首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Haptoglobin (Hp) prevents the hemoglobin driven generation of hydroxyl radicals and lipid peroxides. Hp can reduce the neutrophil respiratory burst and is an antioxidative molecule in its own right. We aimed to evaluate Hp concentrations, oxidative stress and antioxidative capacity in blood during weaning and to characterise potential relationships between these parameters. Two batches of 10 piglets each (2 trials) weaned at the age of 27–30 days were fed a starter feed mix ad libitum. Blood samples were taken 1 week before weaning and at weekly intervals thereafter. Oxidative stress was monitored via the D-ROM® system, antioxidative capacity was measured with the TEAC assay and Hp concentrations were measured by ELISA. Neutrophil phagocytic activity and oxidative burst were examined via flow-cytometry. Body weights were recorded weekly. Hp concentrations were increased in both trials post-weaning (P < 0.01); oxidative stress and oxidative burst were elevated in trial I (P < 0.005). In trial I, Hp and ROM values returned to baseline levels at 6 weeks post-weaning. The piglets in trial II showed respiratory symptoms and maintained elevated Hp concentrations. ROM values and Hp were related (r = 0.58; P < 0.01). Hp and body weight gain were inversely related post-weaning.  相似文献   

2.
Abstract

Equine recurrent airway obstruction (RAO) is a naturally occurring respiratory disease in horses with many similarities to human asthma and, as a result, has been used as an animal model of this disease. Oxidative stress has been demonstrated to occur in a range of respiratory diseases in human beings including asthma. Quantitatively, horses have a greater non-enzymatic antioxidant capacity in the pulmonary epithelial lining fluid compared to human beings due to high ascorbic acid concentrations, which reflects their ability to synthesise ascorbic acid. Consequently, a greater oxidative load is likely to be required to induce oxidative stress in horses compared to human beings. Induction of acute neutrophilic airway inflammation in RAO horses by exposure to organic dust does not result in marked pulmonary oxidative stress. However, with a more prolonged inflammatory response, the antioxidant capacity is depleted and oxidative stress occurs. Despite the clear evidence of oxidative stress in RAO, there is currently limited data linking oxidative stress with a causal role in the development of the pathophysiological features of RAO, namely airway obstruction, airway hyper-responsiveness, airway inflammation and mucus accumulation. However, pathways do exist whereby oxidants could potentially augment the production of important mediators in RAO. Further work is required to ascertain the benefits of antioxidant supplementation in RAO and to determine the role of oxidative stress in the pathogenesis of the disease. Given the similarities with human asthma, results from RAO horses could enhance the understanding of the role of oxidative stress in human asthma.  相似文献   

3.
Abstract

Background: Hyperglycaemia-induced depletion of reduced glutathione (GSH) causes erythrocyte oxidative stress (EOS), which leads to vascular events including exacerbation of thrombotic events evidenced by changes in D-dimer level. It would, therefore, appear that there is a complex link between GSH and D-dimer, which are part of an emerging array of biomarkers associated with diabetes. The objective of this study was to investigate evidence of correlation between levels of plasma D-dimer and erythrocyte GSH in diabetes disease progression.

Subjects and methods: A cohort of 69 subjects were selected based on medical history plus clinical findings and equally divided into control, prediabetes and diabetes groups, matched for age and sex. Plasma D-dimer and erythrocyte reduced glutathione (GSH) were determined and separated into quartiles as a means of indicating disease severity. Statistical analysis was by Pearson's correlation coefficient.

Results: Of the three groups, only the diabetes group showed any correlation between GSH and D-dimer. Of importance is that for increasing GSH, the second quartile range of GSH (xbar ± SD = 45 ± 22 mg/100ml) showed a statistically significant negative correlation for ranked D-dimer (xbar ± SD = 1055 ± 828 μg/l; r = ?0.88; P < 0.02). The fourth quartile GSH range (xbar ± SD = 79 ± 40 mg/100 ml) showed a statistically significant positive correlation with D-dimer (xbar ± SD = 1055 ± 828 μg/l; r = 0.91; P < 0.02). Thus, within the diabetes group only, the increasing level of oxidative stress as measured by GSH first indicates a reduction in D-dimer followed by a rise in D-dimer, which led to the proposal of a two-part process of atherosclerosis that reconciles previous contradictory findings.

