首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the effects of retinoic acid (RA) on [14C]acetate incorporation and fatty acid composition of hamster embryo fibroblasts (HEF) and two cell lines derived from the same inbred strain but transformed by herpes simplex-2 virus (HSV) or polyoma virus (HFT). Cells were exposed to all trans RA, or dimethylsulfoxide (DMSO), the vehicle for RA, and the lipids labeled with [14C]acetate. Lipids were extracted from the cells, separated by paper chromatography, located by autoradiography, and acetate incorporation determined by liquid scintillation spectrometry. The distribution of fatty acids in total cell lipids was examined by gas chromatography. HEF cells incorporated more acetate into cholesterol than either transformed cell type. The HFT line incorporated more acetate into triglycerides and less into total phospholipids than either the HSV line or the HEF line. RA caused a significant decrease in incorporation of acetate into cholesterol and sphingomyelin in all three cell lines. HEF and HSV cells had decreased incorporation into phosphatidyl inositol-phosphatidyl serine and increased incorporation into triglycerides, changes not evident in the HFT cell. The control fatty acid profiles of the HEF and HSV cells were similar, while the HFT cells had a larger proportion of C16:0 and 18:1 fatty acids. Following treatment with RA all three cell types showed an increase in palmitic and a decrease in oleic acids. The three related cell types showed different [14C]acetate labeling patterns which did not respond uniformly to RA. On the other hand, exposure elicited some like responses in all cell types.  相似文献   

2.
The binding of fatty acids by bovine serum albumin (BSA) is well documented. However, the interaction between the synthesis of prostaglandins (PGs) and the trapping of arachidonate released from cellular lipid stores is not as well understood. In this communication, we relate the trapping of fatty acids to the synthesis of PGs and the incorporation of [3H]acetate into platelet-activating factor (PAF). Our results show that, as determined by radioimmunoassay, BSA inhibits bradykinin (BK) (5 ng/ml) and ionophore A23187 (10 microM)-stimulated synthesis of PGs in human embryo lung fibroblasts (IMR-90) in a concentration-dependent manner. Experiments using prelabel with [3H]arachidonate followed by extraction and thin-layer chromatography show that, in the presence of 2 mg/ml BSA, IMR-90 release essentially only fatty acid following stimulation with bradykinin. Little if any prostaglandin and no endoperoxide are detected. In the same experiment, in absence of BSA, about 70% of the released label is detected as prostaglandin. alpha-Cyclodextrin, another trapper of fatty acid, inhibits PG synthesis in much the same way. BSA and alpha-cyclodextrin also inhibit prostacyclin synthesis in endothelial cells derived from the calf pulmonary artery. However, the inhibition of PG synthesis in these cells is not as complete as that in the IMR-90. In contrast to the effect of the trappers on PG synthesis, BSA and alpha-cyclodextrin are observed to potentiate BK- and ionophore-stimulated incorporation of [3H]acetate into PAF in the endothelial cells. The labeled PAF is not released from the cells in either the presence or absence of the trappers, leading us to conclude that BSA causes an increase in acetate-labeled cellular PAF by trapping released fatty acid.  相似文献   

3.
Spinach chloroplasts, isolated by techniques yielding preparations with high O2- evolving activity, showed rates of light-dependent acetate incorporation into lipids 3-4 fold higher than any previously reported. Incorporation rates as high as 500 nmol of acetate/h per mg of chlorophyll were measured in buffered sorbitol solutions containing only NaHCO3 and [1-14C]acetate, and as high as 800 nmol/h per mg of chlorophyll when 0.13 mM-Triton X-100 was also included in the reaction media. The fatty acids synthesized were predominantly oleic (70-80% of the total fatty acid radioactivity) and palmitic (20-25%) with only minor amounts (1-5%) of linoleic acid. Linolenic acid synthesis was not detected in the system in vitro. Free fatty acids accounted for 70-90% of the radioactivity incorporated and the remainder was shared fairly evenly between 1,2-diacylglycerols and polar lipids. Oleic acid constituted 80-90% of the free fatty acids synthesized, but the diacylglycerols and polar lipids contained slightly more palmitic acid than oleic acid. Triton X-100 stimulated the synthesis of diacylglycerols 3-6 fold, but stimulated free fatty acid synthesis only 1-1.5-fold. Added glycerol 1-phosphate stimulated both the synthesis of diacylglycerols and palmitic acid relative to oleic acid, but did not increase acetate incorporation into total chloroplast lipids. CoA and ATP, when added separately, stimulated acetate incorporation into chloroplast lipids to variable extents and had no effect on the types of lipid synthesized, but when added together resulted in 34% of the incorporated acetate appearing in long-chain acyl-CoA. Pyruvate was a much less effective precursor of chloroplast fatty acids than was acetate.  相似文献   

