that can be rapidly measured. With the aid of those predictions a harvest strategy was developed that will allow optimizing the harvest time based on the culture kinetics of each patient or donor inoculum, rather than using retrospective analysis to determine a uniform harvest time.  相似文献   

10.
This study describes the fabrication and performance of an endothelial cell compatible, optically thin, indium tin oxide (ITO) microimpedance biosensor. The biosensor was constructed by sputtering a thin insulating layer of silicon nitride (Si(3)N(4)) onto a 100 nm thick ITO layer. Indium tin oxide electrodes were formed by chemically etching 250 or 500 microm diameter holes through the Si(3)N(4) insulating layer. The exposed ITO electrode was electrically connected to an ITO counter electrode, approximately 2 cm(2) in area, via a 400 microL well containing cell culture media. A lock-in amplifier circuit monitored the impedance of porcine pulmonary artery endothelial cells (PPAECs) cultivated on the electrodes as a function of frequency, between 10 and 100 kHz, and as a function of time, at 5.62 kHz. The ITO-Si(3)N(4) microelectrodes provided consistent and repeatable impedance measurements to the attachment and spreading of PPAECs. In addition, the ITO-Si(3)N(4) electrodes were recyclable, robust, resistant to ethanol sterilization, and had a high optical transmittance. Most importantly, the ITO-Si(3)N(4) electrodes allowed optical access for dynamic cellular attachment imaging. The 5.62 kHz time dependent cellular impedance response to the drug Cytochalasin D further demonstrated the feasibility of using this electrode configuration for dynamic cellular impedance studies.  相似文献   

11.
Label-free and real-time monitoring of stem cells based on electrical impedance measurement is increasingly utilized for the quality control of the isolated stem cells to be used in stem cell-based tissue therapy or regenerative medicine. In spite of that the proliferative capacity and multipotency of stem cells are dependent on the type and age of the source tissue, however, the effect of the cell senescence on the impedance measurement of stem cells has not yet been studied. We investigated whether the senescence of adipose tissue-derived stem cells (ADSCs) can be detected by electrical impedance spectroscopy. For this, ADSCs at passage 9 and 31 were prepared and those genetic characteristics and growth kinetics were evaluated by quantitative polymerase chain reaction and cell counting. While the identified ADSCs were grown on the indium tin oxide electrodes, the impedance spectra were measured and interpreted by fitting analysis with an equivalent circuit model. ADSCs at passage 9 adhered on the electrode were small and spindle-shaped whereas the cells at passage 31 were flattened and larger than younger cells. At the beginning of culture time when the cell adhesion occurred, the resistance at 4.6 kHz of passage 31 cells was higher than passage 9 due to the larger size of older cells. Afterwards, the value of passage 9 cells increased higher than passage 31, since younger cells proliferated more than old cells. Therefore, the impedance measurement could characterize the proliferative capacity of ADSCs during expanded culture.  相似文献   

12.
FGF10 maintains stem cell compartment in developing mouse incisors   总被引:27,自引:0,他引:27  
Mouse incisors are regenerative tissues that grow continuously throughout life. The renewal of dental epithelium-producing enamel matrix and/or induction of dentin formation by mesenchymal cells is performed by stem cells that reside in cervical loop of the incisor apex. However, little is known about the mechanisms of stem cell compartment formation. Recently, a mouse incisor was used as a model to show that fibroblast growth factor (FGF) 10 regulates mitogenesis and fate decision of adult stem cells. To further illustrate the role of FGF10 in the formation of the stem cell compartment during tooth organogenesis, we have analyzed incisor development in Fgf10-deficient mice and have examined the effects of neutralizing anti-FGF10 antibody on the developing incisors in organ cultures. The incisor germs of FGF10-null mice proceeded to cap stage normally. However, at a later stage, the cervical loop was not formed. We found that the absence of the cervical loop was due to a divergence in Fgf10 and Fgf3 expression patterns at E16. Furthermore, we estimated the growth of dental epithelium from incisor explants of FGF10-null mice by organ culture. The dental epithelium of FGF10-null mice showed limited growth, although the epithelium of wild-type mice appeared to grow normally. In other experiments, a functional disorder of FGF10, caused by a neutralizing anti-FGF10 antibody, induced apoptosis in the cervical loop of developing mouse incisor cultures. However, recombinant human FGF10 protein rescued the cervical loop from apoptosis. Taken together, these results suggest that FGF10 is a survival factor that maintains the stem cell population in developing incisor germs.  相似文献   

13.

