首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic ethanol consumption is a well-established independent risk factor for type 2 diabetes mellitus (T2DM). Recently, increasing studies have confirmed that excessive heavy ethanol exerts direct harmful effect on pancreatic β-cell mass and function, which may be a mechanism of pancreatic β-cell failure in T2DM. In this study, we evaluated the effect of Lentinan (LNT), an active ingredient purified from the bodies of Lentinus edodes, on pancreatic β-cell apoptosis and dysfunction caused by ethanol and the possible mechanisms implicated. Functional studies reveal that LNT attenuates chronic ethanol consumption-induced impaired glucose metabolism in vivo. In addition, LNT ameliorates chronic ethanol consumption-induced β-cell dysfunction, which is characterized by reduced insulin synthesis, defected insulin secretion and increased cell apoptosis. Furthermore, mechanistic assays suggest that LNT enhances β-cell antioxidant capacity and ameliorates ethanol-induced oxidative stress by activating Nrf-2 antioxidant pathway. Our results demonstrated that LNT prevents ethanol-induced pancreatic β-cell dysfunction and apoptosis, and therefore may be a potential pharmacological agent for preventing pancreatic β-cell failure associated with T2DM and stress-induced diabetes.  相似文献   

2.
Poly(ADP)-ribose polymerase (PARP) is an abundant nuclear protein that is activated by DNA damage; once active, it modifies nuclear proteins through attachment of poly(ADP)-ribose units derived from β-nicotinamide adenine dinucleotide (NAD(+)). In mice, the deletion of PARP-1 attenuates tissue injury in a number of animal models of human disease, including streptozotocin-induced diabetes. Also, inflammatory cell signaling and inflammatory gene expression are attenuated in macrophages isolated from endotoxin-treated PARP-1-deficient mice. In this study, the effects of PARP-1 deletion on cytokine-mediated β-cell damage and macrophage activation were evaluated. There are no defects in inflammatory mediator signaling or inflammatory gene expression in macrophages and islets isolated from PARP-1-deficient mice. While PARP-1 deficiency protects islets against cytokine-induced islet cell death as measured by biochemical assays of membrane polarization, the genetic absence of PARP-1 does not effect cytokine-induced inhibition of insulin secretion or cytokine-induced DNA damage in islets. While PARP-1 deficiency appears to provide protection from cell death, it fails to provide protection against the inhibitory actions of cytokines on insulin secretion or the damaging actions on islet DNA integrity.  相似文献   

3.
Protein 4.1 family proteins are thought to interact with membrane proteins and membrane skeletons. Immunohistochemical studies by light and electron microscopy were performed on mouse pancreas with a specific antibody against protein 4.1B. Specific protein 4.1B immunolabeling was observed on endocrine cells in the islets of Langerhans. Protein 4.1B localized along the plasma membranes facing adjacent cells. By immunoelectron microscopy, the immunolabeling of the cells was restricted to the cytoplasmic side just beneath their plasma membrane, including the membranes adjacent to neighboring cells, while the plasma membranes facing endothelial cells were not immunolabeled for protein 4.1B. The immunolocalization of E-cadherin was similar, if not identical, to that of protein 4.1B supporting the idea that protein 4.1B may be functionally interconnected with adhesion molecules. In a transgenic mouse model of pancreatic -cell carcinogenesis (Rip1Tag2), the loss of protein 4.1B expression coincided with the phenotypic transition from adenoma to carcinoma. Therefore, we propose a role of protein 4.1B as a connecting and/or signaling molecule between membrane architecture, cell adhesion, and tumor cell invasion in mouse pancreatic endocrine cells.  相似文献   