4.
To investigate the incorporation of essential fatty acids into myelin components, 24-day-old rabbits were injected intracerebrally with [14C]linoleate, [14C]linolenate, or [3H]Myristate for comparison. Animals were killed 22 hr later and myelin was isolated. [3H]myristate labeled all myelin lipids including monogalactosyl diglyceride, with the exception of sulfatides. With14C-essential fatty acids, only glycerophospholipids were efficiently labeled and their specific activities were in the following decreasing orders: PC>PI>PE>PS with [14C]linoleate, and PE>PC>PI=PS with [14C]linolenate. Among myelin proteins, PLP and DM-20 were labeled with all 3 precursors. PLP was purified from myelin labeled with14C-essential fatty acids. The label was then cleaved from the protein by alkaline methanolysis and was identified as a dienoic ([14C]linoleate) or a tetraenoic ([14C]linolenate) fatty acid. MBP was not labeled with [3H]myristate, but was slightly labeled with both14C-essential fatty acids. The signification of the latter result is discussed.Abbreviations FA fatty acid(s) - HPTLC high-performance thin-layer chromatography - MBP myelin basic protein - PLP proteolipid protein - PC phosphatidylcholine - PE phosphatidylethanolamine and ethanolamine plasmalogens - PI phosphatidylinositol - PS phosphatidylserine - SDS sodium dodecylsulfate  相似文献   

5.
Binary mixtures of deuterium-labeled palmitic acid and an excess of different fatty acids were applied to the sex pheromone gland of female Heliothis virescens and the effects on the terminal steps of pheromone biosynthesis, including incorporation of fatty acids into the glandular lipids, observed. Relative to labeled palmitic acid applied alone, application of all the binary mixtures resulted in decreased levels of the labeled pheromone component, (Z)-11-hexadecenyl acetate (Z11-16:OAc), but there was generally no decrease in the amounts of labeled pheromone precursor, (Z)-11-hexadecenoate, nor labeled palmitate in the glandular lipids. These data suggest that the excess of fatty acid in the gland inhibits Delta11-desaturation. However, in the case of excess myristoleic acid, the amount of labeled (Z)-11-hexadecenoate increased significantly, suggesting that this acid inhibited fatty acid reduction. Dose-response tests with certain of the fatty acids were consistent with the above interpretations and further indicated that the gland had a high capacity for rapidly activating and incorporating excess fatty acids into the glandular lipids. Finally, application of the various fatty acids resulted in increased levels of these acids in the gland and, in the cases of myristoleic, palmitoleic and myristic acids, it also resulted in increased levels of the corresponding aldehydes, which had previously been detected in the gland of female H. virescens. This suggests that the fatty acid reductase in H. virescens is not highly specific for the major component, and that the final ratio of pheromone components is determined in part by the availability of their corresponding fatty acids in the gland.  相似文献   