Background

Mesenchymal stem cells are promising candidates in regenerative cell therapy. Conventional culture methods involve the use of animal substances, specifically fetal bovine serum as growth supplement. Since the use of animal-derived products is undesirable for human applications, platelet lysates produced from human platelets are an attractive alternative. This is especially true if platelet lysates from already approved transfusion units at blood banks can be utilized. The purpose of this study was to produce human platelet lysates from expired, blood bank-approved platelet concentrates and evaluate their use as growth supplement in the culture of mesenchymal stem cells.

Methodology/Principal Findings

In this study, bone marrow-derived mesenchymal stem cells were cultured with one of three culture supplements; fetal bovine serum, lysates from freshly prepared human platelet concentrates, or lysates from expired human platelet concentrates. The effects of these platelet-derived culture supplements on basic mesenchymal stem cell characteristics were evaluated. All cultures maintained the typical mesenchymal stem cell surface marker expression, trilineage differentiation potential, and the ability to suppress in vitro immune responses. However, mesenchymal stem cells supplemented with platelet lysates proliferated faster than traditionally cultured cells and increased the expression of the osteogenic marker gene RUNX-2; yet no difference between the use of fresh and expired platelet concentrates was observed.

Conclusion/Significance

Our findings suggest that human platelet lysates produced from expired platelet concentrates can be used as an alternative to fetal bovine serum for mesenchymal stem cell culture to the same extent as lysates from fresh platelets.  相似文献   

14.
The application of impedance spectroscopy to estimate on-line cell concentration was studied. The estimation was based on the relative variation between electrical impedance measured at low (10 kHz) and high frequencies (10 MHz). Studies were carried out to characterise the influence of changes in physical and chemical parameters on the impedance measurement. Two different possibilities to perform on-line measurements were tested: a simple set-up, based on an in situ probe, gave good results but was not suitable for high agitation and aeration rates. An ex situ flow-through on-line measuring cell was used to overcome these problems, showing a better performance. The use of this set-up for the growth monitorisation of a Saccharomyces cerevisiae culture showed an efficient performance, having the correlation between estimated and measured S. cerevisiae a Pearson coefficient of 0.999.  相似文献   

15.
The emergence of medicinal indications for stem cell therapies has seen a need to develop the manufacturing capacity for adherent cells such as mesenchymal stem cells (MSCs). One such development is in the use of microcarriers, which facilitate enhanced cell densities for adherent stem cell cultures when compared with 2D culture platforms. Given the variety of stem cell expansion systems commercially available, novel methods of non‐invasive and automated monitoring of cell number, confluence, and aggregation, within disparate environments, will become imperative to process control, ensuring reliable and consistent performance. The in situ epi‐illumination of mouse embryonic fibroblasts and human mesenchymal stem cells attached to Cytodex 1 and 3 microcarriers was achieved using a bespoke microscope. Robust image processing techniques were developed to provide quantitative measurements of confluence, aggregate recognition, and cell number, without the need for fluorescent labeling or cell detachment. Large datasets of cells counted on individual microcarriers were statistically analyzed and compared with NucleoCounter measurements, with an average difference of less than 7% observed from days 0 to 6 of a 12‐day culture noted, prior to the onset of aggregation. The developed image acquisition system and post‐processing methodologies were successfully applied to dynamically moving colonized microcarriers. The proposed system offers a novel method of cell identification at the individual level, to consistently and accurately assess viable cell number, confluence, and cell distribution, while also minimizing the variability inherent in the current invasive means by which cells adhered to microcarriers are analyzed. Biotechnol. Bioeng. 2017;114: 2032–2042. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

