首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CX3CL1 (fractalkine), the only member of the delta subclass of chemokines, is a known chemotactic factor for monocytes/macrophages as well as NK cells and T lymphocytes. In several pathologies, excessive production of CX3CL1 at specific sites leads primarily to monocyte/macrophage recruitment, which causes tissue and vascular damage. Despite their clinical relevance, the mechanisms underlying monocyte/macrophage chemotaxis to CX3CL1 remain poorly documented. The present report addresses this issue and identifies cell signaling crucial for this process. Using the murine monocyte/macrophage RAW cell line, we show that CX3CL1 treatment elicits a rapid and transient increase in F-actin and the formation of F-actin-enriched cell protrusions. CX3CL1 also triggers tyrosine phosphorylation of proteins localized in those protrusions. The protein tyrosine kinase Syk is activated upon CX3CL1 treatment, and reduction of Syk expression using RNA-mediated interference results in a specific and massive impairment of RAW cell migration to CX3CL1. Similar results are obtained using the Syk inhibitor, piceatannol. Cells with reduced Syk expression also exhibit a major defect in CX3CL1-induced cytoskeletal remodeling. These data suggest that in monocytes/macrophages, Syk is essential for proper reorganization of the actin cytoskeleton in response to CX3CL1 and is therefore required for cell chemotaxis to CX3CL1.  相似文献   

2.
The inflammatory component in obesity is now well established. The CX3CR1 gene encodes the fractalkine (CX3CL1) receptor and has two coding single‐nucleotide polymorphisms, V249I and T280M, linked to a lower risk of other inflammatory diseases such as coronary artery disease (CAD) and asthma. To determine whether CX3CR1 is associated with obesity, we genotyped the V249I and T280M polymorphisms of the CX3CR1 gene in subjects with a BMI ≥30 kg/m2 and nonobese controls with a BMI <30 kg/m2. Binary logistic regression analyses revealed that the 280MM genotype was associated with obesity (P = 0.022). A gender‐specific one‐way ANOVA was also conducted to investigate mean BMI and waist circumference differences between genotypes of each polymorphism. For both polymorphisms independently, women carrying two copies of the minor allele had significant higher mean waist circumference than those carrying only one copy of the minor allele (MM > TM, P = 0.031; II > VI, P = 0.013) or those who were homozygous for the major allele (MM > TT, P = 0.005; II > VV, P = 0.006). We also observed significant higher mean waist circumference in men carrying one copy of the minor allele when compared to those who were homozygous for the major allele for the T280M polymorphism (TM > TT, P = 0.029). This study suggests that CX3CR1, a biomarker of obesity in this sample, constitutes a potential target for further investigation of the role of inflammation in the expression of obesity‐related phenotypes.  相似文献   

3.
4.
The hallmark of acute allograft rejection is infiltration of the inflamed graft by circulating leukocytes. We studied the role of fractalkine (FKN) and its receptor, CX(3)CR1, in allograft rejection. FKN expression was negligible in nonrejecting cardiac isografts but was significantly enhanced in rejecting allografts. At early time points, FKN expression was particularly prominent on vascular tissues and endothelium. As rejection progressed, FKN expression was further increased, with prominent anti-FKN staining seen around vessels and on cardiac myocytes. To determine the capacity of FKN on endothelial cells to promote leukocyte adhesion, we performed adhesion assays with PBMC and monolayers of TNF-alpha-activated murine endothelial cells under low-shear conditions. Treatment with either anti-FKN or anti-CX(3)CR1-blocking Ab significantly inhibited PBMC binding, indicating that a large proportion of leukocyte binding to murine endothelium occurs via the FKN and CX(3)CR1 adhesion receptors. To determine the functional significance of FKN in rejection, we treated cardiac allograft recipients with daily injections of anti-CX(3)CR1 Ab. Treatment with the anti-CX(3)CR1 Ab significantly prolonged allograft survival from 7 +/- 1 to 49 +/- 30 days (p < 0.0008). These studies identify a critical role for FKN in the pathogenesis of acute rejection and suggest that FKN may be a useful therapeutic target in rejection.  相似文献   

