首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Syu GD  Chen HI  Jen CJ 《PloS one》2011,6(9):e24385
Neutrophil spontaneous apoptosis, a process crucial for immune regulation, is mainly controlled by alterations in reactive oxygen species (ROS) and mitochondria integrity. Exercise has been proposed to be a physiological way to modulate immunity; while acute severe exercise (ASE) usually impedes immunity, chronic moderate exercise (CME) improves it. This study aimed to investigate whether and how ASE and CME oppositely regulate human neutrophil apoptosis. Thirteen sedentary young males underwent an initial ASE and were subsequently divided into exercise and control groups. The exercise group (n = 8) underwent 2 months of CME followed by 2 months of detraining. Additional ASE paradigms were performed at the end of each month. Neutrophils were isolated from blood specimens drawn at rest and immediately after each ASE for assaying neutrophil spontaneous apoptosis (annexin-V binding on the outer surface) along with redox-related parameters and mitochondria-related parameters. Our results showed that i) the initial ASE immediately increased the oxidative stress (cytosolic ROS and glutathione oxidation), and sequentially accelerated the reduction of mitochondrial membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; ii) CME upregulated glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; iii) most effects of CME were unchanged after detraining; and iv) CME blocked ASE effects and this capability remained intact even after detraining. Furthermore, the ASE effects on neutrophil spontaneous apoptosis were mimicked by adding exogenous H2O2, but not by suppressing mitochondrial membrane potential. In conclusion, while ASE induced an oxidative state and resulted in acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long periods of time even after detraining.  相似文献   

2.
The study examines plasma metabolic profiles of patients with chronic obstructive pulmonary disease (COPD) to prove whether the disease influences metabolism at rest and after endurance training. This is based on the hypothesis that metabolome levels should reflect impaired skeletal muscle bioenergetics in COPD. The study aims to test this hypothesis by evaluating plasma metabolic profiles in COPD patients before and after 8?weeks of endurance exercise training. We studied blood samples from 18 COPD patients and 12 healthy subjects. Pre- and post-training blood plasma samples at rest and after constant-work rate exercise (CWRE) at 70% of pre-training Watts peak were analyzed by 1H-nuclear magnetic resonance spectroscopy to assess metabolite profiles. The two groups presented training-induced physiological changes in the VO2 peak and in blood lactate levels (P?<?0.01 each). Before training, the two groups also showed differences in metabolic profiles at rest (P?<?0.05). Levels of valine (r?=?0.51, P?<?0.01), alanine (r?=?0.45, P?<?0.05) and isoleucine (r?=?0.51, P?<?0.01) were positively associated with body composition (Fat Free Mass Index). While training showed a significant impact on the metabolic profile in healthy subjects (P?<?0.001), with changes in levels of amino acids, creatine, succinate, pyruvate, glucose and lactate (P?<?0.05 each), no equivalent training-induced effects were seen in COPD patients in whom only lactate decreased (P?<?0.05). This study shows that plasma metabolic profiling contributes to the phenotypic characterization of COPD patients.  相似文献   

