首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assembly of bacterial toxins and virulence factors is critical to their function, but the regulation of assembly during infection has not been studied. We begin to address this question using anthrax toxin as a model. The protective antigen (PA) component of the toxin assembles into ring-shaped homooligomers that bind the two other enzyme components of the toxin, lethal factor (LF) and edema factor (EF), to form toxic complexes. To disrupt the host, these toxic complexes are endocytosed, such that the PA oligomer forms a membrane-spanning channel that LF and EF translocate through to enter the cytosol. Using single-channel electrophysiology, we show that PA channels contain two populations of conductance states, which correspond to two different PA pre-channel oligomers observed by electron microscopy—the well-described heptamer and a novel octamer. Mass spectrometry demonstrates that the PA octamer binds four LFs, and assembly routes leading to the octamer are populated with even-numbered, dimeric and tetrameric, PA intermediates. Both heptameric and octameric PA complexes can translocate LF and EF with similar rates and efficiencies. Here, we report a 3.2-Å crystal structure of the PA octamer. The octamer comprises ∼ 20-30% of the oligomers on cells, but outside of the cell, the octamer is more stable than the heptamer under physiological pH. Thus, the PA octamer is a physiological, stable, and active assembly state capable of forming lethal toxins that may withstand the hostile conditions encountered in the bloodstream. This assembly mechanism may provide a novel means to control cytotoxicity.  相似文献   

2.

Background

Anthrax toxin is comprised of protective antigen (PA), lethal factor (LF), and edema factor (EF). These proteins are individually nontoxic; however, when PA assembles with LF and EF, it produces lethal toxin and edema toxin, respectively. Assembly occurs either on cell surfaces or in plasma. In each milieu, PA assembles into a mixture of heptameric and octameric complexes that bind LF and EF. While octameric PA is the predominant form identified in plasma under physiological conditions (pH 7.4, 37°C), heptameric PA is more prevalent on cell surfaces. The difference between these two environments is that the anthrax toxin receptor (ANTXR) binds to PA on cell surfaces. It is known that the extracellular ANTXR domain serves to stabilize toxin complexes containing the PA heptamer by preventing premature PA channel formation—a process that inactivates the toxin. The role of ANTXR in PA oligomerization and in the stabilization of toxin complexes containing octameric PA are not understood.

Methodology

Using a fluorescence assembly assay, we show that the extracellular ANTXR domain drives PA oligomerization. Moreover, a dimeric ANTXR construct increases the extent of and accelerates the rate of PA assembly relative to a monomeric ANTXR construct. Mass spectrometry analysis shows that heptameric and octameric PA oligomers bind a full stoichiometric complement of ANTXR domains. Electron microscopy and circular dichroism studies reveal that the two different PA oligomers are equally stabilized by ANTXR interactions.

Conclusions

We propose that PA oligomerization is driven by dimeric ANTXR complexes on cell surfaces. Through their interaction with the ANTXR, toxin complexes containing heptameric and octameric PA oligomers are similarly stabilized. Considering both the relative instability of the PA heptamer and extracellular assembly pathway identified in plasma, we propose a means to regulate the development of toxin gradients around sites of infection during anthrax pathogenesis.  相似文献   

3.
Anthrax toxin consists of protective antigen (PA), and lethal (LF) and edema (EF) factors. A 83 kDa PA monomer (PA83) precursor binds to the cell receptor. Furin-like proprotein convertases (PCs) cleave PA83 to generate cell-bound 63 kDa protein (PA63). PA63 oligomerizes to form a ring-shaped heptamer that binds LF-EF and facilitates their entry into the cells. Several additional PCs, as opposed to furin alone, are capable of processing PA83. Following the incomplete processing of the available pool of PA83, the functional heptamer includes both PA83 and PA63. The available structures of the receptor-PA complex imply that the presence of either one or two molecules of PA83 will not impose structural limitations on the formation of the heptamer and the association of either the (PA83)(1)(PA63)(6) or (PA83)(2)(PA63)(5) heteroheptamer with LF-EF. Our data point to the intriguing mechanism of anthrax that appears to facilitate entry of the toxin into the cells which express limiting amounts of PCs and an incompletely processed PA83 pool.  相似文献   