6.
There is a developmental increase in fatty acid biosynthesis and surfactant production in late-gestation fetal lung and both are accelerated by glucocorticoids. We have examined the distribution of the newly synthesized fatty acids to determine whether they are preferentially incorporated into surfactant. Explants of 18 day fetal rat lung were cultured with and without dexamethasone for 48 h and then with [3H]acetate for 4 h after which labeled fatty acids were measured. Incorporation of radioactivity from acetate was considered a measure of newly synthesized fatty acids. Phospholipids contained 86% of the newly synthesized fatty acids of which approx. 80% were in phosphatidylcholine. Phosphatidylcholine and disaturated phosphatidylcholine contained a much greater percentage of the labeled fatty acids than of the phospholipid mass determined by phosphorus assay while phosphatidylethanolamine, phosphatidylserine and sphingomyelin contained less. Dexamethasone increased the rate of acetate incorporation into total lipid fatty acids but it had little effect on fatty acid distribution, except that it increased the percentages in phosphatidylglycerol and disaturated phosphatidylcholine. The hormone also increased the mass of these two phospholipids to a greater extent than that of the total. These data suggested that the newly synthesized fatty acids are preferentially incorporated into surfactant phospholipids and that this process is accelerated by dexamethasone. However, since phosphatidylcholine and phosphatidylglycerol are not exclusive to surfactant, we compared isolated lamellar bodies with a residual fraction not enriched in surfactant. The rate of acetate incorporation into fatty acids in lamellar body phosphatidylcholine as well as its specific activity (radioactivity per unit phosphorus) were both increased by dexamethasone. Specific activity, however, was no greater in the lamellar bodies than in the residual fraction in both control and dexamethasone-treated cultures. Therefore, there is no preferential incorporation of newly synthesized fatty acids into phospholipids in surfactant as opposed to those in other components of the lung.  相似文献   

7.
The effects of 1 min of acute hypoxic treatment (1% O2 in N2) on incorporation of [1-14C]arachidonic acid into brain lipids of 16-day-old rats were investigated at 3, 6, and 12 min after intracerebral injection of the labeled fatty acid. The hypoxic-hypoxia condition associated with convulsive seizures caused a decrease in the conversion of labeled arachidonate to its acyl-CoA as well as incorporation of the label into the brain phospholipids. Among the phospholipids, there was a specific decrease in the labeling of diacylglycerophosphoinositol (GPI), and this change was accompanied by an increase in labeling of the diacylglycerols. These results indicate that metabolism of the long-chain fatty acids and some glycero-lipids in brain are vulnerable to acute hypoxic treatment.  相似文献   

8.
In BGM cells chronically infected with measles virus, although the composition of the phospholipids is unaltered, the fatty acid composition is modified. Uninfected, lytic and persistently infected cells were labelled with [3H]arachidonic acid and [14C]stearic acid and their metabolic fate analysed. No difference in the total incorporation was observed in the different systems. However, the [14C]stearic acid and [3H]arachidonic acid were incorporated up to 2-fold and 13-fold respectively greater into the neutral lipid of persistently infected compared with that of uninfected cells. Both radioactive fatty acids were specifically accumulated in the triacylglycerol and non-esterified fatty acids fractions. Lytically infected cells were similar to uninfected cells. Although there was no significant difference in the incorporation of radioactivity into the total phospholipid in either system, there was a large decrease in [3H]arachidonic acid incorporated into phosphatidylethanolamine and to a lesser extent phosphatidylcholine and phosphatidylinositol in persistently infected cells. [14C]Stearic acid incorporation was also reduced in phosphatidylcholine and phosphatidylethanolamine fractions of persistently infected cells.  相似文献   

9.
Upon infection with fowlpox virus, the amount of odd-numbered fatty acids in chick scalp epithelium shows a significant decrease compared with control values. This effect begins quite early and progresses throughout the period of infection. Individual members of the odd-numbered family (C15--C27 inclusive) were quantitatively related to the group as a whole during most of the infection. Experiments involving the administration of labeled acetate in vivo demonstrated an increase in the synthesis of even-numbered fatty acids and a decrease in the synthesis of odd-numbered fatty acids in infected epithelium. The reduced synthesis of odd-numbered fatty acids in infected epithelium could also be demonstrated with labeled propionate. The influence of the alpha-oxidation pathway was assayed in chick scalp epithelium in vivo by the administration of [1-14C,9,10-3H] stearic acid. The C17 acids formed had a 3H/14C ratio similar to that of the C16 acids, indicating that most label incorporation into C17 was due to beta-oxidation to acetate followed by resynthesis into fatty acids. C17 fatty acids from control and infected epithelium had similar 3H/14C ratios, indicating that the alpha-oxidation pathway probably does not contribute to the differences in odd-numbered fatty acid content observed. In assays for fatty acid synthetase activty, both [14C] acetyl-CoA and [14C]-propionyl-CoA were used as initial acceptors. The specific activities of preparations from infected scalp were similar to those of control preparations with both substrates. These results suggest that there is no decline in the ability to utilize propionate for fatty acid synthesis in infected epithelium.  相似文献   

