首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Vertebrates and insects alike use glial cells as intermediate targets to guide growing axons. Similar to vertebrate oligodendrocytes, Drosophila midline glia ensheath and separate axonal commissures. Neuron-glia interactions are crucial during these events, although the proteins involved remain largely unknown. Here, we show that Canoe (Cno), the Drosophila ortholog of AF-6, and the DE-cadherin Shotgun (Shg) are highly restricted to the interface between midline glia and commissural axons. cno mutant analysis, genetic interactions and co-immunoprecipitation assays unveil Cno function as a novel regulator of neuron-glia interactions, forming a complex with Shg, Wrapper and Neurexin IV, the homolog of vertebrate Caspr/paranodin. Our results also support additional functions of Cno, independent of adherens junctions, as a regulator of adhesion and signaling events in non-epithelial tissues.  相似文献   

3.
The glia that reside at the midline of the Drosophila CNS are an important embryonic signaling center and also wrap the axons that cross the CNS. The development of the midline glia (MG) is characterized by migration, ensheathment, subdivision of axon commissures, apoptosis, and the extension of glial processes. All of these events are characterized by cell-cell contact between MG and adjacent neurons. Cell adhesion and signaling proteins that mediate different aspects of MG development and MG–neuron interactions have been identified. This provides a foundation for ultimately obtaining an integrated picture of how the MG assemble into a characteristic axonal support structure in the CNS.  相似文献   

4.
CNS glia have integral roles in directing axon migration of both vertebrates and insects. In contrast, very little is known about the roles of PNS glia in axonal pathfinding. In vertebrates and Drosophila, anatomical evidence shows that peripheral glia prefigure the transition zones through which axons migrate into and out of the CNS. Therefore, peripheral glia could guide axons at the transition zone. We used the Drosophila model system to test this hypothesis by ablating peripheral glia early in embryonic neurodevelopment via targeted overexpression of cell death genes grim and ced-3. The effects of peripheral glial loss on sensory and motor neuron development were analyzed. Motor axons initially exit the CNS in abnormal patterns in the absence of peripheral glia. However, they must use other cues within the periphery to find their correct target muscles since early pathfinding errors are largely overcome. When peripheral glia are lost, sensory axons show disrupted migration as they travel centrally. This is not a result of motor neuron defects, as determined by motor/sensory double-labeling experiments. We conclude that peripheral glia prefigure the CNS/PNS transition zone and guide axons as they traverse this region.  相似文献   

5.
Gliolectin is a carbohydrate-binding protein (lectin) that mediates cell adhesion in vitro and is expressed by midline glial cells in the Drosophila melanogaster embryo. Gliolectin expression is maximal during early pathfinding of commissural axons across the midline (stages 12-13), a process that requires extensive signaling and cell-cell interactions between the midline glia and extending axons. Deletion of the gliolectin locus disrupts the formation of commissural pathways and also delays the completion of longitudinal pathfinding. The disruption in commissure formation is accompanied by reduced axon-glial contact, such that extending axons grow on other axons and form a tightly fasciculated bundle that arches over the midline. By contrast, pioneering commissural axons normally cross the midline as a distributed array of fibers that interdigitate among the midline glia, maximizing contact and, therefor, communication between axon and glia. Restoration of Gliolectin protein expression in the midline glia rescues the observed pathfinding defects of null mutants in a dose-dependent manner. Hypomorphic alleles generated by ethylmethanesulfonate mutagenesis exhibit a similar phenotype in combination with a deletion and these defects are also rescued by transgenic expression of Gliolectin protein. The observed phenotypes indicate that carbohydrate-lectin interactions at the Drosophila midline provide the necessary surface contact to capture extending axons, thereby ensuring that combinatorial codes of positive and negative growth signals are interpreted appropriately.  相似文献   

