首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Mammalian neural stem cells generate transit amplifying progenitors that expand the neuronal population, but these type of progenitors have not been studied in Drosophila. The Drosophila larval brain contains approximately 100 neural stem cells (neuroblasts) per brain lobe, which are thought to bud off smaller ganglion mother cells (GMCs) that each produce two post-mitotic neurons. Here, we use molecular markers and clonal analysis to identify a novel neuroblast cell lineage containing "transit amplifying GMCs" (TA-GMCs). TA-GMCs differ from canonical GMCs in several ways: each TA-GMC has nuclear Deadpan, cytoplasmic Prospero, forms Prospero crescents at mitosis, and generates up to 10 neurons; canonical GMCs lack Deadpan, have nuclear Prospero, lack Prospero crescents at mitosis, and generate two neurons. We conclude that there are at least two types of neuroblast lineages: a Type I lineage where GMCs generate two neurons, and a type II lineage where TA-GMCs have longer lineages. Type II lineages allow more neurons to be produced faster than Type I lineages, which may be advantageous in a rapidly developing organism like Drosophila.  相似文献   

2.
3.
Genes of the Polycomb group (PcG) are part of a cellular memory system that maintains appropriate inactive states of Hox gene expression in Drosophila. Here, we investigate the role of PcG genes in postembryonic development of the Drosophila CNS. We use mosaic-based MARCM techniques to analyze the role of these genes in the persistent larval neuroblasts and progeny of the central brain and thoracic ganglia. We find that proliferation in postembryonic neuroblast clones is dramatically reduced in the absence of Polycomb, Sex combs extra, Sex combs on midleg, Enhancer of zeste or Suppressor of zeste 12. The proliferation defects in these PcG mutants are due to the loss of neuroblasts by apoptosis in the mutant clones. Mutation of PcG genes in postembryonic lineages results in the ectopic expression of posterior Hox genes, and experimentally induced misexpression of posterior Hox genes, which in the wild type causes neuroblast death, mimics the PcG loss-of-function phenotype. Significantly, full restoration of wild-type-like properties in the PcG mutant lineages is achieved by blocking apoptosis in the neuroblast clones. These findings indicate that loss of PcG genes leads to aberrant derepression of posterior Hox gene expression in postembryonic neuroblasts, which causes neuroblast death and termination of proliferation in the mutant clones. Our findings demonstrate that PcG genes are essential for normal neuroblast survival in the postembryonic CNS of Drosophila. Moreover, together with data on mammalian PcG genes, they imply that repression of aberrant reactivation of Hox genes may be a general and evolutionarily conserved role for PcG genes in CNS development.  相似文献   

4.
The neurons of the insect brain derive from neuroblasts which delaminate from the neuroectoderm at stereotypic locations during early embryogenesis. In both grasshopper and Drosophila, each developing neuroblast acquires an intrinsic capacity for neuronal proliferation in a cell autonomous manner and generates a specific lineage of neural progeny which is nearly invariant and unique. Maps revealing numbers and distributions of brain neuroblasts now exist for various species, and in both grasshopper and Drosophila four putatively homologous neuroblasts have been identified whose progeny direct axons to the protocerebral bridge and then to the central body via an equivalent set of tracts. Lineage analysis in the grasshopper nervous system reveals that the progeny of a neuroblast maintain their topological position within the lineage throughout embryogenesis. We have taken advantage of this to study the pioneering of the so-called w, x, y, z tracts, to show how fascicle switching generates central body neuroarchitecture, and to evaluate the roles of so-called intermediate progenitors as well as programmed cell death in shaping lineage structure. The novel form of neurogenesis involving intermediate progenitors has been demonstrated in grasshopper, Drosophila and mammalian cortical development and may represent a general strategy for increasing brain size and complexity. An analysis of gap junctional communication involving serotonergic cells reveals an intrinsic cellular organization which may relate to the presence of such transient progenitors in central complex lineages.  相似文献   