10.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

11.
The phytopathogen Rhizoctonia leguminicola has previously been shown to incorporate pipecolic acid into the piperidine alkaloids 1-acetoxy-6-aminooctahydroindolizine (slaframine) and 3,4,5-trihydroxyoctahydro-1-pyrindine. In the experiments described here, resting cultures of R. leguminicola were incubated with [1-14C]- and [2-14C]malonic acid and with [1-14C]- and [2-2H]acetic acid. Both acids were incorporated into the ring systems of both alkaloids. Mass spectrometric analysis of 2H-enriched slaframine showed that the label resides in the five-membered ring and that the methyl carbon of acetate is joined to the carboxyl carbon of pipecolate. A pipecolate-dependent decarboxylation of [1-14C]malonate was demonstrated in cell-free extracts of R. leguminicola. The results account for previously unattributed carbons in the two alkaloids and suggest the formation of an eight-carbon intermediate common to both alkaloids by acylation of malonate with pipecolic acid.  相似文献   

12.
The ability of sheep reticulocytes and plasma membranes isolated from them to incorporate fatty acids into the transferrin receptor has been examined using both [3H]palmitate and [3H]myristate. Both fatty acids, when incorporated into the transferrin receptor, can be released by treating the protein with 1 M hydroxylamine at pH 7.0. After treatment of the 3H-acylated receptor with borohydride, an 3H-labeled alcohol is released, suggesting that the receptor-bound fatty acid is in thioester linkage. With both [3H]myristate and [3H]palmitate, Cleveland maps from immunoprecipitates of the transferrin receptor labeled in intact cells and isolated membranes show that identical peptides are labeled. No evidence was obtained for qualitatively different labeling with the two fatty acids. In intact reticulocytes, incorporation of [3H]palmitate into the transferrin receptor is approximately 3.5 times greater than the incorporation of [3H]myristate from equivalent concentrations of the labeled fatty acids. However, in isolated reticulocyte plasma membranes, there is much less difference between palmitate and myristate incorporation (with ATP) or between their acyl-CoA derivatives. The reason for the discrepancy between cells and membranes is unknown but may be due to the presence in intact cells of more than one enzyme for activating the fatty acids. Acylation of the receptor in isolated plasma membranes is fourfold greater with the CoA derivatives than with the free fatty acids. The fatty acid activating enzyme(s) as well as the acyltransferase(s) appear to be membrane bound in reticulocytes.  相似文献   

13.
Vitamin E, a dietary antioxidant, is presumed to be incorporated into the lipid bilayer of biological membranes to an extent proportional to the amount of polyunsaturated fatty acids or phospholipids in the membrane. In the present study we evaluated the distribution of incorporated polyunsaturated fatty acids (PUFA) and phosphatidylethanolamine (PE) in various membranes of pulmonary artery endothelial cells. We also studied whether incorporation of PUFA or PE is responsible for increased incorporation of [3H]-vitamin E into the membranes of these cells. Following a 24-hr incubation with linoleic acid (18:2), 18:2 was increased by 6.9-, 9.2-, and 13.2-fold in plasma, mitochondrial, and microsomal membranes, respectively. Incorporation of 18:2 caused significant increases in the unsaturation indexes of mitochondrial and microsomal polyunsaturated fatty acyl chains (P less than .01 versus control in both membranes). Incubation with arachidonic acid (20:4) for 24 hr resulted in 1.5-, 2.3-, and 2.4-fold increases in 20:4 in plasma, mitochondrial, and microsomal membranes, respectively. The unsaturation indexes of polyunsaturated fatty acyl chains of mitochondrial and microsomal membranes also increased (P less than .01 versus control in both membranes). Although incubations with 18:2 or 20:4 resulted in several-fold increases in membrane 18:2 or 20:4 fatty acids, incorporation of [3H]-vitamin E into these membranes was similar to that in controls. Following a 24-hr incubation with PE, membrane PE content was significantly increased, and [3H]-vitamin E incorporation was also increased to a comparable degree, i.e., plasma membrane greater than mitochondria greater than microsomes. Endogenous vitamin E content of the cells was not altered because of increased incorporation of PE and [3H]-vitamin E. When [3H]-vitamin E was incorporated into lipid vesicles prepared from the total lipid extracts of endothelial cells and varying amounts of exogenous PE, vitamin E content was directly related to PE content. These results demonstrate that PUFA and PE distribute in all pulmonary artery endothelial cell membranes. However, only increases in PE were associated with increased incorporation of [3H]-vitamin E in membranes of these cells.  相似文献   