6.
7.
In the developing Drosophila visual system, glia migrate into stereotyped positions within the photoreceptor axon target fields and provide positional information for photoreceptor axon guidance. Glial migration conversely depends on photoreceptor axons, as glia precursors stall in their progenitor zones when retinal innervation is eliminated. Our results support the view that this requirement for retinal innervation reflects a role of photoreceptor axons in the establishment of an axonal scaffold that guides glial cell migration. Optic lobe cortical axons extend from dorsal and ventral positions towards incoming photoreceptor axons and establish at least four separate pathways that direct glia to proper destinations in the optic lobe neuropiles. Photoreceptor axons induce the outgrowth of these scaffold axons. Most glia do not migrate when the scaffold axons are missing. Moreover, glia follow the aberrant pathways of scaffold axons that project aberrantly, as occurs in the mutant dachsous. The local absence of glia is accompanied by extensive apoptosis of optic lobe cortical neurons. These observations reveal a mechanism for coordinating photoreceptor axon arrival in the brain with the distribution of glia to multiple target destinations, where they are required for axon guidance and neuronal survival.  相似文献   

8.
Glial interactions with neurons during Drosophila embryogenesis   总被引:1,自引:0,他引:1  
A monoclonal antibody (Mab5B12) demonstrating specificity for glial cells within the central and peripheral nervous systems of Drosophila has been used in combination with neural-specific antibodies to study the early organization of the Drosophila embryo. The embryonic central nervous system of Drosophila contains cells within the ventral midline that are recognized by monoclonal antibody 5B12. These cells are not recognized by either a polyclonal antiserum to horse radish peroxidase, which recognizes several antigens on the surface of Drosophila neurons, or Mab22C10, which recognizes an antigen specific to the peripheral nervous system. Mab5B12-positive cells lie dorsal both to the developing anterior and posterior commissures in each thoracic and abdominal segment and to the supraoesophageal commissure. They ensheath these commissures in later stage embryos. Other Mab5B12-positive cells lie dorsolateral to the CNS and send processes laterally to the lateral sensilla during axonogenesis in the PNS. These cells surround the axons of the intersegmental and segmental nerves. Other cells that line the advancing ectoderm during dorsal closure and surround the anal pads also express the Mab5B12 antigen. Neuronal cell cultures derived from Drosophila gastrulae contain cells expressing the Mab5B12 antigen. These cells can be found separate or in close association with neuronal clusters and their axons.  相似文献   

9.
The adult cerebral hemispheres are connected to each other by specialized midline cell types and by three axonal tracts: the corpus callosum, the hippocampal commissure, and the anterior commissure. Many steps are required for these tracts to form, including early patterning and later axon pathfinding steps. Here, the requirement for FGF signaling in forming midline cell types and commissural axon tracts of the cerebral hemispheres is examined. Fgfr1, but not Fgfr3, is found to be essential for establishing all three commissural tracts. In an Fgfr1 mutant, commissural neurons are present and initially project their axons, but these fail to cross the midline that separates the hemispheres. Moreover, midline patterning defects are observed in the mutant. These defects include the loss of the septum and three specialized glial cell types, the indusium griseum glia, midline zipper glia, and glial wedge. Our findings demonstrate that FGF signaling is required for generating telencephalic midline structures, in particular septal and glial cell types and all three cerebral commissures. In addition, analysis of the Fgfr1 heterozygous mutant, in which midline patterning is normal but commissural defects still occur, suggests that at least two distinct FGF-dependent mechanisms underlie the formation of the cerebral commissures.  相似文献   

10.
Neurons provide critical signals that regulate both the number and differentiation of glia. In addition, glia are attracted to and enwrap neuronal axonal processes. FGF-like signalling is thought to be one of the many potential axon-derived morphogenetic signals, however, the multiple roles of FGFs have made experimental tests of these signals difficult in vivo. In the Drosophila FGF receptor mutant heartless, glia migrate to axons, but fail to elongate around them. This study shows that in the similar but larger grasshopper CNS, FGF signalling is likely to mediate one step in the close interaction between glia and axons. FGF2-coated beads attract glia in the CNS and compete with axons for their resident, enwrapped glia. In addition, bath applied FGF2 causes mature axonal glia, which normally enwrap axon tracts, to round up. FGF2 activates the product of the grasshopper heartless FGF receptor gene and probably interferes with the normal function of an endogenous axon-associated FGF-like molecule. It is proposed that insect axons provide a critical spatially restricted FGF-like signal that induces glia to enwrap them.  相似文献   

11.
The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo (Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons (up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling.  相似文献   