5.
The brain of Drosophila is formed by approximately 100 lineages, each lineage being derived from a stem cell-like neuroblast that segregates from the procephalic neurectoderm of the early embryo. A neuroblast map has been established in great detail for the early embryo, and a suite of molecular markers has been defined for all neuroblasts included in this map [Urbach, R., Technau, G.M. (2003a) Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130, 3621-3637]. However, the expression of these markers was not followed into later embryonic or larval stages, mainly due to the fact that anatomical landmarks to which expression patterns could be related had not been defined. Such markers, in the form of stereotyped clusters of neurons whose axons project along cohesive bundles ("primary axon bundles" or "PABs") are now available [Younossi-Hartenstein, A., Nguyen, B., Shy, D., Hartenstein, V. 2006. Embryonic origin of the Drosophila brain neuropile. J. Comp. Neurol. 497, 981-998]. In the present study we have mapped the expression of molecular markers in relationship to primary neuronal clusters and their PABs. The markers we analyzed include many of the genes involved in patterning of the brain along the anteroposterior axis (cephalic gap genes, segment polarity genes) and dorso-ventral axis (columnar patterning genes), as well as genes expressed in the dorsal protocerebrum and visual system (early eye genes). Our analysis represents an important step along the way to identify neuronal lineages of the mature brain with genes expressed in the early embryo in discrete neuroblasts. Furthermore, the analysis helped us to reconstruct the morphogenetic movements that transform the two-dimensional neuroblast layer of the early embryo into the three-dimensional larval brain and provides the basis for deeper understanding of how the embryonic brain develops.  相似文献   

6.
The tumor suppressor APC and its homologs, first identified for a role in colon cancer, negatively regulate Wnt signaling in both oncogenesis and normal development, and play Wnt-independent roles in cytoskeletal regulation. Both Drosophila and mammals have two APC family members. We further explored the functions of the Drosophila APCs using the larval brain as a model. We found that both proteins are expressed in the brain. APC2 has a highly dynamic, asymmetric localization through the larval neuroblast cell cycle relative to known mediators of embryonic neuroblast asymmetric divisions. Adherens junction proteins also are asymmetrically localized in neuroblasts. In addition they accumulate with APC2 and APC1 in nerves formed by axons of the progeny of each neuroblast-ganglion mother cell cluster. APC2 and APC1 localize to very different places when expressed in the larval brain: APC2 localizes to the cell cortex and APC1 to centrosomes and microtubules. Despite this, they play redundant roles in the brain; while each single mutant is normal, the zygotic double mutant has severely reduced numbers of larval neuroblasts. Our experiments suggest that this does not result from misregulation of Wg signaling, and thus may involve the cytoskeletal or adhesive roles of APC proteins.  相似文献   

7.
8.
Adult specific neurons in the central nervous system of holometabolous insects are generated by the postembryonic divisions of neuronal stem cells (neuroblasts). In the ventral nervous system of Drosophila melanogaster, sex-specific divisions by a set of abdominal neuroblasts occur during larval and early pupal stages. Animals mutant for several sex-determining genes were analyzed to determine the genetic regulation of neuroblast commitment to the male or female pattern of division and the time during development when these decisions are made. We have found that the choice of the sexual pathway taken by sex-specific neuroblasts depends on the expression of one of these genes, doublesex (dsx). In the absence of any functional dxs+ products, the sex-specific neuroblasts fail to undergo any postembryonic divisions in male or female larval nervous systems. From the analysis of intersexes generated by dominant alleles of dsx, it has been concluded that the same neuroblasts provide the sex-specific neuroblasts in both male and female central nervous systems. The time when neuroblasts become committed to generate their sex-specific divisions were identified by shifting tra-2ts flies between the male- and female-specifying temperatures at various times during larval development. Neuroblasts become determined to adopt a male or female state at the end of the first larval instar, a time when abdominal neuroblasts enter their first postembryonic S-phase.  相似文献   