5.
6.
REDD1 is a gene induced by hypoxia and stimuli from multiple DNA damage. Here we show that REDD1 expression was elevated in RAS-transformed ovarian epithelial cells lines and that this overexpression increased these cells’ growth rate and anchorage-independent growth on soft agar. Injection of immortalized ovarian epithelial cells overexpressing REDD1 into nude mice resulted in tumor growth that developed into papillary serous carcinoma in the peritoneal cavity. Knockdown of REDD1 expression blocked the RAS-mediated transformation of these cell lines. Apoptosis was markedly decreased by increased expression of Bcl-xL or Bcl-2 and decreased expression of FADD, caspase1, caspase8, caspase 9, caspase 10, BAX, Bad and Bcl-Xs, which confirmed by the tunnel assay. Our data demonstrated that REDD1 is a key mediator in RAS-mediated transformation through an effect on anti-apoptosis.  相似文献   

7.
Fractalkine (CX3CL1, FKN) is expressed in the inflamed vascular wall and absence of FKN reduces atherogenesis. Whether FKN is expressed throughout all stages of atherosclerotic disease and whether it directly contributes to monocyte recruitment to atherosclerotic lesions is not known. We collected human atherosclerotic plaque material and blood samples from patients with carotid artery disease undergoing endarterectomy. Plaques were analyzed by immunohistochemistry and qPCR. We found that FKN is expressed at all stages of atherosclerotic lesion formation, and that the number of FKN-expressing cells positively correlates with the number of CX3CR1-positive cells in human carotid artery plaques. In the circulation, soluble FKN levels are significantly elevated in the presence of high-grade (sub-occlusive) stenosis. To determine the role of the FKN-CX3CR1 axis for monocyte adhesion in vivo we then performed intravital videofluorescence microscopy of the carotid artery in ApoE(-/-) mice. Notably, FKN-CX3CR1 interactions are critical for recruitment of circulating monocytes to the injured atherosclerotic vascular wall. Thus, this chemokine dyad could represent an attractive target for anti-atherosclerotic strategies.  相似文献   

8.
Allergic asthma is a T helper type 2 (T(H)2)-dominated disease of the lung. In people with asthma, a fraction of CD4(+) T cells express the CX3CL1 receptor, CX3CR1, and CX3CL1 expression is increased in airway smooth muscle, lung endothelium and epithelium upon allergen challenge. Here we found that untreated CX3CR1-deficient mice or wild-type (WT) mice treated with CX3CR1-blocking reagents show reduced lung disease upon allergen sensitization and challenge. Transfer of WT CD4(+) T cells into CX3CR1-deficient mice restored the cardinal features of asthma, and CX3CR1-blocking reagents prevented airway inflammation in CX3CR1-deficient recipients injected with WT T(H)2 cells. We found that CX3CR1 signaling promoted T(H)2 survival in the inflamed lungs, and injection of B cell leukemia/lymphoma-2 protein (BCl-2)-transduced CX3CR1-deficient T(H)2 cells into CX3CR1-deficient mice restored asthma. CX3CR1-induced survival was also observed for T(H)1 cells upon airway inflammation but not under homeostatic conditions or upon peripheral inflammation. Therefore, CX3CR1 and CX3CL1 may represent attractive therapeutic targets in asthma.  相似文献   

9.
This study was conducted to compare the secretion of TGF-beta isoforms by human ovarian carcinoma (OVCA) cell lines (n=12) and human peritoneal mesothelial cells (HPMC;n=6) and to examine the regulation of their production by inflammatory cytokines. TGF-beta isoforms were furthermore analysed in OVCA-associated ascitic fluids. HPMC constitutively produced considerable amounts of TGF-beta1 (median 42 pg/10(5)cells; range 7-98) but only minimal amounts of TGF-beta2 (median 0.8 pg/10(5)cells; range 0-1.5). Treatment of HPMC with IL-1beta (10 ng/ml) resulted in a significant elevation of the secretion of both TGF-beta1 (median 187 pg/10(5)cells; range 71-264;P<0.001) and TGF-beta2 (median 1.8 pg/10(5)cells; range 0-13;P<0.01). In OVCA TGF-beta1 and TGF-beta2 were detected in 7/12 and 11/12 of the cell lines, respectively. The levels detected varied widely for TGF-beta1 (median 25 pg/10(5)cells; range 0-410) as well as for TGF-beta2 (median 14 pg/10(5)cells; range 0-419) and there was no correlation between the two isoforms. In contrast to HPMC, TGF-beta secretion by OVCA was not affected by any of the inflammatory cytokines tested. TGF-beta3 could not be detected in supernatants, neither in OVCA nor in HPMC. In ascitic fluids the median level of TGF-beta1 (median 5443 pg/ml; range 737-14687) was 10-fold higher than the level of TGF-beta2 (median 545 pg/ml; range 172-3537). The present data provide a model for the analysis of the molecular mechanisms of aberrant TGF-beta production by OVCA and support the hypothesis that HPMC are an important source of ascitic TGF-beta.  相似文献   