4.
《Life sciences》1994,54(8):PL107-PL112
Phospholipase C is activated in insulin secretion by islets of Langerhans and insulin-secreting β-cells such as RINm5F and β-TC3. We have examined the effects of the aminosteroid U-73122, a phospholipase C inhibitor, on insulin secretion and phospholipase C activation. U-73122 slightly inhibited glucose-induced insulin secretion from islets, but this effect was not specific since the structural “inactive” analogue U-73343 also inhibited insulin secretion. Likewise, in RINm5F cells, U-73122 did not inhibit glyceraldehyde-induced insulin secretion. Phospholipase C activity was assessed as the accumulation of inositol-1,4,5-trisphosphate (Ins(1,4,5)P3) measured with a competitive binding assay: U-73122 failed to inhibit glucose-induced increase in Ins(1,4,5)P3. Similarly, when the effects of U-73122 and U-73343 were measured on [3H]phosphatidylinositol hydrolysis of islets, both compounds caused a slight, non-specific inhibition of phospholipase C activity. These observations suggest that U-73122 does not specifically inhibit phospholipase C in insulin-secreting cells.  相似文献   

5.
To determine whether the increased fatty acid -oxidation in the peroxisomes of diabetic rat liver is mediated by a common peroxisome proliferation mechanism, we measured the activation of long-chain (LC) and very long chain (VLC) fatty acids catalyzed by palmitoyl CoA ligase (PAL) and lignoceryl CoA ligase and oxidation of LC (palmitic acid) and VLC (lignoceric acid) fatty acids by isotopic methods. Immunoblot analysis of acyl-CoA oxidase (ACO), and Northern blot analysis of peroxisome proliferator-activated receptor (PPAR-), ACO, and PAL were also performed. The PAL activity increased in peroxisomes and mitochondria from the liver of diabetic rats by 2.6-fold and 2.1-fold, respectively. The lignoceroyl-CoA ligase activity increased by 2.6-fold in diabetic peroxisomes. Palmitic acid oxidation increased in the diabetic peroxisomes and mitochondria by 2.5-fold and 2.7-fold, respectively, while lignoceric acid oxidation increased by 2.0-fold in the peroxisomes. Immunoreactive ACO protein increased by 2-fold in the diabetic group. The mRNA levels for PPAR-, ACO and PAL increased 2.9-, 2.8- and 1.6-fold, respectively, in the diabetic group. These results suggest that the increased supply of fatty acids to liver in diabetic state stimulates the expression of PPAR- and its target genes responsible for the metabolism of fatty acids.  相似文献   

6.
Hepatic peroxisomal β-oxidation rates were compared in liver homogenates from cows and rats during different nutritional and physiological states. Peroxisomal oxidation in liver homogenates from cows represented 50% and 77% of the total capacity for the initial cycle of β-oxidation of palmitate and octanoate, respectively, but only 26% and 65% for rats. Lactation or food deprivation did not alter rates of hepatic peroxisomal β-oxidation of palmitate or octanoate in cows. Fasting and clofibrate treatment increased rates of total and peroxisomal β-oxidation of palmitate and octanoate in rat liver.  相似文献   

7.
8.
9.
In pancreatic β-cells, glutamate dehydrogenase (GDH) modulates insulin secretion, although its function regarding specific secretagogues is unclear. This study investigated the role of GDH using a β-cell–specific GDH knockout mouse model, called βGlud1−/−. The absence of GDH in islets isolated from βGlud1–/– mice resulted in abrogation of insulin release evoked by glutamine combined with 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid or l-leucine. Reintroduction of GDH in βGlud1–/– islets fully restored the secretory response. Regarding glucose stimulation, insulin secretion in islets isolated from βGlud1–/– mice exhibited half of the response measured in control islets. The amplifying pathway, tested at stimulatory glucose concentrations in the presence of KCl and diazoxide, was markedly inhibited in βGlud1–/– islets. On glucose stimulation, net synthesis of glutamate from α-ketoglutarate was impaired in GDH-deficient islets. Accordingly, glucose-induced elevation of glutamate levels observed in control islets was absent in βGlud1–/– islets. Parallel biochemical pathways, namely alanine and aspartate aminotransferases, could not compensate for the lack of GDH. However, the secretory response to glucose was fully restored by the provision of cellular glutamate when βGlud1–/– islets were exposed to dimethyl glutamate. This shows that permissive levels of glutamate are required for the full development of glucose-stimulated insulin secretion and that GDH plays an indispensable role in this process.  相似文献   