4.
Shiga toxin has a protease-sensitive site in the disulfide loop region of the A-chain. Cleavage of this site by furin is essential for rapid intoxication of cells by Shiga toxin. We have here investigated whether in addition to the Arg-X-X-Arg sequence, there are other structural requirements in the disulfide loop region for furin cleavage. A toxin mutant (Shiga-2D toxin) still containing the consensus motif for cleavage by furin, but lacking ten amino acids in the disulfide loop, was generated. Trypsin was able to cleave Shiga-2D toxin in vitro, demonstrating that the protease-sensitive region is intact. However, Shiga-2D toxin was not efficiently cleaved by furin either in vitro or in vivo. Furthermore, unless it was precleaved with trypsin, Shiga-2D toxin was much less toxic than wild type Shiga toxin in LoVo cells expressing functional furin. In contrast, LoVo/neo cells lacking functional furin were unable to activate both wild type Shiga toxin and Shiga-2D toxin. In conclusion, an extended loop structure is required for furin-induced cleavage of Shiga toxin.  相似文献   

5.
C J Miller  J L Elliott  R J Collier 《Biochemistry》1999,38(32):10432-10441
PA(63), the active 63 kDa form of anthrax protective antigen, forms a heptameric ring-shaped oligomer that is believed to represent a precursor of the membrane pore formed by this protein. When maintained at pH >/=8.0, this "prepore" dissociated to monomeric subunits upon treatment with SDS at room temperature, but treatment at pH 相似文献   

6.
After being proteolytically activated, the protective antigen (PA) moiety of anthrax toxin self-associates to form symmetric, ring-shaped heptamers. Heptameric PA competitively binds the enzymatic moieties of the toxin, edema factor and lethal factor, and translocates them across the endosomal membrane by a pH-dependent process. We used two independent approaches to determine how many of the seven identical EF/LF binding sites of the PA heptamer can be occupied simultaneously. We measured isotope ratios in complexes assembled from differentially radiolabeled toxin subunits, and we determined the molecular masses of unlabeled complexes by multiangle laser light scattering. Both approaches yielded the same value: the PA heptamer in solution binds three molecules of protein ligand under saturating conditions. This suggests that each bound ligand sterically occludes the binding sites of two PA subunits. According to this model, a ligand-saturated heptamer is asymmetric, with the sites of six of the seven subunits occluded. These results contribute to the conceptual framework for understanding the mechanism of membrane translocation by anthrax toxin.  相似文献   

7.
Protective antigen (PA) from anthrax toxin assembles into a homoheptamer on cell surfaces and forms complexes with the enzymatic components: lethal factor (LF) and edema factor (EF). Endocytic vesicles containing these complexes are acidified, causing the heptamer to transform into a transmembrane pore that chaperones the passage of unfolded LF and EF into the cytosol. We show in planar lipid bilayers that a physiologically relevant proton gradient (DeltapH, where the endosome is acidified relative to the cytosol) is a potent driving force for translocation of LF, EF and the LF amino-terminal domain (LFN) through the PA63 pore. DeltapH-driven translocation occurs even under a negligible membrane potential. We found that acidic endosomal conditions known to destabilize LFN correlate with an increased translocation rate. The hydrophobic heptad of lumen-facing Phe427 residues in PA (or phi clamp) drives translocation synergistically under a DeltapH. We propose that a Brownian ratchet mechanism proposed earlier for the phi clamp is cooperatively linked to a protonation-state, DeltapH-driven ratchet acting trans to the phi-clamp site. In a sense, the channel functions as a proton/protein symporter.  相似文献   