Conclusions: This study provides not only evidence of a correlation between oxidative stress level and fibrinolysis in diabetes, but also an explanation of why previous studies have found both hypo- or hyperfibrinolysis associated with diabetes.  相似文献   

4.
5.
6.
7.
Abstract

Cerebrotendinous xanthomatosis is an autosomal recessive disorder of bile acid synthesis, characterized by mutation in the mitochondrial enzyme 27-hydroxylase that leads to an accumulation of cholestanol and cholesterol. Characterized clinically by premature bilateral cataracts, slowly progressive neurological deterioration with dementia, cerebellar and brainstem signs, peripheral neuropathy, and seizures, the disease presents pathologically with lipid granulomata with foamy histiocytes and cholesterol clefts. Replacement therapy with chenodeoxycholic acid slows progression of the disease but does not reverse neurological deficits. Here, we present the case of a 49-year-old woman diagnosed at autopsy with cerebrotendinous xanthomatosis, on the basis of bilateral Achilles tendon granulomas, and typical foamy histiocytic infiltration of the brain, most severe in the dentate nucleus, and a typical clinical presentation. To investigate the pathological manifestations of this disease further, we performed immunohistochemistry for N?-(carboxymethyl)-lysine, an indicator of oxidative damage, and found strong labeling of cytoplasmic material within histiocytes. In summary, this case of undiagnosed cerebrotendinous xanthomatosis during life emphasizes the need for a greater awareness of the disease, and early diagnosis and treatment. Further, the involvement of oxidative stress in cerebrotendinous xanthomatosis indicates that combined therapy with chenodeoxycholic acid and antioxidants may improve clinical outcome.  相似文献   

8.
9.
Abstract

The study was conducted to assess the magnitude of oxidative stress and lung function abnormalities in 34 male pesticide sprayers on exposure to pesticides in mango plantations. Biochemical studies on blood antioxidant enzymes revealed an unchanged glutathione level and increased level of malondialdehyde (P < 0.001), which indicates that pesticide sprayers may have suffered from oxidative stress. Decreased acetyl-cholinesterase levels (P < 0.001) in sprayers compared to the controls suggest inhibition of cholinesterase activity. The present study shows that pesticide toxicity might lead to oxidative stress and airway narrowing resulting in decreased peak expiratory flow rate.  相似文献   

10.
Abstract

We have previously shown that inhibition of catalase and glutathione peroxidase activities in rat primary hepatocytes by 3-amino-1,2,4-triazole (ATZ) and mercaptosuccinic acid (MS) results in sustained oxidative stress, followed by apoptosis. To examine the effects of duration of oxidative stress, ATZ and MS were removed from culture medium at 3, 6 and 9 h after treatment with both inhibitors. Oxidative stress was induced for periods of time by ATZ and MS exposures in primary hepatocytes. Treatment with ATZ and MS reduced catalase (CAT) and glutathione peroxidase (GPx) activities, and decreased CAT and GPx activities recovered to normal values upon withdrawal. Although oxidative stress of up to 6 h duration did not cause cell death, sustained oxidative stress (over 9 h) induced apoptosis. The increase in the glutathione disulfide/reduced glutathione ratio under oxidative stress up to 6 h was transient and reversible, while that due to sustained oxidative stress was irreversible. These results suggest that irreversible redox shifts resulting from sustained oxidative stress play a critical role in the induction of hepatocyte apoptosis in this experimental system.  相似文献   

