首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxynitrite is a strong oxidant produced by rapid interaction between superoxide anion and nitric oxide radicals and induces oxidative stress and cell death. Treatment of PC12 cells with 3-morpholinosydnonimine (SIN-1), a generator of peroxynitrite, induced the expression of heme oxygenase-1 (HO-1), an antioxidant cytoprotective enzyme. Inhibition of the HO activity by zinc protoporphyrin IX or knockdown of HO-1 gene expression with siRNA exacerbated the SIN-1-induced apoptosis. After SIN-1 treatment, there was a time-related increase in nuclear localization and subsequent binding of NF-E2-related factor 2 (Nrf2) to the antioxidant-responsive element (ARE). Transfection of PC12 cells with dominant-negative Nrf2 abolished the SIN-1-induced increase in Nrf2-ARE binding and subsequent upregulation of HO-1 expression, leading to enhanced cell death. Upon exposure of PC12 cells to SIN-1, the phosphatidylinositol 3-kinase (PI3K) activity was increased in a time-dependent manner. Pretreatment of cells with LY294002, a pharmacologic inhibitor of PI3K or transfection with the kinase-dead mutant Akt abrogated the SIN-1-induced Nrf2 activation and HO-1 expression. Taken together, these results suggest that peroxynitrite activates Nrf2 via PI3K/Akt signaling and enhances Nrf2-ARE binding, which leads to upregulation of HO-1 expression. The SIN-1-induced HO-1 upregulation may confer the adaptive survival response against nitrosative stress.  相似文献   

2.
3.
4.
5.
We examined the underlying mechanisms involved in n-3 docosahexaenoic acid (DHA) inhibition of inflammation in EA.hy926 cells. The present results demonstrated that pretreatment with DHA (50 and 100 μM) inhibited tumor necrosis factor-alpha (TNF-α)-induced intercellular adhesion molecule 1 (ICAM-1) protein, mRNA expression and promoter activity. In addition, TNF-α-stimulated inhibitory kappa B (IκB) kinase (IKK) phosphorylation, IκB phosphorylation and degradation, p65 nuclear translocation, and nuclear factor-κB (NF-κB) and DNA binding activity were attenuated by pretreatment with DHA. DHA triggered early-stage and transient reactive oxygen species (ROS) generation and significantly increased the protein expression of heme oxygenase 1 (HO-1), induced nuclear factor erythroid 2-related factor 2 (Nrf2) translocation to the nucleus and up-regulated antioxidant response element (ARE)-luciferase reporter activity. Moreover, DHA inhibited Nrf2 ubiquitination and proteasome activity. DHA activated Akt, p38 and ERK1/2 phosphorylation, and specific inhibitors of respective pathways attenuated DHA-induced Nrf2 nuclear translocation and HO-1 expression. Transfection with HO-1 siRNA knocked down HO-1 expression and partially reversed the DHA-mediated inhibition of TNF-α-induced p65 nuclear translocation and ICAM-1 expression. Importantly, we show for the first time that HO-1 plays a down-regulatory role in NF-κB nuclear translocation, and inhibition of Nrf2 ubiquitination and proteasome activity are involved in increased cellular Nrf2 level by DHA. In this study, we show that HO-1 plays a down-regulatory role in NF-κB nuclear translocation and that the protective effect of DHA against inflammation is partially via up-regulation of Nrf2-mediated HO-1 expression and inhibition of IKK/NF-κB signaling pathway.  相似文献   