9.
The neural stem cells that give rise to the neural lineages of the brain can generate their progeny directly or through transit amplifying intermediate neural progenitor cells (INPs). The INP-producing neural stem cells in Drosophila are called type II neuroblasts, and their neural progeny innervate the central complex, a prominent integrative brain center. Here we use genetic lineage tracing and clonal analysis to show that the INPs of these type II neuroblast lineages give rise to glial cells as well as neurons during postembryonic brain development. Our data indicate that two main types of INP lineages are generated, namely mixed neuronal/glial lineages and neuronal lineages. Genetic loss-of-function and gain-of-function experiments show that the gcm gene is necessary and sufficient for gliogenesis in these lineages. The INP-derived glial cells, like the INP-derived neuronal cells, make major contributions to the central complex. In postembryonic development, these INP-derived glial cells surround the entire developing central complex neuropile, and once the major compartments of the central complex are formed, they also delimit each of these compartments. During this process, the number of these glial cells in the central complex is increased markedly through local proliferation based on glial cell mitosis. Taken together, these findings uncover a novel and complex form of neurogliogenesis in Drosophila involving transit amplifying intermediate progenitors. Moreover, they indicate that type II neuroblasts are remarkably multipotent neural stem cells that can generate both the neuronal and the glial progeny that make major contributions to one and the same complex brain structure.  相似文献   

10.
11.
The developing Drosophila brain is a well-studied model system for neurogenesis and stem cell biology. In the Drosophila central brain, around 200 neural stem cells called neuroblasts undergo repeated rounds of asymmetric cell division. These divisions typically generate a larger self-renewing neuroblast and a smaller ganglion mother cell that undergoes one terminal division to create two differentiating neurons. Although single mitotic divisions of neuroblasts can easily be imaged in real time, the lack of long term imaging procedures has limited the use of neuroblast live imaging for lineage analysis. Here we describe a method that allows live imaging of cultured Drosophila neuroblasts over multiple cell cycles for up to 24 hours. We describe a 4D image analysis protocol that can be used to extract cell cycle times and growth rates from the resulting movies in an automated manner. We use it to perform lineage analysis in type II neuroblasts where clonal analysis has indicated the presence of a transit-amplifying population that potentiates the number of neurons. Indeed, our experiments verify type II lineages and provide quantitative parameters for all cell types in those lineages. As defects in type II neuroblast lineages can result in brain tumor formation, our lineage analysis method will allow more detailed and quantitative analysis of tumorigenesis and asymmetric cell division in the Drosophila brain.  相似文献   

12.
13.
14.
MicroRNAs (miRNAs) have been implicated as regulators of central nervous system (CNS) development and function. miR-124 is an evolutionarily ancient, CNS-specific miRNA. On the basis of the evolutionary conservation of its expression in the CNS, miR-124 is expected to have an ancient conserved function. Intriguingly, investigation of miR-124 function using antisense-mediated miRNA depletion has produced divergent and in some cases contradictory findings in a variety of model systems. Here we investigated miR-124 function using a targeted knockout mutant and present evidence for a role during central brain neurogenesis in Drosophila melanogaster. miR-124 activity in the larval neuroblast lineage is required to support normal levels of neuronal progenitor proliferation. We identify anachronism (ana), which encodes a secreted inhibitor of neuroblast proliferation, as a functionally important target of miR-124 acting in the neuroblast lineage. ana has previously been thought to be glial specific in its expression and to act from the cortex glia to control the exit of neuroblasts from quiescence into the proliferative phase that generates the neurons of the adult CNS during larval development. We provide evidence that ana is expressed in miR-124-expressing neuroblast lineages and that ana activity must be limited by the action of miR-124 during neuronal progenitor proliferation. We discuss the possibility that the apparent divergence of function of miR-124 in different model systems might reflect functional divergence through target site evolution.  相似文献   