11.
Abstract

Ischaemia-reperfusion injury resulting from interruption and restoration of blood flow might be related to free radical mediated oxidative stress and inflammation, and subsequently to post-surgery related complications. We studied the impact of renal transplantation on oxidative stress and inflammation by measuring F2-isoprostanes and prostaglandin F, respectively, during transplantation and post-surgery. Additionally, due to earlier observations, two dissimilar anaesthetic agents (thiopentone and propofol) were compared to determine their antioxidative capacity rather than their anaesthetic properties. Blood samples were collected before, post-intubation, immediately, 30, 60,120, 240 min, and 12 and 24 h after reperfusion. Oxidative stress and inflammatory response were detected by measuring 8-iso-PGF (a major F2-isoprostane and a biomarker of oxidative stress) and 15-keto-dihydro-PGF (a major metabolite of PGF and a biomarker of COX-mediated inflammatory response), respectively. Reperfusion of the transplanted graft significantly increased plasma levels of 8-iso-PGF. PGF metabolite levels, although elevated, did not reach statistical significance. In addition, significantly lower levels of 8-iso-PGF2a were observed in the propofol group compared to the thiopentone group. Together, these findings underline an augmented oxidative stress activity following an inflammatory response after human renal transplantation. Furthermore, propofol a well-known anaesthetic, counteracted oxidative stress by lowering the formation of a major F2-isoprostane.  相似文献   

12.
Abstract

The free radical scavenger 3-methyl-1-phenyl-2-pyrazolin-5-one (edaravone) has been used to treat acute brain infarction in Japan since 2001. To obtain direct evidence that edaravone serves as an antioxidant in vivo, four groups of rats were prepared: (i) an ischemia/reperfusion (I/R) group receiving 2 h occlusion-reperfusion of the middle cerebral artery; (ii) a single administration group treated by intravenous infusion of edaravone (3 mg/kg) immediately after I/R; (iii) a repeated treatment group receiving twice daily edaravone administration for 14 days; and (iv) a sham operation group without occlusion. Repeated treatment with edaravone significantly improved the neurological symptoms and impairment of motor function as compared to the I/R group, while single administration demonstrated limited efficacy. No significant differences in plasma antioxidants such as ascorbate, urate, and vitamin E, or in redox status of coenzyme Q9 were observed among the four groups. In contrast, the plasma content of oleic acid in the total free fatty acids (percentage 18:1) was significantly increased in the I/R group for 7 days as compared to the sham operation group. Oleic acid was produced from stearic acid by the action of stearoyl-CoA desaturase to compensate for the oxidative loss of polyunsaturated fatty acids. The above results suggest that cellular oxidative damage in the rat brain is evident for at least 7 days after I/R. Repeated treatment suppressed the percentage 18:1 increment, while the single administration did not, which is consistent with the limited efficacy of single administration.  相似文献   

13.
Abstract

Ferric nitrilotriacetate (Fe-NTA) is a potent renal and hepatic tumor promoter, which acts through a mechanism involving oxidative stress. Fe-NTA when injected intraperitoneally into rats induces hepatic ornithine decarboxylase activity as well as hepatic DNA synthesis. Vitamin E is a well-known, lipid-soluble and chain-breaking antioxidant which protects cell membranes from peroxidative damage. In this study, we investigated the protective effect of vitamin E, a major fat-soluble antioxidant, against Fe-NTA-mediated hepatic oxidative stress, toxicity and hyperproliferation in Wistar rats. Animals were treated with two different doses of vitamin E for 1 week prior to Fe-NTA treatment. Vitamin E at a higher dose of 2.0 mg/animal/day showed significant reduction in Fe-NTA-induced hepatic ornithine decarboxylase activity, DNA synthesis, microsomal lipid peroxidation and hydrogen peroxide generation. Fe-NTA treatment alone caused depletion of glutathione, glutathione metabolizing and antioxidant enzymes in rat liver, whereas pretreatment of animals with vitamin E reversed these changes in a dose-dependent manner. Taken together, our results suggest that vitamin E may afford substantial protection against the damage caused by Fe-NTA exposure and can serve as a potent preventive agent to suppress oxidant-induced tissue injury.  相似文献   