3.
A double-blind study of the effects of supplementing with selenium vs. placebo on the physiological responses to acute and chronic exercise was conducted in 24 healthy, nonsmoking males, mean age 22.9±2.1 yr, randomly divided into two groups of 12 (Pla/Sel). After a controlled period in the absence of training, all subjects were put on an individualized endurance training program with the same rules of progression and overload (3 sessions/wk×10 wk). Supplementation, either real (240 μg of organic selenium/d in Sel group) or imaginary (Pla group) was administered during the same period. In each of the conditions Pre- and Post- (training ± sel supplementation), muscle, plasma, and systemic parameters were determined before (BF) and after (AF) acute exercise, involving the repetition of muscle work cycles separated by 5-min recovery periods, combining 20 min at 65% and a maximal duration of 100% VO2 max of running on a treadmill, leading the subjects to exhaustion between 2 h 40 min and 3 h 30 min. Changes in parameters as a function of three independent variables:
  1. Acute exercise (E);
  2. Chronic exercise (T); and
  3. Selenium supplementing (S)
were tested with ANOVA and the Student\rsst-test on paired series. Among the variables examined, muscle glutathione peroxidase (GPx) presented a remarkable behavior. Enzymatic activity:
  1. Decreased significantly (p<0.05,n=24) between the beginning and the end of acute exercise: 29.6±12 vs. 20.8±8.1 IU·g protein?1 in Pre conditions;
  2. Remained at the same level in resting conditions between the beginning and end of training (from Pre to Post) regardless of the group: 33.5±10.8 vs. 32.3±19.8 and 25.7±12.4 vs. 23.5±10.2 IU·g protein?1 in Pla and Sel subjects, respectively; and
  3. Increased from 23.5±10.2 to 37.3±28.5 (P=0.057) during acute exercise in Post-conditions (after training) in supplemented subjects (Sel group).
The situation was as if acute exercise played the role of allosteric stimulator of the GPx reaction in muscle.  相似文献   

4.
5.
6.
For many years, it was believed that ventilation does not limit performance in healthy humans. Recently, however, it has been shown that inspiratory muscles can become fatigued during intense endurance exercise and decrease their exercise performance. Therefore, it is not surprising that respiratory endurance training can prolong intense constant-intensity cycling exercise. To investigate the effects of respiratory endurance training on blood lactate concentration and oxygen consumption (VO2) during exercise and their relationship to performance, 20 healthy, active subjects underwent 30 min of voluntary, isocapnic hyperpnoea 5 days a week, for 4 weeks. Respiratory endurance tests, as well as incremental and constant-intensity exercise tests on a cycle ergometer, were performed before and after the 4-week period. Respiratory endurance increased from 4.6 (SD 2.5) to 29.1 (SD 4.0) min (P < 0.001) and cycling endurance time was prolonged from 20.9 (SD 5.5) to 26.6 (SD 11.8) min (P < 0.01) after respiratory training. The VO2 did not change at any exercise intensity whereas blood lactate concentration was lower at the end of the incremental [10.4 (SD 2.1) vs 8.8 (SD 1.9) mmol x l(-1), P < 0.001] as well as at the end of the endurance exercise [10.4 (SD 3.6) vs 9.6 (SD 2.7) mmol x l(-1), P < 0.01] test after respiratory training. We speculate that the reduction in blood lactate concentration was most likely caused by an improved lactate uptake by the trained respiratory muscles. However, reduced exercise blood lactate concentrations per se are unlikely to explain the improved cycling performance after respiratory endurance training.  相似文献   

7.
In severe COPD patients, oxidative stress, which is involved in their peripheral muscle dysfunction, increases in response to exercise. In this study, muscle oxidative stress was explored after quadriceps magnetic stimulation training. A randomized controlled study was conducted on very severe COPD patients, who underwent quadriceps magnetic stimulation training for 8 weeks. A control group was also studied. In both groups, vastus lateralis specimens were obtained before and after the 8-week period. Muscle protein carbonylation and nitration and antioxidant enzymes were determined using immunoblotting and proportions and sizes of type I and II fibres using immunohistochemistry. Compared to controls, magnetic stimulation muscle training did not modify redox balance, whilst inducing a significant increase in type I fibre sizes. In severe COPD patients, it is concluded that quadriceps magnetic stimulation training was a well-tolerated therapeutic intervention, which did not enhance muscle oxidative stress, while increasing the size of slow-twitch fibres.  相似文献   