16.
Regulation of mesenchymal stem cell and chondrocyte differentiation by MIA   总被引:8,自引:0,他引:8  
Melanoma inhibitory activity (MIA), also referred to as cartilage-derived retinoic acid-sensitive protein (CD-RAP), an 11-kDa secreted protein, is mainly expressed in cartilaginous tissue during embryogenesis and adulthood. Currently, the function of MIA in cartilage tissue is not understood. Here, we describe that MIA acts as a chemotactic factor on the mesenchymal stem cell line C3H10T1/2, stimulating cell migration significantly at concentrations from 0.24 to 240 ng/ml, while inhibiting cell migration at higher doses of 2.4 microg/ml. When analyzing the role of MIA during differentiation processes, we show that MIA by itself is not capable to induce the differentiation of murine or human mesenchymal stem cells. However, MIA influences the action of bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta 3 during mesenchymal stem cell differentiation, supporting the chondrogenic phenotype while inhibiting osteogenic differentiation. Quantitative RT-PCR analysis revealed the up-regulation of the cartilage markers MIA, collagen type II and aggrecan in human mesenchymal stem cell (HMSC) cultures differentiated in the presence of MIA and TGF-beta 3 or BMP-2 when compared to HMSC cultures differentiated in the presence of TGF-beta 3 or BMP-2 alone. Further, MIA down-regulates gene expression of osteopontin and osteocalcin in BMP-2 treated HMSC cultures inhibiting the osteogenic potential of BMP-2. In the case of human primary chondrocytes MIA stimulates extracellular matrix deposition, increasing the glycosaminoglycan content. Therefore, we postulate that MIA is an important regulator during chondrogenic differentiation and maintenance of cartilage.  相似文献   

17.
On-line monitoring biomass concentration in mycelial fed-batch cultivations of Streptomyces clavuligerus grown with soluble and partially insoluble complex media, was investigated with an in-situ capacitance probe fitted to an industrial pilot-plant tank. Standard off-line and on-line biomass determinations, including cell dry weight, packed mycelial volume, viscosity, DNA concentration and total CO(2) evolution in the exhaust gases, were performed throughout the experiments and compared to on-line capacitance measurements. Linear relations between capacitance and all other measurements were developed for both media that hold only in defined process phases, depending on the biomass state and the amount of insoluble matter present. For the industrial complex culture media good linear relations were obtained in the fast growth phase between capacitance and DNA concentration and total CO(2) evolution, while in the subsequent transition and stationary phases only with apparent viscosity was a reasonable correlation found. The capacitance probe was shown to be a valuable tool for real-time monitoring biomass concentration in industrial-like cultivation of mycelial streptomycetes.  相似文献   

18.
Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.  相似文献   

19.
The biological function of ascorbate oxidase (AAO) was not yet clarified, although it was suggested that AAO may be involved in cell growth. We investigated AAO expression and ascorbate metabolism during non-synchronous, synchronous, and elongation cultures of tobacco BY-2 cells. In non-synchronous culture, AAO mRNA was abundant in logarithmic growth phase. Ascorbate content greatly increased during the growth, whereas dehydroascorbate content was slightly increased. In synchronous division culture, AAO mRNA was detected in all phases, but the levels were quite low in G1 phase. Ascorbate content was high in all phases, whereas dehydroascorbate content was low, especially in G1 phase. In elongation culture, the levels of AAO mRNA increased during elongation of the cells. AAO activity in the culture medium, as well as ascorbate and dehydroascorbate contents in the cells, also increased during the elongation. We propose that AAO expression and production of dehydroascorbate are under the control of the cell cycle and that AAO may function apoplastically as an ascorbate oxidizer in the process of cell elongation.  相似文献   

20.
Dielectric spectroscopy was used to analyze typical batch and fed‐batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole–Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The β‐dispersion was analyzed using the Cole–Cole distribution parameters Δε (magnitude of the permittivity drop), fc (critical frequency), and α (Cole–Cole parameter). Furthermore, the dielectric parameters static internal conductivity (σi) and membrane capacitance per area (Cm) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号