8.
The catalytic domain of a mosquitocidal toxin prolonged by a C-terminal 44 residue linker connecting to four ricin B-like domains was crystallized. Three crystal structures were established at resolutions between 2.5A and 3.0A using multi-wavelength and single-wavelength anomalous X-ray diffraction as well as molecular replacement phasing techniques. The chainfold of the toxin fragment corresponds to those of ADP-ribosylating enzymes. At pH 4.3 the fragment is associated in a C(7)-symmetric heptamer in agreement with an aggregate of similar size observed by size-exclusion chromatography. In two distinct crystal forms, the heptamers formed nearly spherical, D(7)-symmetric tetradecamers. Another crystal form obtained at pH 6.3 contained a recurring C(2)-symmetric tetramer, which, however, was not stable in solution. On the basis of the common chainfold and NAD(+)-binding site of all ADP-ribosyl transferases, the NAD(+)-binding site of the toxin was assigned at a high confidence level. In all three crystal forms the NAD(+) site was occupied by part of the 44 residue linker, explaining the known inhibitory effect of this polypeptide region. The structure showed that the cleavage site for toxin activation is in a highly mobile loop that is exposed in the monomer. Since it contains the inhibitory linker as a crucial part of the association contact, the observed heptamer is inactive. Moreover, the heptamer cannot be activated by proteolysis because the activation loop is at the ring center and not accessible for proteases. Therefore the heptamer, or possibly the tetradecamer, seems to represent an inactive storage form of the toxin.  相似文献   

9.
Protective antigen (PA), a component of anthrax toxin, binds receptors on mammalian cells and is activated by a cell surface protease. The resulting active fragment, PA(63), forms ring-shaped heptamers, binds the enzymic moieties of the toxin, and translocates them to the cytosol. Of the four crystallographic domains of PA, domain 1 has been implicated in binding the enzymic moieties; domain 2 is involved in membrane insertion and oligomerization; and domain 4 binds receptor. To determine the function of domain 3, we developed a screen that allowed us to isolate random mutations that cause defects in the activity of PA. We identified several mutations in domain 3 that affect monomer-monomer interactions in the PA(63) heptamer, indicating that this may be the primary function of this domain.  相似文献   

10.
11.
Anthrax toxin consists of three components: the enzymatic moieties edema factor (EF) and the lethal factor (LF) and the receptor-binding moiety protective antigen (PA). These toxin components are released from Bacillus anthracis as unassociated proteins and form complexes on the surface of host cells after proteolytic processing of PA into PA20 and PA63. The sequential order of PA heptamerization and ligand binding, as well as the exact mechanism of anthrax toxin entry into cells, are still unclear. In the present study, we provide direct evidence that PA63 monomers are sufficient for binding to the full length LF or its LF-N domain, though with lower affinity with the latter. Therefore, PA oligomerization is not a necessary condition for LF/PA complex formation. In addition, we demonstrated that the PA20 directly interacts with the LF-N domain. Our data points to an alternative process of self-assembly of anthrax toxin on the surface of host cells.  相似文献   

12.
Abstract

Bacillus anthracis, a spore-forming infectious bacterium, produces a toxin consisting of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). LF and EF possess intracellular enzymatic functions, the net effect of which is to severely compromise host innate immunity. During an anthrax infection PA plays the critical role of facilitating entry of both EF and LF toxins into host cell cytoplasm. Crystal structures of all three of the anthrax toxins have been determined, as well as the crystal structure of the (human) von Willebrand factor A (integrin VWA/I domain)—an anthrax toxin receptor. A theoretical structure of the complex between VWA/I and PA has also been reported. Here we report on the results of 1,000 psec molecular dynamics (MD) simulations carried out on complexes between the Anthrax Protective Antigen Domain 4 (PA-D4) and the von Willebrand Factor A (VWA/I). MD simulations (using Insight II software) were carried out for complexes containing wildtype (WT) PA-D4, as well as for complexes containing three different mutants of PA-D4, one containing three substitutions in the PA-D4 “small loop” (residues 679–693) (D683A/L685E/Y688C), one containing a single substitution at a key site at the PA-D4—receptor interface (K679A) and another containing a deletion of eleven residues at the C-terminus of PA (A724–735). All three sets of PA mutations have been shown experimentally to result in serious deficiencies in PA function. Our MD results are consistent with these findings. Major disruptions in interactions were observed between the mutant PA-D4 domains and the anthrax receptor during the MD simulations. Many secondary structural features in PA-D4 are also severely compromised when VWA complexes with mutant variants of PA-D4 are subjected to MD simulations. These MD simulation results clearly indicate the importance of the mutated PA-D4 residues in both the “small loop” and at the carboxyl terminus in maintaining a PA conformation that is capable of effective interaction with the anthrax toxin receptor.  相似文献   

