首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the recovery of locomotory activity in exhausted juvenile rainbow trout (Oncorhynchus mykiss, approximately 6-10-cm fork length) in response to two conditions: (1) direct transfer to a range of velocities (0-15 cm s(-1)) in a swim flume (forced swimming) and (2) direct transfer to a pool downstream of a swim channel where a choice of velocities was presented: 2-3 cm s(-1) in the lower half of the pool, a range of velocities from 7 to 40 cm s(-1) in the upper half the pool near the channel entrance, and a velocity of 57 cm s(-1) in a swim channel emptying into the pool (volitional swimming). Exhausted trout showed a pronounced delay in the recovery of normal locomotory activity. With forced swimming, the time required to resume swimming was inversely proportional to water velocity. At 15 cm s(-1), almost all exhausted fish recovered immediately, whereas it took about 1 h for recovery at a current of 5 cm s(-1). In contrast, nonexhausted fish responded to imposed velocity with immediate rheotactic responses (orientation and station holding) at all test velocities. In voluntary swim trials, exhausted trout showed a marked preference for holding station in current in the downstream pool (approximately 11 cm s(-1)) but took, on average, 2 h longer than nonexhausted fish to make transits in the swim channel. Moreover, their ground speed in the swim channel was significantly slower. We conclude that swimming performance is impaired for at least 6 h by exhaustive exercise. Maladaptive behaviors during this time include a preference for current near the surface over cover and a reduced capacity for burst activity, both of which would translate into greater predation risk and reduced ability to forage.  相似文献   

2.
We tested the hypothesis that juvenile rainbow trout (Oncorhynchus mykiss) would select a temperature colder than their acclimation temperature (16 deg +/-1 deg C) to minimize postexhaustive exercise metabolic demands and enhance oxygen availability. After an initial 3-h exploratory period in a thermal gradient (6 degrees -25 degrees C), fish selected a temperature of approximately 14 degrees C and had a baseline exploratory swimming activity of approximately 60 cm min(-1). Subsequently, experimental (chased) fish were individually removed, exhaustively exercised for 1.5 min, and replaced. Both control (unchased) and experimental fish were allowed to explore the thermal gradient for another 2 h. Immediately after being chased, trout had a metabolic profile that was consistent with being exhausted; levels of plasma and muscle lactate were 4.38+/-0.25 mmol L(-1) and 28.0+/-2.0 mmol kg(-1), respectively, and levels of muscle glycogen, adenosine triphosphate, and phosphocreatine were 3.89+/-0.95, 4.23+/-0.62, and 3.07+/-0.73 mmol kg(-1), respectively. Although exploratory swimming activity of the chased fish was significantly lower (by 81%) as compared with control fish during the first 5 min postchase, differences in the mean, median, and mode values for selected temperatures during the next 2 h were neither large (<1 degrees C) nor significant (P>0.05). Contrary to our initial hypothesis, these findings suggest that juvenile rainbow trout do not select a colder temperature to decrease metabolic rate following exhaustive exercise. Instead, rainbow trout selected a temperature marginally cooler than their acclimation temperature (16 degrees C) regardless of whether they had been previously exhausted.  相似文献   

3.
We investigated intra- and interspecific variation in swimming performance and related physiological parameters in two members of the salmonid family. For our comparisons, we sourced juvenile brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) from one hatchery and a second strain of rainbow trout from another. The hatcheries maintain genetic stocks obtained several decades ago from very different environments. We tested competing hypotheses: that there would be greater interspecific (across species) variation or that there would be greater intraspecific (within species) variation, owing to regional adaptations. To test these hypotheses, individual and small schools of five fish were taken to fatigue using the critical swimming speed test (U(crit)), and three post-exercise physiological metrics, packed red cell volume (hematocrit), citrate synthase and lactate dehydrogenase activity, were assessed. The majority of the results in swimming performance and hematocrit support that intraspecific variation was greater than interspecific variation, i.e. the location had a stronger effect than did genus. Variation in lactate dehydrogenase activity supported neither intra- nor interspecific variation as determining factors. In sum, our findings suggest that the performance of different species of salmonids from the same locale can be more similar than those of the same species from different areas.  相似文献   