10.
11.
AimsWe investigated whether hypothalamic leptin alters β-cell function and mass directly via the sympathetic nervous system (SNS) or indirectly as the result of altered insulin resistant states.Main methodsThe 90% pancreatectomized male Sprague Dawley rats had sympathectomy into the pancreas by applying phenol into the descending aorta (SNSX) or its sham operation (Sham). Each group was divided into two sections, receiving either leptin at 300 ng/kg bw/h or artificial cerebrospinal fluid (aCSF) via intracerebroventricular (ICV) infusion for 3 h as a short-term study. After finishing the infusion study, ICV leptin (3 μg/kg bw/day) or ICV aCSF (control) was infused in rats fed 30 energy % fat diets by osmotic pump for 4 weeks. At the end of the long-term study, glucose-stimulated insulin secretion and islet morphometry were analyzed.Key findingsAcute ICV leptin administration in Sham rats, but not in SNSX rats, suppressed the first- and second-phase insulin secretion at hyperglycemic clamp by about 48% compared to the control. Regardless of SNSX, the 4-week administration of ICV leptin improved glucose tolerance during oral glucose tolerance tests and insulin sensitivity at hyperglycemic clamp, compared to the control, while it suppressed second-phase insulin secretion in Sham rats but not in SNSX rats. However, the pancreatic β-cell area and mass were not affected by leptin and SNSX, though ICV leptin decreased individual β-cell size and concomitantly increased β-cell apoptosis in Sham rats.SignificanceLeptin directly decreases insulin secretion capacity mainly through the activation of SNS without modulating pancreatic β-cell mass.  相似文献   

12.
The sodium contents of -cell-rich pancreatic islets fromob/ob-mice were measured with an integrating flame photometer. After washing to an apparent steady state with different types of ice-cold media, islets incubated in the absence of glucose contained 79–108 mmol sodium kg–1 dry weight. Exposure to glucose resulted in 25 % reduction of the islet content of sodium. This effect became manifest in the presence of 5 mM glucose, there being no additional reduction with a further increase of glucose to 20 mM. Depression of Na+ activity may partially explain why glucose, under certain conditions, can lower cytoplasmic Ca2+ and even inhibit insulin release.  相似文献   

13.
The alterations of cardiac and lymphocyte β-adrenoceptors were observed in the rats with chronic heart failure produced by constriction of both abdominal aorta and renal artery. The results showed that β1-adrenocep-tor density and mRNA levels were increased, whereas these levels remained unchanged for β2 The concentration-contractile response curve for isoproterenol was shifted to the right in cardiac atrium, whereas the concentration-cAMP accumulation response curve for isoproterenol in myocardium was not changed. The number of β-adrenoceptors in blood lymphocyte was markedly reduced. Thus in the heart-failure rats the density of cardiac β-adrenoceptor was increased accompanying reduced β-adrenoceptor-mediated positive inotropic response, suggesting a post adenylate cyclase dys-function or impaired contractile components. In contrast, the alteration of β-adrenoceptor in lymphocyte is consistent with the reduced β-adrenoceptor-mediated inotropic response in heart.  相似文献   

14.
The eSMT rat is a new spontaneous model of type 2 diabetes that develops a progressive diabetic syndrome with a stronger incidence in males than in females. We decide to investigate the progression of the pancreatic histopathological changes during the lifespan of the eSMT rat, especially those associated with islet cell populations. Besides that, some plasmatic parameters were evaluated in order to correlate them with the morphological findings. Male eSMT and Sprague-Dawley control rats were used.The results showed a dramatic decrease of the volume density (VD) of endocrine tissue in the eSMT rats without evidence of insulitis. Islets became fragmented structures with strong presence of interstitial fibrosis. Consequently, plasma insulin levels showed a significant decrease, while plasma glucose, cholesterol and triglyceride levels were increased. Normal rats showed no significant changes in the VD of endocrine tissue, except for the older animals, where the VD of β-cell population was increased.Early derangements observed in islets, together with the progressive decrease of endocrine tissue and the metabolic disorders described, would be responsible for an irreversible pathologic condition which avoids the animal survival beyond about 18 months of age.However, there is still a need to investigate the causes of endocrine tissue decrease and its possible association with an inflammatory process that it could be associated with the development and progression of fibrosis.  相似文献   