10.
The chemokine receptor CX3CR1 is thought to regulate inflammation in part by modulating NK cell adhesion, migration, and killing in response to its ligand CX3CL1 (fractalkine). Recent reports indicate that IL-15, which is essential for development and survival of NK cells, may negatively regulate CX3CR1 expression, however, the effects of the cytokine on human NK cell CX3CR1 expression and function have not been fully delineated. Here, we demonstrate that short term culture in IL-15 decreases surface expression of CX3CR1 on cultured CD56+ cells from human blood resulting in diminished chemotaxis and calcium flux in response to CX3CL1. Cells cultured long term in IL-15 (more than five days) completely lost surface expression as well as mRNA and protein for CX3CR1. The effect was specific since mRNA for CCR5 was increased and mRNA for CXCR4 was unchanged in these cells by IL-15. Thus, exogenous IL-15 is a negative regulator of CX3CR1 expression and function in human CD56+ NK cells. The data imply that the use of IL-15 alone to expand NK cells ex vivo for immunotherapy may produce cells impaired in their ability to traffic to sites of inflammation.  相似文献   

11.
12.
Cadherin-mediated cell-cell adhesion is dynamically modulated during epithelial-mesenchymal transition triggered by activation of receptor tyrosine kinases (RTK) in epithelial cells. Several cadherin-binding proteins have been identified that control cell-cell adhesion. However, the mechanisms by which intercellular adhesion and cell motility are coregulated are still unknown. Here, we delineate a hitherto uncharted cooperation between RTKs, RhoA GTPase, and p120 catenin in instructing a motile behavior to epithelial cells. We found that expression of an N-terminus-deleted p120 catenin in a variety of epithelial cell types, including primary keratinocytes, effectively competes for endogenous p120 at cadherin binding sites and abrogates EGF-stimulated cell motility as well as HGF-induced cell scattering. The deleted mutant also inhibits the PI3K-dependent RhoA activation ensuing receptor activation. Conversely, we also show that the ectopic expression of full-length p120 in epithelial cells promotes cytoskeletal changes, stimulates cell motility, and activates RhoA. Both motogenic response to p120 and RhoA activation require coactivation of signaling downstream of RTKs as they are suppressed by ablation of the Ras/PI3K pathway. These studies demonstrate that p120 catenin is a necessary target of RTKs in regulating cell motility and help define a novel pathway leading to RhoA activation, which may contribute to the early steps of metastatic invasion.  相似文献   

13.
Transforming growth factor-beta3 (TGF-beta3) plays a critical role during palate development, since mutations of the TGF-beta3 gene give rise to cleft palate in both humans and mice. Striking alterations have been reported in the behaviour and differentiation of medial edge epithelial (MEE) cells in TGF-beta3 knockout mouse palates. In the present paper, we provide evidence of alterations in MEE intercellular adhesion in TGF-beta3 -/- mouse palates using immunohistochemistry with monoclonal antibodies to a panel of cell adhesion and cytoskeletal molecules including E-cadherin, alpha and beta catenin, beta actin, vinculin and beta2 integrin. In vitro labeling of opposing MEE with two different lipophilic markers and subsequent analysis by confocal microscopy revealed that wild type MEE cells intercalate as soon as the midline epithelial seam forms. This finding indicates that the palate may elongate in a dorso-ventral direction by means of convergent extension, as occurs in other embryonic developmental processes. In contrast, this intercalation does not occur in the TGF-beta3 -/- MEE but it can be rescued by the exogenous addition of TGF-beta3. Thus, the substantial alteration of MEE intercellular adhesion observed in TGF-beta3 -/- palates may account for the defect in palatal shelf adhesion and the formation of cleft palate.  相似文献   