14.
Lipid biosynthesis by isolated plastids from greening pea, Pisum sativum   总被引:1,自引:0,他引:1  
Isolated etioplasts from 8-day-old dark-grown pea seedlings incorporated [1-(14)C]acetate into lipid at a relatively low rate. Plastids from seedlings that had been illuminated for at least 2 hr showed an enhanced incorporation provided the plastids were illuminated during incubation with the labeled acetate. Dark incubation or the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) decreased the acetate-incorporating activity of the developing chloroplasts to the level observed with etioplasts. Light had a marked effect on the type of fatty acid into which acetate was incorporated by the developing chloroplasts. Unsaturated fatty acids (mostly oleic acid) accounted for 60-80% of the incorporated label if the plastids were illuminated, but in the dark or in the presence of DCMU the unsaturated acids accounted for only 0-15% of the label incorporated into lipid. The effect of ATP on incorporation was dependent on the maturity of the chloroplasts; mature pea chloroplasts were inhibited by ATP, whereas in developing plastids there was a slight stimulation by ATP. Inhibition of acetate incorporation into lipid by DCMU appears to be due to inhibition of noncyclic phosphorylation. Incorporation was restored by reduced 2,3,5,6-tetramethylphenylenediamine, which restored phosphorylation, but not by reduced N,N,N',N'-tetramethylphenylenediamine.  相似文献   

15.
Metabolic studies on isolated mouse skin components were undertaken to determine the specific sites of fatty acid and sterol synthesis. The concentrations of long-chain fatty acids and sterols and the incorporation of radioactivity from acetate-1-(14)C into these lipids are reported for various skin components and intact whole skin. Only fatty acids having chain lengths of 18 carbons or less were produced by the connective tissue cells of the dermis, while fatty acids containing 20 carbons or more, as well as the acids of 18 carbons or less, were synthesized in the upper dermis (papillary reticulum). The upper dermis also produced significant quantities of eicosenoic acid and of an octadecadienoic acid (not linoleic acid), and incorporated labeled acetate into fatty acids containing an odd number of carbons. Removal of the epidermis and adnexa diminished sterol synthesis. However, the upper region of the dermis was capable of synthesizing, from acetate, large quantities of unidentified nonsaponifiable lipids which were neither sterols nor squalene.  相似文献   

16.
《Phytochemistry》1987,26(5):1311-1315
The incorporation of [14C]acetate into fatty acids in a plasma membrane enriched fraction from mature soybean root (Glycine max) was studied by time-course experiments. Mature sections of 4-day-old dark-grown soybean roots were incubated with [1-14C]acetate, 1 mM sodium acetate and 50 μ/ml chloramphenicol. Plasma membrane vesicles were isolated at pH 7.8 and in the presence of 5 mM EDTA, 5 mM EGTA and 10 mM NaF. Lipid extracts analysed for phospholipid class and acyl chain composition revealed that relatively long incubation times did not alter the phospholipid composition of the plasma membrane enriched fraction. Radioactivity was incorporated into all the phospholipid classes proportional to their concentration in the membrane fraction. The distribution of 14C within the fatty acids of phosphatidylcholine and phosphatidylethanolamine differed from the respective fatty acid compositions and changed with time. Radioactivity also appeared more rapidly in the unsaturated acyl groups of phosphatidylcholine when compared with phosphatidylethanolamine. The rate and pattern of fatty acid incorporation into phosphatidylcholine differed from that for phosphatidylethanolamine.  相似文献   