15.
16.
The alterations of cardiac and lymphocyte β-adrenoceptors were observed in the rats with chronic heart failure produced by constriction of both abdominal aorta and renal artery. The results showed that β1-adrenoceptor density and mRNA levels were increased, whereas these levels remained unchanged for β2. The concentrationcontractile response curve for isoproterenol was shifted m the right in cardiac atrium, whereas the concentration-CAMP accumulation response curve for isoproterenol in myocardium was not changed. The number of β-adrenoceptom in blood lymphocyte was markedly reduced. Thus in the heart-failure rats the density of cardiac β-adrenoceptor was increased accompanying reduced β-adrenoceptormediated positive inotropic response, suggesting a post adenylate cyclase dysfunction or impaired contractile components. In contrast, the alteration of β-adrenoceptor in lymphocyte is consistent with the reduced β-adrenoceptor-mediated inotropic response in heart.  相似文献   

17.
When exposed to intermediate glucose concentrations (6–16 mol/l), pancreatic β-cells in intact islets generate bursts of action potentials (superimposed on depolarised plateaux) separated by repolarised electrically silent intervals. First described more than 40 years ago, these oscillations have continued to intrigue β-cell electrophysiologists. To date, most studies of β-cell ion channels have been performed on isolated cells maintained in tissue culture (that do not burst). Here we will review the electrophysiological properties of β-cells in intact, freshly isolated, mouse pancreatic islets. We will consider the role of ATP-regulated K+-channels (KATP-channels), small-conductance Ca2+-activated K+-channels and voltage-gated Ca2+-channels in the generation of the bursts. Our data indicate that KATP-channels not only constitute the glucose-regulated resting conductance in the β-cell but also provide a variable K+-conductance that influence the duration of the bursts of action potentials and the silent intervals. We show that inactivation of the voltage-gated Ca2+-current is negligible at voltages corresponding to the plateau potential and consequently unlikely to play a major role in the termination of the burst. Finally, we propose a model for glucose-induced β-cell electrical activity based on observations made in intact pancreatic islets.  相似文献   

18.
By using the proton microprobe technique we have investigated the elemental composition of both pancreatic -cells and exocrine pancreas from fed and 24 h or 48 h starved obese hyperglycemic mice. Among the 15 elements measured in the -cells both Ca and Fe increased while Mg and S decreased significantly after 24 h of starvation, the effects being more pronounced after 48 h. When animals were starved for 48 h there was a decrease in the contents of Cl, Rb and Cu, whereas that of Al and Mn increased with 152 and 55%, respectively. There was an initial decrease in Na after 24 h of starvation, which was followed by an increase after 48 h. This is in contrast to Cd, which first increased and then decreased to a value lower than that obtained in the fed animal. The content of K showed a small decrease and that of Pb showed an increase only in the 24 h starved group. In the -cells the contents of Zn and P did not change subsequent to starvation. In the exocrine pancreas Na, Cl and P decreased after 24 h of starvation and except for Na, the decrease was maintained when the starvation period was increased to 48 h. After 24 h there was a significant, though transient, increase in K, Mg and Rb. With regard to the contents of Zn, Cu and S there was a progressive decrease as the starvation continued. In contrast to the endocrine pancreas the content of Al in the exocrine pancreas did not change after 48 h of starvation. There was no change in islet insulin content subsequent to starvation. The extent to which the observed changes in -cell elemental composition is involved in the impaired insulin release associated with starvation, merits further investigations.  相似文献   

