首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The identification and analysis of tissue-specific gene regulatory elements will improve our knowledge of the molecular mechanisms that control the growth and development of different plant tissues and offer potentially useful tools for the genetic engineering of plants. A polymerase chain reaction (PCR)-based 5'-genome walk from sequences of an isolated sugar beet xyloglucan endo-transglucosylase hydrolase (XTH) gene led to the isolation of two independent upstream fragments. They were 1332 and 2163 base pairs upstream of the XTH ATG start site, respectively. In vivo transgenic assays in sugar beet hairy roots and Arabidopsis thaliana revealed that both fragments had promoter function and, in A. thaliana, directed expression in vascular tissues within the root, leaves and petals. Promoter activity was also observed in the leaf trichomes and within rapidly expanding stem internodes. Expression driven by both promoters was found to be wound inducible. Overall, the spatial and temporal expression pattern of these promoters suggested that the corresponding Bv-XTH genes (designated Bv-XTH1 and Bv-XTH2) may be involved in secondary cell wall formation. This work provides new insights on molecular mechanisms that could be exploited for the genetic engineering of sugar beet crops.  相似文献   

3.
4.
A cDNA expression library from Brassica juncea was introduced into the fission yeast Schizosaccharomyces pombe to select for transformants tolerant to cadmium. Transformants expressing OXIDATIVE STRESS 3 ( OXS3 ) or OXS3 - Like cDNA exhibited enhanced tolerance to a range of metals and oxidizing chemicals. OXS3 belongs to a family of proteins that share a highly conserved domain corresponding to a putative N -acetyltransferase or thioltransferase catalytic site. Mutations within this conserved domain abolished the ability of Arabidopsis thaliana OXS3 to enhance stress tolerance in S. pombe , indicating a role in stress tolerance for the presumptive catalytic domain. A stress-sensitive mutant of AtOXS3 and enhanced tolerance of overexpression lines support the role of OXS3 in stress tolerance. The expression of tagged B. juncea and A. thaliana OXS3 proteins in plant cells revealed a subnuclear speckling pattern related to the nucleosome in discrete parts of the chromatin. It is possible that OXS3 might act as a chromatin remodeling factor for the stress response.  相似文献   

5.
The regulatory sequences of the Drosophila ACP65A cuticle gene were analyzed in vivo in transgenic flies, using both fusion genes constructs and transposase-mediated deletions within a P element containing ACP65A regulatory sequences fused to the lacZ gene (deletion scanning). The sequences located between -594 and +161 are sufficient to confer both temporal and spatial expression specificities, indicating the presence of tissue-specific enhancers and response elements to hormone-induced factors. In addition, timing of expression and tissue-specificity appear to be controlled by distinct cis-regulatory elements, which suggests the existence of independent hormonal and tissue-specific signaling pathways. Gain and loss of function studies also implicate DHR38, the Drosophila homolog of the vertebrate NGFI-B-type nuclear receptors, as an important activator of the ACP65A gene.  相似文献   

6.
7.
Mustroph A  Sonnewald U  Biemelt S 《FEBS letters》2007,581(13):2401-2410
Plants possess two different types of phosphofructokinases, an ATP-dependent (PFK) and a pyrophosphate-dependent form (PFP). While plant PFPs have been investigated in detail, cDNA clones coding for PFK have not been identified in Arabidopsis thaliana. Searching the A. thaliana genome revealed 11 putative members of a phosphofructokinase gene family. Among those, four sequences showed high homology to the alpha- or beta-subunits of plant PFPs. Seven cDNAs resulted in elevated PFK, but not PFP activity after transient expression in tobacco leaves suggesting that they encode Arabidopsis PFKs. RT-PCR revealed different tissue-specific expression of the individual forms. Furthermore, analysis of GFP fusion proteins indicated their presence in different sub-cellular compartments.  相似文献   

8.
We screened plant genome sequences, primarily from rice and Arabidopsis thaliana, for CpG islands, and identified DNA segments rich in CpG dinucleotides within these sequences. These CpG-rich clusters appeared in the analysed sequences as discrete peaks and occurred at the frequencies of one per 4.7 kb in rice and one per 4.0 kb in A. thaliana. In rice and A. thaliana, most of the CpG-rich clusters were associated with genes, which suggests that these clusters are useful landmarks in genome sequences for identifying genes in plants with small genomes. In contrast, in plants with larger genomes, only a few of the clusters were associated with genes. These plant CpG-rich clusters satisfied the criteria used for identifying human CpG islands, which suggests that these CpG clusters may be regarded as plant CpG islands. The position of each island relative to the 5'-end of its associated gene varied considerably. Genes in the analysed sequences were grouped into five classes according to the position of the CpG islands within their associated genes. A large proportion of the genes belonged to one of two classes, in which a CpG island occurred near the 5'-end of the gene or covered the whole gene region. The position of a plant CpG island within its associated gene appeared to be related to the extent of tissue-specific expression of the gene; the CpG islands of most of the widely expressed rice genes occurred near the 5'-end of the genes.  相似文献   