8.
9.
Infusion of the antioxidant N-acetylcysteine (NAC) reduces fatigability in electrically evoked human muscle contraction, but due to reported adverse reactions, no studies have investigated NAC infusion effects during voluntary exercise in humans. We investigated whether a modified NAC-infusion protocol (125 mg. kg(-1). h(-1) for 15 min, then 25 mg. kg(-1). h(-1)) altered blood redox status and enhanced performance during intense, intermittent exercise. Eight untrained men participated in a counterbalanced, double-blind, crossover study in which they received NAC or saline (control) before and during cycling exercise, which comprised three 45-s bouts and a fourth bout that continued to fatigue, at 130% peak oxygen consumption. Arterialized venous blood was analyzed for glutathione status, hematology, and plasma electrolytes. NAC infusion induced no severe adverse reactions. Exercise decreased the reduced glutathione (P < 0.005) and increased oxidized glutathione concentrations (P < 0.005); NAC attenuated both effects (P < 0.05). NAC increased the rise in plasma K(+) concentration-to-work ratio (P < 0.05), indicating impaired K(+) regulation, although time to fatigue was unchanged (NAC 102 +/- 45 s; saline 107 +/- 53 s). Thus NAC infusion altered blood redox status during intense, intermittent exercise but did not attenuate fatigue.  相似文献   

10.
Emerging evidence indicates that, besides dyspnea relief, an improvement in locomotor muscle oxygen delivery may also contribute to enhanced exercise tolerance following normoxic heliox (replacement of inspired nitrogen by helium) administration in patients with chronic obstructive pulmonary disease (COPD). Whether blood flow redistribution from intercostal to locomotor muscles contributes to this improvement currently remains unknown. Accordingly, the objective of this study was to investigate whether such redistribution plays a role in improving locomotor muscle oxygen delivery while breathing heliox at near-maximal [75% peak work rate (WR(peak))], maximal (100%WR(peak)), and supramaximal (115%WR(peak)) exercise in COPD. Intercostal and vastus lateralis muscle perfusion was measured in 10 COPD patients (FEV(1) = 50.5 ± 5.5% predicted) by near-infrared spectroscopy using indocyanine green dye. Patients undertook exercise tests at 75 and 100%WR(peak) breathing either air or heliox and at 115%WR(peak) breathing heliox only. Patients did not exhibit exercise-induced hyperinflation. Normoxic heliox reduced respiratory muscle work and relieved dyspnea across all exercise intensities. During near-maximal exercise, quadriceps and intercostal muscle blood flows were greater, while breathing normoxic heliox compared with air (35.8 ± 7.0 vs. 29.0 ± 6.5 and 6.0 ± 1.3 vs. 4.9 ± 1.2 ml·min(-1)·100 g(-1), respectively; P < 0.05; mean ± SE). In addition, compared with air, normoxic heliox administration increased arterial oxygen content, as well as oxygen delivery to quadriceps and intercostal muscles (from 47 ± 9 to 60 ± 12, and from 8 ± 1 to 13 ± 3 mlO(2)·min(-1)·100 g(-1), respectively; P < 0.05). In contrast, normoxic heliox had neither an effect on systemic nor an effect on quadriceps or intercostal muscle blood flow and oxygen delivery during maximal or supramaximal exercise. Since intercostal muscle blood flow did not decrease by normoxic heliox administration, blood flow redistribution from intercostal to locomotor muscles does not represent a likely mechanism of improvement in locomotor muscle oxygen delivery. Our findings might not be applicable to patients who hyperinflate during exercise.  相似文献   

11.
Muscle triglyceride utilization during exercise: effect of training   总被引:10,自引:0,他引:10  
The respiratory exchange ratio (RER) is lower during exercise of the same intensity in the trained compared with the untrained state, even though plasma free fatty acids (FFA) and glycerol levels are lower, suggesting reduced availability of plasma FFA. In this context, we evaluated the possibility that lipolysis of muscle triglycerides might be higher in the trained state. Nine adult male subjects performed a prolonged bout of exercise of the same absolute intensity before and after adapting to a strenuous 12-wk program of endurance exercise. The exercise test required 64% of maximum O2 uptake before training. Plasma FFA and glycerol concentrations and RER during the exercise test were lower in the trained than in the untrained state. The proportion of the caloric expenditure derived from fat, calculated from the RER, during the exercise test increased from 35% before training to 57% after training. Muscle glycogen utilization was 41% lower, whereas the decrease in quadriceps muscle triglyceride concentration was roughly twice as great (12.7 +/- 5.5 vs. 26.1 +/- 9.3 mmol/kg dry wt, P less than 0.001) in the trained state. These results suggest that the greater utilization of FFA in the trained state is fueled by increased lipolysis of muscle triglyceride.  相似文献   