13.
Crystallographic studies of the anthrax lethal toxin   总被引:1,自引:0,他引:1  
Anthrax lethal toxin comprises two proteins: protective antigen (PA; MW 83 kDa) and lethal factor (LF; MW 87 kDa). We have recently determined the crystal structure of the 735-residue PA in its monomeric and heptameric forms ( Petosa et al . 1997 ). It bears no resemblance to other bacterial toxins of known three-dimensional structure, and defines a new structural class which includes homologous toxins from other Gram-positive bacteria. We have proposed a model of membrane insertion in which the water-soluble heptamer undergoes a substantial pH-induced conformational change involving the creation of a 14-stranded β-barrel. Recent work by Collier's group ( Benson et al . 1998 ) lends strong support to our model of membrane insertion. 'Lethal factor' is the catalytic component of anthrax lethal toxin. It binds to the surface of the cell-bound PA heptamer and, following endocytosis and acidification of the endosome, translocates to the cytosol. We have made substantial progress towards an atomic resolution crystal structure of LF. Progress towards a structure of the 7:7 translocation complex between the PA heptamer and LF will also be discussed.  相似文献   

14.
Brain I(A) and cardiac I(to) currents arise from complexes containing Kv4 voltage-gated potassium channels and cytoplasmic calcium-sensor proteins (KChIPs). Here, we present X-ray crystallographic and small-angle X-ray scattering data that show that the KChIP1-Kv4.3 N-terminal cytoplasmic domain complex is a cross-shaped octamer bearing two principal interaction sites. Site 1 comprises interactions between a unique Kv4 channel N-terminal hydrophobic segment and a hydrophobic pocket formed by displacement of the KChIP H10 helix. Site 2 comprises interactions between a T1 assembly domain loop and the KChIP H2 helix. Functional and biochemical studies indicate that site 1 influences channel trafficking, whereas site 2 affects channel gating, and that calcium binding is intimately linked to KChIP folding and complex formation. Together, the data resolve how Kv4 channels and KChIPs interact and provide a framework for understanding how KChIPs modulate Kv4 function.  相似文献   