9.
A novel subclass of dehydrin genes, homologous to the Raphanus sativus late embryogenesis-abundant (LEA) protein (RsLEA2) and the Arabidopsis thaliana dehydrin, was isolated from Brassica juncea and Brassica napus, here designated BjDHN1 and BnDHN1, respectively. The cDNA of BjDHN1 and BnDHN1 genes share 100% nucleotide identity. The encoded protein is predicted to consist of 183 amino acid residues (molecular mass of 19.2 kDa and pI of 7.0). It shares 85.3% and 65.4% amino acid sequence identity with the RsLEA2 and Arabidopsis dehydrin, respectively. This Brassica dehydrin also features a "Y(3)SK(2)" plant dehydrin structure. Expression analysis indicated that the Brassica dehydrin gene is expressed at the late stages of developing siliques, suggesting that the gene expression may be inducible by water-deficit. Analysis of gene expression also indicated that in germinating seeds the gene expression was inducible by low temperature. Seed germination under low temperature was compared between B. juncea and B. napus. The results showed that B. juncea seeds germinated faster than B. napus seeds. Expression of Brassica dehydrin gene was also examined as a function of seed germination under low temperature.  相似文献   

10.
The beta-glucuronidase (GUS) gene has been successfully used as a reporter gene in innumerable number of plant species. The functional GUS gene produces blue coloration in plants upon integration into the plant genome. Because of the ease it provides to analyze the gene expression (as no expensive equipment is needed), GUS gene is surely plant biotechnologist's first choice as a reporter gene. The turfgrass family contains the world's most economically important horticultural crops. There is a world-wide drive for genetic modification of grasses due to its huge economic importance. GUS gene can be transiently or stably expressed in grasses for the purpose of promoter analysis and to study tissue-specific and developmental gene expression. This paper summarizes the use of GUS gene for transient and stable expression studies in various turfgrass species.  相似文献   

11.
Arabidopsis has proven to be extremely useful as a reference organism for studies in plant biology, and huge efforts have been employed to unravel various mechanisms of Arabidopsis growth. A major challenge now is to demonstrate that this wealth of knowledge can be used for global agricultural and environmental improvement. Brassica species are closely related to Arabidopsis and represent ideal candidates for model-to-crop approaches as they include important crop plants, such as canola. Brassica plants normally disperse their seeds by a pod-shattering mechanism. Although this mechanism is an advantage in nature, unsynchronized pod shatter constitutes one of the biggest problems for canola farmers. Here, we show that ectopic expression of the Arabidopsis FRUITFULL gene in Brassica juncea is sufficient to produce pod shatter-resistant Brassica fruit and that the genetic pathway leading to valve margin specification is conserved between Arabidopsis and Brassica . These studies demonstrate a genetic strategy for the control of seed dispersal that should be generally applicable to diverse Brassica crop species to reduce seed loss.  相似文献   

12.
White blister rust caused by Albugo candida (Pers.) Kuntze is a common and often devastating disease of oilseed and vegetable brassica crops worldwide. Physiological races of the parasite have been described, including races 2, 7 and 9 from Brassica juncea , B. rapa and B. oleracea , respectively, and race 4 from Capsella bursa-pastoris (the type host). A gene named WRR4 has been characterized recently from polygenic resistance in the wild brassica relative Arabidopsis thaliana (accession Columbia) that confers broad-spectrum white rust resistance ( WRR ) to all four of the above Al. candida races. This gene encodes a TIR-NB-LRR (Toll-like/interleukin-1 receptor-nucleotide binding-leucine-rich repeat) protein which, as with other known functional members in this subclass of intracellular receptor-like proteins, requires the expression of the lipase-like defence regulator, enhanced disease susceptibility 1 ( EDS1 ). Thus, we used RNA interference-mediated suppression of EDS1 in a white rust-resistant breeding line of B. napus (transformed with a construct designed from the A. thaliana EDS1 gene) to determine whether defence signalling via EDS1 is functionally intact in this oilseed brassica. The eds1-suppressed lines were fully susceptible following inoculation with either race 2 or 7 isolates of Al. candida. We then transformed white rust-susceptible cultivars of B. juncea (susceptible to race 2) and B. napus (susceptible to race 7) with the WRR4 gene from A. thaliana . The WRR4-transformed lines were resistant to the corresponding Al. candida race for each host species. The combined data indicate that WRR4 could potentially provide a novel source of white rust resistance in oilseed and vegetable brassica crops.  相似文献   