12.
We investigated the effect of ageing and training on muscle fibre conduction velocity (MFCV) and cardiorespiratory response during incremental cycling exercise. Eight young (YT; 24 ± 5 yrs) and eight older (OT; 64 ± 3 yrs) cyclists, together with eight young (YU; 27 ± 4 yrs) and eight older (OU; 63 ± 2 yrs) untrained individuals underwent to an incremental maximal test on a cycle ergometer. Ventilatory threshold (VT), respiratory compensation point (RCP) and maximal oxygen uptake (VO2max) were identified and MFCV recorded from the vastus lateralis muscle using surface electromyography with linear arrays electrodes.In YT MFCV increased with the exercise intensity, reaching a peak of 4.99 ± 1.02 [m/s] at VT. Thereafter, and up to VO2max, MFCV declined. In YU MFCV showed a similar trend although the peak [4.55 ± 0.53 m/s] was observed, at 75% of VO2max an intensity higher than VT (66% of VO2max). In both YT and YU MFCV did not decline until RPC, which occurred at 78% VO2max in YU and at 92% VO2max (P < 0.01) in YT. Differently from young individuals, MFCV in older subjects did not increase with exercise intensity. Moreover, maximal MFCV in OU was significantly lower [3.53 ± 0.40 m/s;] than that of YT (P < 0.005) and YU (P < 0.05).The present study shows that, especially in young individuals, MFCV reflects cardiorespiratory response during incremental dynamic cyclic exercise and hence can be used to investigate motor unit recruitment strategies.  相似文献   

13.
Objective measures of gait and balance which meet the criteria of reliability and validity are required as a basis for exercise regimens. We established reference values of clinically relevant locomotor and balance performances for geriatric patients. We are using these data for evaluating the effects of different therapeutic approaches to locomotor and balance disorders. Reference values for chair rising. We administered a battery of five tests concerning neuromuscular function, locomotion and balance to a sample of 212 participants without apparent locomotor deficits (139 women, 73 men, mean age 70,5 years, SD 6,78 , median 70 years, range 60 to 90 years, recruited by public announcements). The test battery comprised the 'chair rising test' for measuring lower extremity neuromuscular function (five repetitions of rising from a chair as quickly as possible with arms crossed over the chest). The test has been proven reliable, valid, sensible and predictive for falls and future locomotor status and ADL-status. Chair rising [sec/5x], Range: 5.4-19.4, Mean: 9.1 (women:9.2, men:9.0), SD: 1.97, Median: 8.9. Training of balance and muscle power with Galileo 2000 - preliminary results. Galileo is a device for whole body vibration/oscillatory muscle stimulation. The subject stands with bended knees and hips on a rocking platform with a sagittal axle, which thrusts alternatively the right and left leg 7-14 mm upwards with a frequency of 27 Hz, thereby lengthening the extensor muscles of the lower extremities. The reflexive reaction of the neuromuscular system is a chain of rapid muscle contractions. We conducted a randomized controlled trial, n=34 (age: mean 67y, range 61-85, 11 female), cross-over design, intervention group 2 months training program three times a week (each session 3x2 minutes), performance tests of all participants every two weeks). The first 19 subjects have finished the intervention period. They reached mean performance gains in chair rising of 18%, strikingly different to the constant values of the controls! We interpret the findings as improvements in muscle power by the oscillative muscle stimulation.  相似文献   