14.
Eotaxin-3/CCL26 is a functional ligand for CCR3 and abundantly produced by IL-4-/IL-13-stimulated vascular endothelial cells. CCL26 also functions as a natural antagonist for CCR1, CCR2, and CCR5. In this study, we report that CCL26 is yet a functional ligand for CX3CR1, the receptor for fractalkine/CX3CL1, which is expressed by CD16(+) NK cells, cytotoxic effector CD8(+) T cells, and CD14(low)CD16(high) monocytes. Albeit at relatively high concentrations, CCL26 induced calcium flux and chemotaxis in mouse L1.2 cells expressing human CX3CR1 but not mouse CX3CR1 and competed with CX3CL1 for binding to CX3CR1. In chemotaxis assays using human PBMCs, CCL26 attracted not only eosinophils but also CD16(+) NK cells, CD45RA(+)CD27(-)CD8(+) T cells, and CD14(low)CD16(high) monocytes. Intraperitoneal injection of CCL26 into mice rapidly recruited mouse eosinophils and intravenously transferred human CD16(+) NK cells into the peritoneal cavity. IL-4-stimulated HUVECs produced CCL26 and efficiently induced adhesion of cells expressing CX3CR1. Real-time PCR showed that skin lesions of psoriasis consistently contained CX3CL1 mRNA but not CCL26 mRNA, whereas those of atopic dermatitis contained CCL26 mRNA in all samples but CX3CL1 mRNA in only about half of the samples. Nevertheless, the skin lesions from both diseases consistently contained CX3CR1 mRNA at high levels. Thus, CCL26 may be partly responsible for the recruitment of cells expressing CX3CR1 in atopic dermatitis particularly when the expression of CX3CL1 is low. Collectively, CCL26 is another agonist for CX3CR1 and may play a dual role in allergic diseases by attracting eosinophils via CCR3 and killer lymphocytes and resident monocytes via CX3CR1.  相似文献   

15.
In a range of human cancers, tumorigenesis is promoted by activation of the endothelin A receptor (ET(A)R)/endothelin-1 (ET-1) axis. ET-1 and ET(A)R are overexpressed in primary and metastatic ovarian carcinomas, and high levels of ET-1 are detectable in patient ascites, suggesting that ET-1 may promote tumor dissemination. Moreover, in these tumors, engagement of ET(A) receptor by ET-1 triggers tumor growth, survival, angiogenesis, and invasiveness. Thus, ET-1 enhances the secretion of matrix metalloproteinases, disrupts intercellular communications, and stimulates cell migration and invasion. Therefore, we investigated the role of the ET-1/ET(A)R autocrine axis in promoting epithelial to mesenchymal transition (EMT) in ovarian tumor cells, a key event in cancer metastasis, in which epithelial cells depolarize, disassemble cell-cell contacts, and adopt an invasive phenotype. Here, we examine the potential role of ET-1 in regulating cell morphology and behavior and epithelial and mesenchymal proteins employing an in vitro 3-D culture system. We found that in 3-D serum-free collagen I gel cultures, HEY and OVCA 433 ovarian carcinoma cells undergo fibroblast-like morphologic changes between 3 and 5 days of ET-1 treatment. In these cells, ET-1 induces loss of adherens and tight-junction protein expression, E-cadherin, beta-catenin, and zonula occludens-1, and gain of N-cadherin and vimentin expression. These results confirm the ability of ET-1 to promote EMT, a metastable process involving sustained loss of epithelial markers and gain of mesenchymal markers. Collectively, these findings provide evidence of a critical role for the ET-1/ET(A)R axis during distinct steps of ovarian carcinoma progression, thus underlining this axis as a potential target in the treatment of ovarian cancer.  相似文献   

16.
17.
A newly identified CX3C-chemokine, fractalkine, expressed on activated endothelial cells plays an important role in leucocyte adhesion and migration. Co-immobilized fractalkine with fibronectin or intercellular adhesion molecule-1 enhanced adhesion of THP-1 cells, which express the fractalkine receptor (CX3CR1), compared with that observed for each alone. That adherence was fractalkine-dependent and was confirmed in blocking studies. However, soluble fractalkine induced little chemotaxis in THP-1 cells in comparison to monocyte chemotactic protein-1 (MCP-1), which induced a strong chemotactic response. Moreover, the membrane form of fractalkine expressed on ECV304 cells reduced MCP-1 mediated chemotaxis of THP-1 cells. These results indicate that fractalkine may function as an adhesion molecule between monocytes and endothelial cells rather than as a chemotactic factor.  相似文献   