6.
7.
8.
The liver is an important organ, and hepatic ischemia–reperfusion (IR) injury is a frequent pathophysiological process that can cause significant morbidity and mortality. Thus, our study aimed to investigate the effect of targeting PI3K/p-Akt/eNOS (phosphoinositide 3-kinase/phospho-protein kinase B/endothelial nitric oxide synthase), Nrf2/HO-1 (nuclear factor-erythroid 2-related factor-2/heme oxygenase-1), and NF-κB/p53 (nuclear factor-κB/tumor protein 53) signaling pathways by using angiotensin (1–7) [ang-(1–7)] against hepatic injury induced by IR. Thirty-two male rats were included in sham group, ang-(1–7)-treated group, hepatic IR group, and hepatic IR group treated with ang-(1–7). The levels of hepatic ang-(1–7), angiotensin II (Ang II), angiotensin-converting enzyme 2 (ACE2), HO-1, malondialdehyde (MDA), PI3K, and p-Akt were assessed. The expressions of eNOS and B-cell leukemia/lymphoma-2 (BCL-2) in the liver were determined. Histological assessment and immunohistochemical expression of NF-κB, p53, and Nrf2 were carried out. The levels of reduced glutathione (GSH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in serum were estimated. Results showed that administration of ang-(1–7) to hepatic IR rats led to significant amelioration of hepatic damage through a histological evaluation that was associated with significant upregulation of the expressions of PI3K/p-Akt/eNOS and Nrf2/HO-1 with downregulation of NF-κB/p53 signaling pathways. In conclusion, PI3K/p-Akt/eNOS and Nrf2/HO-1 signaling pathways are involved in the protective effects of ang-(1–7) against hepatic damage induced by IR. Therefore, ang-(1–7) can be used to prevent hepatic IR, which occurs in certain conditions such as liver transplantation, hemorrhagic shock, and severe infection.  相似文献   

9.
10.
11.
Induction of heme oxygenase-1 (HO-1) expression has been associated with adaptive cytoprotection against a wide array of toxic insults, but the underlying molecular mechanisms remain largely unresolved. In this study, we investigated the potential role of carbon monoxide (CO), one of the by-products of the HO-1 reaction, in the adaptive survival response to peroxynitrite-induced PC12 cell death. Upon treatment of rat pheochromocytoma (PC12) cells with the peroxynitrite generator 3-morpholinosydnonimine hydrochloride (SIN-1), the cellular GSH level decreased initially, but was gradually restored to the basal level. This was accompanied by increased expression of the catalytic subunit of glutamate-cysteine ligase (GCLC), the rate-limiting enzyme in GSH biosynthesis. The SIN-1-induced GCLC up-regulation was preceded by induction of HO-1 and subsequent CO production. Inhibition of HO activity by zinc protoporphyrin IX or knockdown of HO-1 gene expression by small interfering RNA abrogated the up-regulation of GCLC expression and the subsequent GSH restoration induced by SIN-1. In contrast, additional exposure to the CO-releasing molecule (CO-RM) restored the GSH level previously reduced by inhibition of CO production using zinc protoporphyrin IX. Furthermore, CO-RM treatment up-regulated GCLC expression through activation of Nrf2. The CO-RM-induced activation of Nrf2 was under the control of the phosphatidylinositol 3-kinase/Akt signaling pathway. In conclusion, CO produced by HO-1 rescues PC12 cells from nitrosative stress through induction of GCLC, which is mediated by activation of phosphatidylinositol 3-kinase/Akt and subsequently Nrf2 signaling.  相似文献   

12.
There are several factors, like oxidative stress and neurons loss, involving neurodegenerative diseases such as Parkinson’s disease (PD). The combination of antioxidant and anti-apoptotic agent is becoming a promising approach to fight against PD. This study evaluates the hypothesis that paeoniflorin (PF) and β-ecdysterone (β-Ecd) synergize to protect PC12 cells against toxicity induced by PD-related neurotoxin rotenone. The combination of PF and β-Ecd, hereafter referred to as the PF/β-Ecd, at suboptimal concentrations increased the viability of rotenone-exposed PC12 cells in a synergistic manner. PF and β-Ecd cooperate to attenuate the rotenone-induced apoptosis by decrease in Bax expression, caspase-9 activity, and caspase-3 activity. PF or PF/β-Ecd, but not β-Ecd, inhibited rotenone-triggered protein kinase C-δkinase C-δ (PKCδ) upregulation and nuclear factor κB (NF-κB) activation. β-Ecd or PF/β-Ecd, but not PF, enhanced serine/threonine protein kinase (Akt) activation, promoted nuclear factor E2-related factor 2 (Nrf2) nuclear accumulation, suppressed reactive oxygen species (ROS) production. Neuroprotection of PF/β-Ecd could be completely blocked by PKCδ inhibitor rottlerin plus Akt specific inhibitor LY294002. Dual blockade of the PKCδ/NF-κB pathway by PF and activation of Akt/Nrf2 pathway by β-Ecd results in a synergistic neuroprotective effect against rotenone-induced neurotoxicity in vitro. These findings provide the rationale for determining the in vivo activity of combined therapy with PF and β-Ecd against PD.  相似文献   