12.
13.
Myelin is a multispiraled extension of glial membrane that surrounds axons. How glia extend a surface many-fold larger than their body is poorly understood. Schwann cells are peripheral glia and insert radial cytoplasmic extensions into bundles of axons to sort, ensheath, and myelinate them. Laminins and beta1 integrins are required for axonal sorting, but the downstream signals are largely unknown. We show that Schwann cells devoid of beta1 integrin migrate to and elongate on axons but cannot extend radial lamellae of cytoplasm, similar to cells with low Rac1 activation. Accordingly, active Rac1 is decreased in beta1 integrin-null nerves, inhibiting Rac1 activity decreases radial lamellae in Schwann cells, and ablating Rac1 in Schwann cells of transgenic mice delays axonal sorting and impairs myelination. Finally, expressing active Rac1 in beta1 integrin-null nerves improves sorting. Thus, increased activation of Rac1 by beta1 integrins allows Schwann cells to switch from migration/elongation to the extension of radial membranes required for axonal sorting and myelination.  相似文献   

14.
The Drosophila embryonic CNS arises from the neuroectoderm, which is divided along the dorsal-ventral axis into two halves by specialized mesectodermal cells at the ventral midline. The neuroectoderm is in turn divided into three longitudinal stripes--ventral, intermediate, and lateral. The ventral nervous system defective, or vnd, homeobox gene is expressed from cellularization throughout early neural development in ventral neuroectodermal cells, neuroblasts, and ganglion mother cells, and later in an unrelated pattern in neurons. Here, in the context of the dorsal-ventral location of precursor cells, we reassess the vnd loss- and gain-of-function CNS phenotypes using cell specific markers. We find that over expression of vnd causes significantly more profound effects on CNS cell specification than vnd loss. The CNS defects seen in vnd mutants are partly caused by loss of progeny of ventral neuroblasts-the commissures are fused and the longitudinal connectives are aberrantly positioned close to the ventral midline. The commissural vnd phenotype is associated with defects in cells that arise from the mesectoderm, where the VUM neurons have pathfinding defects, the MP1 neurons are mis-specified, and the midline glia are reduced in number. vnd over expression results in the mis-specification of progeny arising from all regions of the neuroectoderm, including the ventral neuroblasts that normally express the gene. The CNS of embryos that over express vnd is highly disrupted, with weak longitudinal connectives that are placed too far from the ventral midline and severely reduced commissural formation. The commissural defects seen in vnd gain-of-function mutants correlate with midline glial defects, whereas the mislocalization of interneurons coincides with longitudinal glial mis-specification. Thus, Drosophila neural and glial specification requires that vnd expression by tightly regulated.  相似文献   

15.
A prominent feature of glial cells is their ability to migrate along axons to finally wrap and insulate them. In the embryonic Drosophila PNS, most glial cells are born in the CNS and have to migrate to reach their final destinations. To understand how migration of the peripheral glia is regulated, we have conducted a genetic screen looking for mutants that disrupt the normal glial pattern. Here we present an analysis of two of these mutants: Notch and numb. Complete loss of Notch function leads to an increase in the number of glial cells. Embryos hemizygous for the weak Notch(B-8X) allele display an irregular migration phenotype and mutant glial cells show an increased formation of filopodia-like structures. A similar phenotype occurs in embryos carrying the Notch(ts1) allele when shifted to the restrictive temperature during the glial cell migration phase, suggesting that Notch must be activated during glial migration. This is corroborated by the fact that cell-specific reduction of Notch activity in glial cells by directed numb expression also results in similar migration phenotypes. Since the glial migration phenotypes of Notch and numb mutants resemble each other, our data support a model where the precise temporal and quantitative regulation of Numb and Notch activity is not only required during fate decisions but also later during glial differentiation and migration.  相似文献   

16.
J R Jacobs  Y Hiromi  N H Patel  C S Goodman 《Neuron》1989,2(6):1625-1631
Previous studies described three different classes of glial cells in the developing CNS of the early Drosophila embryo that prefigure and ensheath the major CNS axon tracts. Among these are 6 longitudinal glial cells on each side of each segment that overlie the longitudinal axon tracts. Here we use transformant lines carrying a P element containing a 130 bp sequence from the fushi tarazu gene in front of the lacZ reporter gene to direct beta-galactosidase expression in the longitudinal glia. Using this molecular lineage marker, we show that 1 of the "neuroblasts" in each hemisegment is actually a glioblast, which divides once symmetrically, in contrast to the typical asymmetric neuroblast divisions, producing 2 glial cells, which migrate medially and divide to generate the 6 longitudinal glial cells. As with neuroblasts, mutations in Notch and other neurogenic genes lead to supernumerary glioblasts. The results indicate that the glioblast is similar to other neuroblasts; however, the positionally specified fate of this blast cell is to generate a specific lineage of glia rather than a specific family of neurons.  相似文献   