19.
1. The ability of a range of phenothiazines to inhibit activation of brain phosphodiesterase by purified calmodulin was studied. Trifluoperazine, prochlorperazine and 8-hydroxyprochlorperazine produced equipotent dose-dependent inhibition with half-maximum inhibition at 12mum. When tested at 10 or 50mum, 7-hydroxyprochlorperazine was a similarly potent inhibitor. However, trifluoperazine-5-oxide and N-methyl-2-(trifluoromethyl)phenothiazine were ineffective at concentrations up to 50mum, and produced only a modest inhibition at 100mum. 2. The same phenothiazines were tested for their ability to inhibit activation of brain phosphodiesterase by boiled extracts of rat islets of Langerhans. At a concentration of 20mum, 70-80% inhibition was observed with trifluoperazine, prochlorperazine, 7-hydroxyprochlorperazine or 8-hydroxyprochlorperazine, whereas trifluoperazine-5-oxide and N-methyl-2-(trifluoromethyl)phenothiazine were less effective. 3. The effect of these phenothiazines on insulin release from pancreatic islets was studied in batch-type incubations. Insulin release stimulated by glucose (20mm) was markedly inhibited by 10mum-trifluoperazine or -prochlorperazine and further inhibited at a concentration of 20mum. 8-Hydroxyprochlorperazine (20mum) was also a potent inhibitor but 7-hydroxyprochlorperazine (20mum) elicited only a modest inhibition of glucose-stimulated insulin release; no inhibition was observed with trifluoperazine-5-oxide or N-methyl-2-(trifluoromethyl)phenothiazine. 4. Trifluoperazine (20mum) markedly inhibited insulin release stimulated by leucine or 4-methyl-2-oxopentanoate in the absence of glucose, and both trifluoperazine and prochlorperazine (20mum) decreased insulin release stimulated by glibenclamide in the presence of 3.3mm-glucose. 5. None of the phenothiazines affected basal insulin release in the presence of 2mm-glucose. 6. Trifluoperazine (20mum) did not inhibit islet glucose utilization nor the incorporation of [(3)H]leucine into (pro)insulin or total islet protein. 7. Islet extracts catalysed the incorporation of (32)P from [gamma-(32)P]ATP into endogenous protein substrates. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis resolved several phosphorylated bands, but incorporation was slight. However, calmodulin in the presence of Ca(2+) greatly enhanced incorporation: the predominant phosphorylated band had an estimated mol.wt. of 55000. This enhanced incorporation was abolished by trifluoperazine, but not by cyclic AMP-dependent protein kinase inhibitor protein. 8. These results suggest that islet phosphodiesterase-stimulating activity is similar to, although not necessarily identical with, calmodulin from skeletal muscle; that islet calmodulin may play an important role in Ca(2+)-dependent stimulus-secretion coupling in the beta-cell; and that calmodulin may exert part at least of its effect on secretion via phosphorylation of endogenous islet proteins.  相似文献   

20.
Short-term treadmill running in the rat: what kind of stressor is it?   总被引:1,自引:0,他引:1  
The use of short-term (1-5 days) treadmill running is becoming increasingly common as a model to study physiological adaptations following the exercise. Although the beneficial effects of acute exercise seem clear, a paucity of data exist describing potential markers of stress in response to forced running. We subjected male and female Sprague-Dawley rats to 0, 1, 2, 5, or 10 days of treadmill running. Twenty-four to 32 h after the last bout of exercise animals were killed and examined for training-induced changes in several physiological variables. No effect of skeletal citrate synthase activity was observed in the male animals after any duration, and only at 10 days of running did females show a significant increase in citrate synthase. Myocardial heat shock protein 72 (HSP72) content was higher in male rats than female rats, and exercise led to increased HSP72 in both sexes, although the time course was different between males and females. Animals displayed several markers of systemic stress in response to the treadmill running, and this was done in a sex-dependent manner. Serum corticosterone was significantly elevated in both sexes 24 h after exercise in three of four exercise groups. Corticosterone-binding globulin was higher in females, and decreased after running in female rats. Body and spleen weights decreased in males (but not females) in response to the exercise training, and running did not alter adrenal gland weights in either sex. These data indicate that in response to short-term treadmill running both male and female rats show signs of systemic stress, but that the pattern of changes occurs in a sex-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号