13.
14.
15.
Chondrosarcoma is a type of highly malignant tumor with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. CCN3, also called nephroblastoma overexpressed gene (NOV), regulates proliferation and differentiation of cancer cells. However, the effect of CCN3 on migration activity in human chondrosarcoma cells is mostly unknown. Here, we found that CCN3 increased the migration and expression of matrix metalloproteinase (MMP)-13 in human chondrosarcoma cells (JJ012 cells). αvβ3 or αvβ5 monoclonal antibody (mAb), phosphatidylinositol 3-kinase (PI3K) inhibitors (Ly294002 and wortmannin) and Akt inhibitor inhibited the CCN3-induced increase of the migration and MMP-13 upregulation of chondrosarcoma cells. CCN3 stimulation increased the phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. In addition, NF-κB inhibitors also suppressed the cell migration and MMP-13 expression enhanced by CCN3. Moreover, CCN3 increased NF-κB luciferase activity and binding of p65 to the NF-κB element on the MMP-13 promoter. Taken together, our results indicate that CCN3 enhances the migration of chondrosarcoma cells by increasing MMP-13 expression through the αvβ3/αvβ5 integrin receptor, FAK, PI3K, Akt, p65, and NF-κB signal transduction pathway.  相似文献   

16.
Electroacupuncture at select acupoints have been verified to protect against organ dysfunctions during endotoxic shock. And, heme oxygenase (HO)-1 as a phase II enzyme and antioxidant contributed to the protection of kidney in septic shock rats. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway mediated the activation of NF-E2 related factor-2 (Nrf2), which was involved in HO-1 induction. To understand the efficacy of electroacupuncture stimulation in ameliorating acute kidney injury (AKI) through the PI3K/Akt/Nrf2 pathway and subsequent HO-1 upregulation, a dose of LPS 5mg/kg was administered intravenously to replicate the rabbit model of AKI induced by endotoxic shock. Electroacupuncture pretreatment was handled bilaterally at Zusanli and Neiguan acupoints for five consecutive days while sham electroacupuncture at non-acupoints as control. Results displayed that electroacupuncture stimulation significantly alleviated the morphologic renal damage, attenuated renal tubular apoptosis, suppressed the elevated biochemical indicators of AKI caused by LPS, enhanced the expressions of phospho-Akt, HO-1protein, Nrf2 total and nucleoprotein, and highlighted the proportions of Nrf2 nucleoprotein as a parallel. Furthermore, partial protective effects of elecroacupuncture were counteracted by preconditioning with wortmannin (the selective PI3K inhibitor), indicating a direct involvement of PI3K/Akt pathway. Inconsistently, wortmannin pretreatment made little difference to the expressions of HO-1, Nrf2 nucleoprotein and total protein, which indicated that PI3K/Akt may be not the only pathway responsible for electroacupuncture-afforded protection against LPS-induced AKI. These findings provide new insights into the potential future clinical applications of electroacupuncture for AKI induced by endotoxic shock instead of traditional remedies.  相似文献   

17.
Neuroprotection has received considerable attention as a strategy for the treatment of Parkinson's disease (PD). Deprenyl (Selegiline) is a promising candidate for neuroprotection; however, its cytoprotective mechanism has not been fully clarified. Here, we report a novel cytoprotective mechanism of deprenyl involving PI3K and Nrf2-mediated induction of oxidative stress-related proteins. Deprenyl increased the expression of HO-1, PrxI, TrxI, TrxRxI, gammaGCS, and p62/A170 in SH-SY5Y cells. Deprenyl also induced the nuclear accumulation of Nrf2 and increased the binding activity of Nrf2 to the enhancer region of human genomic HO-1. The Nrf2-mediated induction of antioxidative molecules was controlled by PI3K. Indeed, furthermore, neurotrophin receptor TrkB was identified as an upstream signal for PI3K-Nrf2 activation by deprenyl. These results suggest that the cytoprotective effect of deprenyl is, in part, dependent on Nrf2-mediated induction of antioxidative proteins, suggesting that activation of the PI3K-Nrf2 system may be a useful therapeutic strategy for PD.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号