17.
In the ventral nerve cord of Drosophila most axons are organized in a simple, ladder-like pattern. Two segmental commissures connect the hemisegments along the mediolateral and two longitudinal connectives connect individual neuromeres along the anterior-posterior axis. Cells located at the midline of the developing CNS first guide commissural growth cones toward and across the midline. In later stages, midline glial cells are required to separate anterior and posterior commissures into distinct axon bundles. To unravel the genes underlying the formation of axon pattern in the embryonic ventral nerve cord, we conducted a saturating ethylmethane sulfonate mutagenesis, screening for mutations which disrupt this process. Subsequent genetic and phenotypic analyses support a sequential model of axon pattern formation in the embryonic ventral nerve cord. Specification of midline cell lineages is brought about by the action of segment polarity genes. Five genes are necessary for the establishment of the commissures. In addition to commissureless, the netrin genes, and the netrin receptor encoded by the frazzled gene, two gene functions are required for the initial formation of commissural tracts. Over 20 genes appear to be required for correct development of the midline glial cells which are necessary for the formation of distinct segmental commissures.  相似文献   

18.
Neuron-glia communication is central to all nervous system responses to trauma, yet neural injury signaling pathways remain poorly understood. Here we explore cellular and molecular aspects of neural injury signaling in Drosophila. We show that transected Drosophila axons undergo injury-induced degeneration that is morphologically similar to Wallerian degeneration in mammals and can be suppressed by the neuroprotective mouse Wlds protein. Axonal injury elicits potent morphological and molecular responses from Drosophila glia: glia upregulate expression of the engulfment receptor Draper, undergo dramatic changes in morphology, and rapidly recruit cellular processes toward severed axons. In draper mutants, glia fail to respond morphologically to axon injury, and severed axons are not cleared from the CNS. Thus Draper appears to act as a glial receptor for severed axon-derived molecular cues that drive recruitment of glial processes to injured axons for engulfment.  相似文献   

19.
 The ventral nerve cord of arthropods is characterised by the organisation of major axon tracts in a ladder-like pattern. The individual neuromeres are connected by longitudinal connectives whereas the contra-lateral connections are brought about through segmental commissures. In each neuromere of the embryonic central nervous system (CNS) of Drosophila an anterior and a posterior commissure is found. The development of these commissures requires a set of neurone-glia interactions at the midline. Here we show that both the anterior as well as the posterior commissures are subdivided into three axon-containing regions. Electron microscopy of the ventral nerve cord of mutations affecting CNS midline cells indicates that the midline glial cells are required for this subdivision. In addition the midline glial cells appear required for a crossing of commissural growth cones perpendicular to the longitudinal tracts, since in mutants with defective midline glial cells commissural axons frequently cross the midline at aberrant angles. Received: 6 July 1997 / Accepted: 27 August 1997  相似文献   

20.
Although glial cells have been implicated widely in the formation of axon tracts in both insects and vertebrates, their specific function appears to be context-dependent, ranging from providing essential guidance cues to playing a merely facilitory role. Here we examine the role of the retinal basal glia (RBG) in photoreceptor axon guidance in Drosophila. The RBG originate in the optic stalk and have been thought to migrate into the eye disc along photoreceptor axons, thus precluding any role in axon guidance. Here we show the following. (1) The RBG can, in fact, migrate into the eye disc even in the absence of photoreceptor axons in the optic stalk; they also migrate to ectopic patches of differentiating photoreceptors without axons providing a continuous physical substratum. This suggests that glial cells are attracted into the eye disc not through haptotaxis along established axons, but through another mechanism, possibly chemotaxis. (2) If no glial cells are present in the eye disc, photoreceptor axons are able to grow and direct their growth posteriorly as in wild type, but are unable to enter the optic stalk. This indicates that the RBG have a crucial role in axon guidance, but not in axonal outgrowth per se. (3) A few glia close to the entry of the optic stalk suffice to guide the axons into the stalk, suggesting that glia instruct axons by local interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号