14.
15.
The effect of very long endurance exercise on muscle carnitine was studied. Eighteen cross-country skiers took part in a race in the Alps (average inspired partial pressure of O2 100-110 Torr) that lasted on average 13 h 26 min. Carnitine intake, evaluated for 2 wk before the event, was 50 +/- 4 (SE) mg/day. Muscle (vastus lateralis) total carnitine concentration, measured twice with a 2-yr interval on eight rested subjects, did not change with time (17 vs. 16 mumol/g dry wt, NS) but showed consistent interindividual differences (range 12-22, P = 0.001) with no correlation with intake. After exercise, total muscle carnitine was unaltered (from 17.9 +/- 1.0 at rest to 18.3 +/- 0.8 mumol/g dry wt postexercise in the 15 subjects who completed the race, NS), but muscle free carnitine decreased 20% (from 14.9 +/- 0.8 mumol/g, P = 0.01) and short-chain acylcarnitine increased 108% (from 3.5 +/- 0.4 mumol/g, P = 0.01). These results suggest that carnitine deficiency will probably not result from strenuous aerobic exercise in trained subjects who consume a moderate amount of carnitine in their food.  相似文献   

16.
17.
We evaluated whether prior training would improve collateral blood flow (BF) to the calf muscles after acute-onset occlusion of the femoral artery. Exercise training was performed in the absence of any vascular occlusion. Adult male Sprague-Dawley rats ( approximately 325 g) were kept sedentary (n = 14), limited to cage activity, or exercise trained (n = 14) for 6 wk by treadmill running. Early in the day of measurement, animals were surgically prepared for BF determination, and the femoral arteries were occluded bilaterally. Four to five hours later, collateral BF was determined twice during treadmill running with the use of (141)Ce and (85)Sr microspheres: first, at a demanding speed and, second, after a brief rest and at a higher speed. The absence of any further increase in BF at the higher speed indicated that maximal collateral BF was measured. Prior training increased calf muscle BF by approximately 70% compared with sedentary animals; however, absolute BF remained below values previously observed in animals with a well-developed collateral vascular tree. Thus prior training appeared to optimize the use of the existing collateral circuit. This implies that altered vasoresponsiveness induced in normal nonoccluded vessels with exercise training serves to improve collateral BF to the periphery.  相似文献   

18.
The exact origin of reactive species and oxidative damage detected in blood is largely unknown. Blood interacts with all organs and tissues and, consequently, with many possible sources of reactive species. In addition, a multitude of oxidizable substrates are already in blood. A muscle-centric approach is frequently adopted to explain reactive species generation, which obscures the possibility that sources of reactive species and oxidative damage other than skeletal muscle may be also at work during exercise. Plasma and blood cells can autonomously produce significant amounts of reactive species at rest and during exercise. The major reactive species generators located in blood during exercise may be erythrocytes (mainly due to their quantity) and leukocytes (mainly due to their drastic activation during exercise). Therefore, it is plausible to assume that oxidative stress/damage measured frequently in blood after exercise or any other experimental intervention derives, at least in part, from the blood.  相似文献   

19.
20.
Stimulated erythropoiesis and reticulocytosis can be induced by daily bleeding, or by phenylhydrazine (PHZ) treatment. We compared the in vivo effects of PHZ and bleeding treatment on haematological, energy and redox status parameters in red blood cells (RBC) of rats. The results showed that all followed haematological parameters were significantly lower in bleeding, compared to PHZ-treated rats. PHZ induced even 2.58-fold higher reticulocytosis as compared to bleeding treatment. Although PHZ induced higher reticulocytosis, respiration intensity and energy production was lower than in bleeding-induced reticulocytes. These alterations were the consequence of increased superoxide anion and peroxynitrite concentrations in PHZ-treated rats. Bleeding treatment resulted in increased activity of an antioxidative enzyme, superoxide dismutase. In conclusion, differences in these two experimental models for reticulocytosis may be used as tools for appropriate pharmacological testing of redox-active substances considering energy and redox processes, as well as apoptosis pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号