15.
Asymmetric cell division is a mechanism for generating cell diversity as well as maintaining stem cell homeostasis in both Drosophila and mammals. In Drosophila, larval neuroblasts are stem cell-like progenitors that divide asymmetrically to generate neurons of the adult brain. Mitotic neuroblasts localize atypical protein kinase C (aPKC) to their apical cortex. Cortical aPKC excludes cortical localization of Miranda and its cargo proteins Prospero and Brain tumor, resulting in their partitioning into the differentiating, smaller ganglion mother cell (GMC) where they are required for neuronal differentiation. In addition to aPKC, the kinases Aurora-A and Polo also regulate neuroblast self-renewal, but the phosphatases involved in neuroblast self-renewal have not been identified. Here we report that aPKC is in a protein complex in vivo with Twins, a Drosophila B-type protein phosphatase 2A (PP2A) subunit, and that Twins and the catalytic subunit of PP2A, called Microtubule star (Mts), are detected in larval neuroblasts. Both Twins and Mts are required to exclude aPKC from the basal neuroblast cortex: twins mutant brains, twins mutant single neuroblast mutant clones, or mts dominant negative single neuroblast clones all show ectopic basal cortical localization of aPKC. Consistent with ectopic basal aPKC is the appearance of supernumerary neuroblasts in twins mutant brains or twins mutant clones. We conclude that Twins/PP2A is required to maintain aPKC at the apical cortex of mitotic neuroblasts, keeping it out of the differentiating GMC, and thereby maintaining neuroblast homeostasis.  相似文献   

16.
During Drosophila neuroblast lineage development, temporally ordered transitions in neuroblast gene expression have been shown to accompany the changing repertoire of functionally diverse cells generated by neuroblasts. To broaden our understanding of the biological significance of these ordered transitions in neuroblast gene expression and the events that regulate them, additional genes have been sought that participate in the timing and execution of these temporally controlled events. To identify dynamically expressed neural precursor genes, we have performed a differential cDNA hybridization screen on a stage specific embryonic head cDNA library, followed by whole-mount embryo in situ hybridizations. Described here are the embryonic expression profiles of 57 developmentally regulated neural precursor genes. Information about 2389 additional genes identified in this screen, including 1614 uncharacterized genes, is available on-line at 'BrainGenes: a search for Drosophila neural precursor genes' (http://sdb.bio.purdue.edu/fly/brain/ahome.htm).  相似文献   

17.
18.
Mitochondria are critical for neuronal function due to the high demand of ATP in these cell types. During Drosophila development, neuroblasts in the larval brain divide asymmetrically to populate the adult central nervous system. While many of the proteins responsible for maintaining neuroblast cell fate and asymmetric cell divisions are known, little is know about the role of metabolism and mitochondria in neuroblast division and maintenance. The gene clueless (clu) has been previously shown to be important for mitochondrial function. clu mutant adults have severely shortened lifespans and are highly uncoordinated. Part of their lack of coordination is due to defects in muscle, however, in this study we have identified high levels of Clu expression in larval neuroblasts and other regions of the dividing larval brain. We show while mitochondria in clu mutant neuroblasts are mislocalized during the cell cycle, surprisingly, overall brain morphology appears to be normal. This is explained by our observation that clu mutant larvae have normal levels of ATP and do not suffer oxidative damage, in sharp contrast to clu mutant adults. Mutations in two other genes encoding mitochondrial proteins, technical knockout and stress sensitive B, do not cause neuroblast mitochondrial mislocalization, even though technical knockout mutant larvae suffer oxidative damage. These results suggest Clu functions upstream of electron transport and oxidative phosphorylation, has a role in suppressing oxidative damage in the cell, and that lack of Clu’s specific function causes mitochondria to mislocalize. These results also support the previous observation that larval development relies on aerobic glycolysis, rather than oxidative phosphorylation. Thus Clu’s role in mitochondrial function is not critical during larval development, but is important for pupae and adults.  相似文献   

19.
The first step in generating cellular diversity in the Drosophila central nervous system is the formation of a segmentally reiterated array of neural precursor cells, called neuroblasts. Subsequently, each neuroblast goes through an invariant cell lineage to generate neurons and/or glia. Using molecular lineage markers, I show that (1) each neuroblast forms at a stereotyped time and position; (2) the neuroblast pattern is indistinguishable between thoracic and abdominal segments; (3) the development of individual neuroblasts can be followed throughout early neurogenesis; (4) gene expression in a neuroblast can be reproducibly modulated during its cell lineage; (5) identified ganglion mother cells form at stereotyped times and positions; and (6) the cell lineage of four well-characterized neurons can be traced back to two identified neuroblasts. These results set the stage for investigating neuroblast specification and the mechanisms controlling neuroblast cell lineages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号