15.
Anthrax toxins   总被引:2,自引:0,他引:2  
Bacillus anthracis, the etiological agent of anthrax, secretes three polypeptides that assemble into toxic complexes on the cell surfaces of the host it infects. One of these polypeptides, protective antigen (PA), binds to the integrin-like domains of ubiquitously expressed membrane proteins of mammalian cells. PA is then cleaved by membrane endoproteases of the furin family. Cleaved PA molecules assemble into heptamers, which can then associate with the two other secreted polypeptides: edema factor (EF) and/or lethal factor (LF). The heptamers of PA are relocalized to lipid rafts where they are quickly endocytosed and routed to an acidic compartment. The low pH triggers a conformational change in the heptamers, resulting in the formation of cation-specific channels and the translocation of EF/LF. EF is a calcium- and calmodulin-dependent adenylate cyclase that dramatically raises the intracellular concentration of cyclic adenosine monophosphate (cAMP). LF is a zinc-dependent endoprotease that cleaves the amino terminus of mitogen-activated protein kinase kinases (Meks). Cleaved Meks cannot bind to their substrates and have reduced kinase activity, resulting in alterations of the signaling pathways they govern. The structures of PA, PA heptamer, EF, and LF have been solved and much is now known about the molecular details of the intoxication mechanism. The in vivo action of the toxins, on the other hand, is still poorly understood and hotly debated. A better understanding of the toxins will help in the design of much-needed anti-toxin drugs and the development of new toxin-based medical applications.Abbreviations CMG2 Capillary morphogenesis protein 2 - DTA Diphtheria toxin A chain - EF Edema factor - EFn N-terminal fragment of EF - ETx Edema toxin - GR Glucocorticoid receptors - GSK3 Glycogen synthase kinase 3 - I domain Integrin-like domain - iNOS Inducible nitric oxide synthase - LF Lethal factor - LFn N-terminal fragment of LF - LTx Lethal toxin - MAPK Mitogen-activated protein kinase - Mek MAPK kinases - PA Protective antigen - PA20 20-kDa N-terminal fragment of PA - PA63 63-kDa C-terminal fragment of PA - TEM8 Tumor endothelial marker 8  相似文献   

16.
Bacillus anthracis, a spore-forming infectious bacterium, produces a toxin consisting of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). LF and EF possess intracellular enzymatic functions, the net effect of which is to severely compromise host innate immunity. During an anthrax infection PA plays the critical role of facilitating entry of both EF and LF toxins into host cell cytoplasm. Crystal structures of all three of the anthrax toxins have been determined, as well as the crystal structure of the (human) von Willebrand factor A (integrin VWA/I domain) -- an anthrax toxin receptor. A theoretical structure of the complex between VWA/I and PA has also been reported. Here we report on the results of 1,000 psec molecular dynamics (MD) simulations carried out on complexes between the Anthrax Protective Antigen Domain 4 (PA-D4) and the von Willebrand Factor A (VWA/I). MD simulations (using Insight II software) were carried out for complexes containing wild-type (WT) PA-D4, as well as for complexes containing three different mutants of PA-D4, one containing three substitutions in the PA-D4 "small loop" (residues 679-693) (D683A/L685E/Y688C), one containing a single substitution at a key site at the PA-D4 -- receptor interface (K679A) and another containing a deletion of eleven residues at the C-terminus of PA (Delta724-735). All three sets of PA mutations have been shown experimentally to result in serious deficiencies in PA function. Our MD results are consistent with these findings. Major disruptions in interactions were observed between the mutant PA-D4 domains and the anthrax receptor during the MD simulations. Many secondary structural features in PA-D4 are also severely compromised when VWA complexes with mutant variants of PA-D4 are subjected to MD simulations. These MD simulation results clearly indicate the importance of the mutated PA-D4 residues in both the "small loop" and at the carboxyl terminus in maintaining a PA conformation that is capable of effective interaction with the anthrax toxin receptor.  相似文献   

17.
Bacillus anthracis synthesizes two toxins composed of the three proteins: protective antigen (PA), lethal factor (LF), and edema factor (EF). The cleavage of PA on the cell surface by the convertase furin leads to the translocation of LF and EF into the cytosol. We have investigated the cross-inhibitory activities of the furin inhibitors hexa-d-arginine amide (D6R) and nona-d-arginine amide (D9R), which block the proteolytic activation of PA; and of the LF inhibitor In-2-LF, a peptide hydroxamate. D6R and D9R inhibit LF with IC(50s) of 300 and 10microM, respectively; conversely, In-2-LF also inhibits furin (IC(50) 2microM). In-2-LF was efficiently cleaved by furin with the concomitant loss of inhibitory activity on both LF and furin. Incubation of In-2-LF with LF however generated a product that retained partial inhibitory activity against LF. Combined treatment of cells with D6R and In-2-LF enhanced protection against anthrax lethal toxin, indicating that combined administration of inhibitors could represent an effective therapeutic approach.  相似文献   