13.
14.
15.
16.
Analysis of gene function in vertebrates is facilitated by gain-of-function studies, such as injection of synthetic mRNA in amphibian embryos. This approach is hampered by lack of spatial and temporal control of expression of the introduced gene product. An additional level of control is obtained by nuclear-transfer-mediated transgenesis, but functional analyses are complicated by variability and background abnormalities in primary transgenic embryos. The GAL4/UAS system permits establishment of stable lines and elimination of nuclear-transfer-associated abnormalities, through generation of separate UAS-'effector' and GAL4 'transactivator' transgenic lines. When the GAL4 DNA-binding domain is combined with a steroid hormone ligand-binding domain, this system allows full temporal regulation of transgene expression by introduction of an exogenous steroid analogue, the progesterone antagonist RU486. We show here that by crossing stable Xenopus tropicalis transgenic lines, one bearing a UAS-enhanced cyan fluorescent protein (ECFP) reporter construct, and the other with a GAL4-progesterone receptor fusion driven by a retina-specific promoter, reporter expression in the resulting embryos can be induced with RU486 in a tissue-specific manner. These results suggest that the inducible binary system, in which the target gene expression can be controlled in a stage- and tissue-specific pattern, should be readily applicable for gene function studies at all stages of development.  相似文献   

17.
The tissue-specific expression of transgenes is essential in plant breeding programmes to avoid the fitness costs caused by constitutive expression of a target gene. However, knowledge on the molecular mechanisms of tissue-specific gene expression and practicable tissue-specific promoters is limited. In this study, we identified the cis -acting elements of a tissue-specific promoter from rice, PD54O , and tested the application of original and modified PD54O and its cis -elements in the regulation of gene expression. PD54O is a green tissue-specific promoter. Five novel tissue-specific cis -elements (LPSE1, LPSE2, LPSRE1, LPSRE2, PSE1) were characterized from PD54O . LPSE1 activated gene expression in leaf and young panicle. LPSRE2 suppressed gene expression in leaf, root, young panicle and stem, and PSE1 suppressed gene expression in young panicle and stem. LPSRE1 and LPSE2 had dual roles in the regulation of tissue-specific gene expression; both functioned as activators in leaf, but LPSRE1 acted as a repressor in stem and LPSE2 as a repressor in young panicle and root. Transgenic rice plants carrying cry1Ac encoding Bacillus thuringiensis endotoxin, regulated by PD54O , were resistant to leaf-folders, with no Cry1Ac protein found in endosperm or embryo. A reporter gene regulated by a series of truncated PD54O showed various tissue-specific expression patterns. Different fragments of PD54O fused with the constitutive cauliflower mosaic virus 35S promoter suppressed 35S -regulated gene expression in various tissues. PD54O , truncated PD54O and the tissue-specific cis -elements provide useful tools for the regulation of tissue-specific gene expression in rice breeding programmes.  相似文献   

18.
An anther-specific Brassica napus cDNA, A6, and two corresponding Arabidopsis thaliana genes have been isolated. Sequence analyses of A6 revealed similarity to β-1,3-glucanases. The deduced A6 protein differs from other β-1,3-glucanases in the possession of a long C-terminus. Immunoblotting using an antibody raised to the A6 protein detects a temporal 60 kDa protein in B. napus buds, suggesting that the long C-terminal region is present in the mature protein. A6 promoter—GUS and RNase fusions demonstrate that the A6 gene is tapetum-specific and temporally expressed with a peak in activity when the plant normally expresses callase (a complex of endo- and exo-β-1,3-glucanase activities). The sequence similarity of A6 to other β-1,3-glucanases, coupled with the temporal and spatial expression data, suggests that A6 may be part of the callase enzyme complex.  相似文献   

19.
20.
Quantitative differences in transgene expression between independent transformants are generally ascribed to different integration sites of the transgene (position effect). The contribution of spatial and temporal changes in transgene promoter activity to these position-induced differences in transgene expression in planta are characterized, using the firefly luciferase (luc) reporter system. The activity of three different promoters (Cauliflower Mosaic Virus (CaMV) 35S, modified CaMV 35S and the promoter of an Arabidopsis thaliana Lipid Transfer Protein gene) was shown to vary not only among independent transformants, but also between leaves on the same plant and within a leaf. The differences in local LUC activity between leaves and within a leaf correlated with differences in local luc mRNA steady-state levels. Imaging of LUC activity in the same leaves over a 50 d period, shows that individual transformants can show different types of temporal regulation. Both the spatial and the temporal type of luc transgene expression pattern are inherited by the next generation. It is concluded that previously reported position-induced quantitative differences in transgene expression are probably an accumulated effect of differences in spatial and temporal regulation of transgene promoter activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号