14.
The effects of 17beta‐estradiol (E2) are mediated through activation of estrogen receptors (ER): ERalpha and ERbeta. It is known that ERalpha/ERbeta ratio is higher in breast tumors than in normal tissue. Since antioxidant enzymes and uncoupling proteins (UCPs) are reactive oxygen species (ROS) production and mitochondrial biogenesis regulators, our aim was to study the E2‐effect on oxidative stress, antioxidant enzyme expression, and UCPs in breast cancer cell lines with different ERalpha/ERbeta ratios. The lower ERalpha/ERbeta ratio T47D cell line showed low ROS production and high UCP5 levels. However, the higher ERalpha/ERbeta ratio MCF‐7 cell line showed an up‐regulation of antioxidant enzymes and UCPs, yet exhibited high oxidative stress. As a result, a decrease in antioxidant enzyme activities and UCP2 protein levels, coupled with an increase in oxidative damage was found. On the whole, these results show different E2‐effects on oxidative stress regulation, modulating UCPs, and antioxidant enzymes, which were ERalpha/ERbeta ratio dependent in breast cancer cell lines. J. Cell. Biochem. 113: 3178–3185, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Abstract

Thioredoxin (TRX) is a small ubiquitous and multifunctional protein having a redox-active dithiol/disulfide within the conserved active site sequence –Cys–Gly–Pro–Cys–. TRX is induced by a variety of oxidative stimuli, including UV irradiation, inflammatory cytokines and chemical carcinogens, and has been shown to play crucial roles in the regulation of cellular responses such as gene expression, cell proliferation and apoptosis. Overexpression of TRX protects cells from cytotoxicity elicited by oxidative stress in both in vitro and in vivo models. The regulatory mechanism of TRX expression and activity is also being elucidated. Recently, TRX binding protein-2 (TBP-2)/vitamin D3 up-regulated protein 1 (VDUP1) was identified as a negative regulator of TRX. The analysis of TRX promoter region has revealed putative regulatory elements responsible for oxidative stress. Thus, the modulation of TRX functions may be a new therapeutic strategy for the treatment of oxidative stress-mediated diseases.  相似文献   

16.
Abstract

This experimental study aimed to evaluate colon healing after portal ischemia followed by reperfusion. Seventy male Wistar rats randomly distributed in four groups were used: Group 1, colonic anastomosis (n = 20); Group 2, portal ischemia-reperfusion (n = 20); Group 3, colonic anastomosis and portal ischemia-reperfusion (n = 20); and Group 4, control (n = 10). In the postoperative period, these rats were re-allocated into subgroups and lipid peroxidation and protein oxidation plasma levels were evaluated on days 1 and 5 by thiobarbituric acid reactive substances (TBARS) and slot-blotting assays, respectively. A segment of the right colon was also removed for collagen analysis. Both malondialdehyde (MDA) and protein carbonyl levels (oxidative markers of lipids and proteins) presented a significant increase after reperfusion in Group 3 on days 1 (P < 0.002) and 5 (P < 0.0001). In this same group, an extensive inflammatory process showing decreased fibroplasia was observed, with deficiency in collagen deposition on both sides of the anastomosis edges. Taken together, these results indicate that portal congestion followed by reperfusion induces an oxidative stress, which impaired the mechanism of colon anastomotic healing.  相似文献   

17.
目的建立脂多糖(lipopolysaccharide,LPS)/D-氨基半乳糖(D-galactosamine,D-GalN)诱导小鼠急性肝损伤模型。方法 40只雌性C57BL/6小鼠用于观察8种不同LPS与D-GalN剂量配比联合刺激后小鼠存活时间,以确定模型建立的最佳剂量。使用腹腔注射最佳剂量染毒32只雌性C57BL/6小鼠,分别在0、1、4、8 h处死,每组8只,0 h注射相同剂量生理盐水作为对照。观察染毒后小鼠肝组织病理损伤,检测血清中ALT及炎症因子IL-6、MCP-1和TNF-α表达水平变化。结果通过观察小鼠存活时间,确定腹腔注射最佳染毒剂量为LPS(2.5 mg/kg)/D-GalN(0.3 g/kg);小鼠染毒后肝组织呈进程性病变,最终发展为肝脏弥漫性坏死,肝细胞核崩解。与对照组相比,血清ALT显著升高(P0.001),IL-6、MCP-1、TNF-α均在1 h后达到最高水平(P0.001),然后持续下降。结论成功建立LPS/D-GaIN诱导小鼠急性肝损伤模型,为探索急性肝损伤的致病机制以及药物干预治疗提供有效的动物模型。  相似文献   