18.
Immunofluorescence and other methods have been used to probe the self-assembly and internalization of the binary toxin, anthrax lethal toxin (LeTx), in primary murine macrophages. Proteolytic activation of protective antigen (PA; 83 kDa, the B moiety of the toxin) by furin was the rate-limiting step in internalization of LeTx and promoted clearance of PA from the cell surface. A furin-resistant form of PA remained at the cell surface for at least 90 min. Oligomerization of receptor-bound PA63, the 63 kDa active fragment of PA, was manifested by its conversion to a pronase-resistant state, characteristic of the heptameric prepore form in solution. That oligomerization of PA63 triggers toxin internalization is supported by the observation that PA20, the complementary 20 kDa fragment of PA, inhibited clearance of nicked PA. The PA63 prepore, with or without lethal factor (LF), cleared slowly from the cell surface. These studies show that proteolytic cleavage of PA, in addition to permitting oligomerization and LF binding, also promotes internalization of the protein. The relatively long period of activation and internalization of PA at the cell surface may reflect adaptation of this binary toxin that maximizes self-assembly.  相似文献   

19.
Mutations in capillary morphogenesis gene 2 (CMG2), one of the two closely related proteins that act as anthrax toxin receptors, cause two rare human autosomal recessive conditions, juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH). Here we demonstrate that CMG2 proteins with certain JHF- and ISH-associated single amino acid substitutions in their von Willebrand factor A domain or transmembrane region do not function as anthrax toxin receptors. However, an ISH-associated CMG2 variant having a truncated cytosolic domain does still function as an anthrax receptor, and in fact makes cells hyper-sensitive to toxin, distinguishing the roles of CMG2 in physiology and anthrax pathology. Site-specific mutagenesis was used to characterize the role that domain 2 of the anthrax toxin protective antigen (PA) plays in interaction with CMG2, focusing on the interaction between the PA 2beta(3)-2beta(4) loop and a pocket (Glu-122 pocket) adjacent to the metal ion-dependent adhesion site in CMG2. Substitutions that disrupted the salt bridge between PA Arg-344 and CMG2 Glu-122 decreased the affinity of PA to CMG2 three- to fourfold. Furthermore, mutation of CMG2 Tyr-119 (within the Glu-122 pocket) to His lowered the pH threshold for PA prepore-to-pore conversion in the endocytic pathway.  相似文献   

20.
Protective antigen (PA) is a central virulence factor of Bacillus anthracis and a key component in anthrax vaccines. PA binds to target cell receptors, is cleaved by the furin protease, self-aggregates to heptamers, and finally internalizes as a complex with either lethal or edema factors. Under mild room temperature storage conditions, PA cytotoxicity decreased (t(1/2) approximately 7 days) concomitant with the generation of new acidic isoforms, probably through deamidation of Asn residues. Ranking all 68 Asn residues in PA based on their predicted deamidation rates revealed five residues with half-lives of <60 days, and these residues were further analyzed: Asn10 in the 20-kDa region, Asn162 at P6 vicinal to the furin cleavage site, Asn306 in the pro-pore translocation loop, and both Asn713 and Asn719 in the receptor-binding domain. We found that PA underwent spontaneous deamidation at Asn162 upon storage concomitant with decreased susceptibility to furin. A panel of model synthetic furin substrates was used to demonstrate that Asn162 deamidation led to a 20-fold decrease in the bimolecular rate constant (k(cat)/Km) of proteolysis due to the new negatively charged residue at P6 in the furin recognition sequence. Furthermore, reduced PA cytotoxicity correlated with a decrease in PA cell binding and also with deamidation of Asn713 and Asn719. On the other hand, neither deamidation of Asn10 or Asn306 nor impairment of heptamerization could be observed upon prolonged PA storage. We suggest that PA inactivation during storage is associated with susceptible deamidation sites, which are intimately involved in both mechanisms of PA cleavage by furin and PA-receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号