17.
Fatty acid metabolism was examined in Escherichia coli plsB mutants that were conditionally defective in sn-glycerol-3-phosphate acyltransferase activity. The fatty acids synthesized when acyl transfer to glycerol-3-phosphate was inhibited were preferentially transferred to phosphatidylglycerol. A comparison of the ratio of phospholipid species labeled with 32Pi and [3H]acetate in the presence and absence of glycerol-3-phosphate indicated that [3H]acetate incorporation into phosphatidylglycerol was due to fatty acid turnover. A significant contraction of the acetyl coenzyme A pool after glycerol-3-phosphate starvation of the plsB mutant precluded the quantitative assessment of the rate of phosphatidylglycerol fatty acid labeling. Fatty acid chain length in membrane phospholipids increased as the concentration of the glycerol-3-phosphate growth supplement decreased, and after the abrupt cessation of phospholipid biosynthesis abnormally long chain fatty acids were excreted into the growth medium. These data suggest that the acyl moieties of phosphatidylglycerol are metabolically active, and that competition between fatty acid elongation and acyl transfer is an important determinant of the acyl chain length in membrane phospholipids.  相似文献   

18.
1. The concentration of carbamylcholine, bombesin, pancreozymin, pentagastrin and secretin evoking a similar 4--5-fold maximal increase in amylase secretion from rat pancreatic fragments were 3.10(-6), 10(-7), 10(-8), 3.10(-6), and 3.10(-6) M, respectively. The maximal concentration of vasoactive intestinal peptide tested (3.10(-6) M) increased amylase secretion by 250%. The six secretagogues could be separated into two groups according to their effects on lipid metabolism and ATP levels. 2. When used at their optimal concentrations, carbamylcholine, bombesin, pancreozymin, and pentagastrin lowered pancreatic ATP levels by 18-26% and increased net release of free fatty acids by 68-105%. 3. The effects of 3.10(-6) M carbamylcholine and 10(-8) M pancreozymin on the metabolism of 3H2O, D-[U-14C]glucose and [1-14C]acetate were similar; the incorporation of radioactivity in the fatty acid moiety of glycerolipids decreased by 20--50% whereas the incorporation of 3H from 3H2O and of 14C from [U-14C]glucose increased by 20--35% in the glycerol moiety. In addition, the oxidation of [U-14C]glucose, [1-14C]acetate and [1-14C]palmitate to 14CO2 increased by 15--32% while the esterification of [1-14C]palmitate, [1-14C]-linoleate, and [1-14C]arachidonate was inhibited by 14--23%. The spectrum of fatty acids labeled with [1-14C]acetate indicated an inhibition of the malonic acid pathway whereas the elongation of polyenoic fatty acids was unaltered.  相似文献   

19.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

20.
1. The incorporation of 5mm-[U-(14)C]glucose into glyceride fatty acids by fat cells from normal rats incubated in the presence of 20munits of insulin/ml was increased by acetate, pyruvate, palmitate, NNN'N'-tetramethyl-p-phenylenediamine, phenazine methosulphate, dinitrophenol, tetrachlorotrifluoromethyl benzimidazole and oligomycin. Lactate did not stimulate glucose incorporation into fatty acids. The effects of these agents were concentration-dependent. 2. In the presence of 5mm-glucose+insulin, [U-(14)C]acetate, [U-(14)C]pyruvate and [U-(14)C]lactate were incorporated into fatty acids in a concentration-dependent manner, thereby further increasing the total rate of fatty acid synthesis. 3. NNN'N'-tetramethyl-p-phenylenediamine decreased the incorporation of [U-(14)C]pyruvate into fatty acids in normal cells and increased the incorporation of [U-(14)C]lactate into fatty acids. 4. In fact cells from 72h-starved rats the stimulatory effects of NNN'N'-tetramethyl-p-phenylenediamine upon glucose and lactate incorporation into fatty acids were totally and partially abolished respectively whereas the stimulatory effects of acetate upon glucose incorporation were retained. 5. Combinations of the optimum concentrations of the substances that stimulate glucose incorporation into fatty acids were tested and compared. The effects of acetate+NNN'N'-tetramethyl-p-phenylenediamine and acetate+palmitate upon normal cells were additive. The effects of NNN'N'-tetramethyl-p-phenylenediamine+palmitate were not additive. It was found that total fatty acid synthesis in the presence of glucose was most effectively increased by raising the concentration of pyruvate in the incubation system. 6. The significance of these results in supporting the proposal that fatty acid synthesis from glucose in adipose tissue is a ;self-limiting process' is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号