18.
Mitochondrial dynamics maintains normal mitochondrial function by degrading damaged mitochondria and generating newborn mitochondria. The accumulation of damaged mitochondria influences the intracellular environment by promoting mitochondrial dysfunction, and thus initiating a vicious cycle. Oxidative stress induces mitochondrial malfunction, which is involved in many cardiovascular diseases. However, the mechanism of mitochondrial accumulation in cardiac myoblasts remains unclear. We observed mitochondrial dysfunction and an increase in mitochondrial mass under the oxidative conditions produced by tert‐butyl hydroperoxide (tBHP) in cardiac myoblast H9c2 cells. However, in contrast to the increase in mitochondrial mass, mitochondrial DNA (mtDNA) decreased, suggesting that enhanced mitochondrial biogenesis may be not the primary cause of the mitochondrial accumulation. Therefore, we investigated changes in a number of proteins involved in autophagy. Beclin1, Atg12–Atg5 conjugate, Atg7 contents decreased but LC3‐II accumulated in tBHP‐treated H9c2 cells. Moreover, the capacity for acid hydrolysis decreased in H9c2 cells. We also demonstrated a decrease in DJ‐1 protein under the oxidative conditions that deregulate mitochondrial dynamics. These results reveal that autophagy became defective under oxidative stress. We therefore suggest that defects in autophagy mediate mitochondrial accumulation under these conditions. J. Cell. Biochem. 114: 212–219, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
Abstract

It has been proposed that neutrophil- and oxygen radical-dependent microvascular injuries are important prime events that lead to gastric mucosal injury induced by indomethacin. Reactive oxygen species (ROS) produced by activated neutrophils after indomethacin treatment cause gastric mucosal injury via ROS-mediated oxidation of important biomolecules such as lipid, protein, and DNA. In addition, it has been revealed that indomethacin-induced gastric mucosal injury occurs via gastric epithelial cell apoptosis. However, there is little known about the mechanism of indomethacin-triggered cellular response and apoptotic signaling in gastric mucosal cells. In the present study, we summarize the evidence that supports the involvement of oxidative stress and apoptosis in indomethacin-induced gastropathy, and review the gene expression profiles of gastric epithelial cells after indomethacin treatment determined by DNA microarray analysis.  相似文献   

20.
Abstract

Introduction: Although it is uncertain how the hepatitis C virus (HCV) core protein influences hepatic oxidative stress after partial hepatectomy and common bile duct ligation (CBDL) this may be crucial for the prognosis of patients with HCV infection who have undergone hepatic resection, or who have complications due to a biliary tract obstruction.

Materials and methods: A group of double transgenic mice (DTM) that express both the tetracycline transactivator (tTA) and the HCV core, with conditional, acute expression of the HCV core in the context of the mature liver were subjected to 43% partial hepatectomy and CBDL. The levels of thioredoxin-1, thiobarbituric acid reactive substances (TBARS), and 4-hydroxynonenal (4-HNE) were evaluated in liver samples taken 3 days after the operations.

Results: The DTM had significantly higher TBARS levels than mice that were transgenic for only tTA (i.e. single transgenic mice; STM) and non-transgenic mice (NTM) after a sham laparotomy, CBDL and partial hepatectomy. Of the DTM, the TBARS levels were higher in female mice than in males after a sham laparotomy (P = 0.02) and CBDL (P = 0.0001). 4-HNE staining data were compatible with these results. Furthermore, male DTM exhibited higher levels of thioredoxin-1 than female DTM after sham laparotomy (P = 0.012) and CBDL (P = 0.008).

Conclusions: The HCV core increases hepatic oxidative stress in vivo and female DTM are more vulnerable to the oxidative stress caused by acute core expression with, or without, CBDL. The fact that the female DTM had lower thioredoxin-1 levels may account for this observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号