18.
Fractalkine is a novel multidomain protein expressed on the surface of activated endothelial cells. Cells expressing the chemokine receptor CX3CR1 adhere to fractalkine with high affinity, but it is not known if adherence requires G-protein activation and signal transduction. To investigate the cell adhesion properties of fractalkine, we created mutated forms of CX3CR1 that have little or no ability to transduce intracellular signals. Cells expressing signaling-incompetent forms of CX3CR1 bound rapidly and with high affinity to immobilized fractalkine in both static and flow assays. Video microscopy revealed that CX3CR1-expressing cells bound more rapidly to fractalkine than to VCAM-1 (60 versus 190 ms). Unlike VCAM-1, fractalkine did not mediate cell rolling, and after capture on fractalkine, cells did not dislodge. Finally, soluble fractalkine induced intracellular calcium fluxes and chemotaxis, but it did not activate integrins. Taken together these data provide strong evidence that CX3CR1, a seven-transmembrane domain receptor, mediates robust cell adhesion to fractalkine in the absence of G-protein activation and suggest a novel role for this receptor as an adhesion molecule.  相似文献   

19.
We aimed to investigate fractalkine (CX3CL1) protein expression in wild type (wt) retina and its alterations during retinal degeneration in mouse model (rd10) of retinitis pigmentosa. Forms of retinal protein CX3CL1, total protein and mRNA levels of CX3CL1 were analyzed at postnatal days (P) 5, 10, 14, 22, 30, 45, and 60 by Western blotting and real-time PCR. Cellular sources of CX3CL1 were investigated by in situ hybridization histochemistry (ISH) and using transgenic (CX3CL1cherry) mice. The immunoblots revealed that in both, wt and rd10 retinas, a membrane integrated ∼100 kDa CX3CL1 form and a cleaved ∼85 kDa CX3CL1 form were present at P5. At P10, accumulation of another presumably intra-neuronal ∼95 kDa form and a decrease in the ∼85-kDa form were observed. From P14, a ∼95 kDa form became principal in wt retina, while in rd10 retinas a soluble ∼85 kDa form increased at P45 and P60. In comparison, retinas of rd10 mice had significantly lower levels of total CX3CL1 protein (from P10 onwards) and lower CX3CL1 mRNA levels (from P14), even before the onset of primary rod degeneration. ISH and mCherry reporter fluorescence showed neurons in the inner retina layers as principal sites of CX3CL1 synthesis both in wt and rd10 retinas. In conclusion, our results demonstrate that CX3CL1 has a distinctive course of expression and functional regulation in rd10 retina starting at P10. The biological activity of CX3CL1 is regulated by conversion of a membrane integrated to a soluble form during neurogenesis and in response to pathologic changes in the adult retinal milieu. Viable mature neurons in the inner retina likely exhibit a dynamic intracellular storage depot of CX3CL1.  相似文献   

20.
The membrane-anchored form of CX3CL1 has been proposed as a novel adhesion protein for leukocytes. This functional property of CX3CL1 is mediated through CX3CR1, a chemokine receptor expressed predominantly on circulating white blood cells. Thus far, it is still uncertain at what stage of the trafficking process CX3CR1 becomes importantly involved and how the CX3CR1-dependent adhesion of leukocytes is regulated during inflammation. The objective of this study was to examine the functional effects of chemokine stimulation on CX3CR1-mediated adhesion of human monocytes. Consistent with previous reports, our data indicate that the activity of CX3CR1 on resting monocytes is sufficient to mediate cell adhesion to CX3CL1. However, the basal, nonstimulated adhesion activity is low, and we hypothesized that like the integrins, CX3CR1 may require a preceding activation step to trigger firm leukocyte adhesion. Compatible with this hypothesis, stimulation of monocytes with MCP-1 significantly increased their adhesion to immobilized CX3CL1, under both static and physiological flow conditions. The increase of the adhesion activity was mediated through CCR2-dependent signaling and obligatory activation of the p38 MAPK pathway. Stimulation with MCP-1 also induced a rapid increase of CX3CR1 protein on the cell surface. Inhibition of the p38 MAPK pathway prevented this increase of CX3CR1 surface expression and blunted the effect of MCP-1 on cell adhesion, indicating a causal link between receptor surface density and adhesion activity. Together, our data suggest that a chemokine signal is required for firm CX3CR1-dependent adhesion and demonstrate that CCR2 is an important regulator of CX3CL1-dependent leukocyte adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号