4.
Maximum swimming performance of seasonally acclimated rainbow trout Oncorhynchus mykiss was compared among short-duration constant acceleration tests ( U max) and with the well established, but longer duration critical swimming speed ( U crit) test. The present results show that U max was insensitive to a range of acceleration rates that differed by more than three-fold. Thus, test duration could be reduced from 58 to 18 min without affecting the estimate of U max. The value of U max, however, was up to 57% higher than U crit. Only the slowest acceleration rate tested (an increase of 1 cm s−1 every min) had a significantly lower U max, and this was up to 19% higher than U crit. Even so, the potential saving in the test duration was small (70 v. 90 min) when compared with a ramp- U crit test (a standard U crit test but with the water velocity initially ramped to c . 50% of the estimated U crit). Therefore, swim tests that are appreciably shorter in duration than a ramp- U crit test result in U max being appreciably greater than U crit. An additional discovery was that the ramp- U crit performance of cold-acclimated rainbow trout was independent of the recovery period between tests. These results may prove useful in making comparisons among different swim test protocols and in designing swim tests that assess fish health and toxicological impacts.  相似文献   

5.
During normal development, rainbow trout undergo a shift in red muscle contraction kinetics and swimming kinematics. Young trout parr have faster muscle kinetics and faster tailbeat frequency during swimming than older, larger juvenile trout. In this study, the thyroid hormone thyroxine (T(4)) was used to induce these changes in trout parr. This allowed a comparison of swimming kinematics, through the use of video analysis and electromyography, and red muscle contractile properties, through the use of in vitro muscle preparations, between natural parr and same-sized induced juveniles. The red muscle of natural parr has faster contractile properties than induced juveniles, including faster twitch time and a faster maximum shortening velocity (V(max)). Further, natural parr swim with faster tailbeat frequencies than induced juveniles. The results suggest that the natural shift in red muscle contraction kinetics observed during parr-smolt transfomation in trout directly affects swimming behavior in these fish. Also, thyroid hormones appear to induce a shift towards slower isoforms of the muscle protein myosin heavy chain (MHC), a result distinct from work on rats where thyroid hormones induce shifts towards faster forms of MHC. J. Exp. Zool. 290:115-124, 2001.  相似文献   

6.
A new automated ultrasonic telemetry system for monitoring the swimming activity of adult rainbow trout, Salmo gairdneri , at liberty in the wild is described. The transmitter detects bioelectric potentials (i.e. electromyograms) associated with the contraction of the epaxial myomeres during swimming. Transmitter output is relayed to the signal processing system via submerged hydrophones. The incoming signals represent averaged electromyograms which have been shown in earlier studies to correlate well with swimming activity and concurrent oxygen consumption of rainbow trout in the laboratory.
Electromyogram records obtained from rainbow trout released into a small lake and monitored for up to 4 weeks, indicate a fairly regular pattern of elevated midday activity contrasting with periods of relative quiescence during the evening and morning. This midday peak in locomotory activity is the result of an increased feeding activity which is evidently a response to a concomitant increase in the activity of the fish's prey.  相似文献   

7.
Blanchet S  Loot G  Dodson JJ 《Oecologia》2008,157(1):93-104
Using semi-natural stream channels, we estimated the effects of competition and predation exerted by juvenile and adult exotic rainbow trout (Oncorhynchus mykiss) on the diel activity pattern of juvenile native Atlantic salmon (Salmo salar), a secondary consumer. We also evaluated the direct and indirect effects of competition, predation and abiotic factors (water depth and velocity) on the growth rate of salmon, the biomass of invertebrate grazers (primary consumers) and the biomass of periphytic algae (primary producers; chlorophyll a). The presence of chemical cues emanating from adult predatory trout reduced the daily activity of juvenile Atlantic salmon. In contrast, competition imposed by juvenile rainbow trout forced Atlantic salmon to be more active during the day, even if adult rainbow trout were also present. We found no effect of either competition or of predatory cues on the growth rate of Atlantic salmon, and no evidence of indirect effects on either the biomass of invertebrates or the biomass of chlorophyll a. In contrast, we demonstrated that this food chain (fish--invertebrate grazers--periphytic algae) was under the control of a critical abiotic factor, the water velocity, and of bottom-up processes. We concluded that the exotic species directly increases the risk of predation of the native Atlantic salmon, but behavioral compensation probably limits the effects on growth rate. The competition and predation imposed by the invaders had no indirect effects on lower trophic levels. Top-down effects may have been mitigated by the dominant influence of water velocity controlling all components of the food chain and by elevated levels of primary production.  相似文献   

8.
In this study, we present evidence for the perception of different magnetic field parameters in a facultative anadromous fish species of the family Salmonidae. Magnetic field perception of the rainbow trout, Oncorhynchus mykiss, was demonstrated with a heartbeat conditioning test. The electrocardiogram was measured with subcutaneously inserted silver wire electrodes in freely swimming fish. We demonstrate a conditioned response (i.e. a significant longer interval between two heartbeats) to an intensity/inclination shift for three adult and two juvenile rainbow trouts. Moreover, a conditioned response to a 90° direction shift was demonstrated for three adult and two juvenile trouts. These findings support the hypothesis that the rainbow trout is able to perceive different magnetic field parameters. Furthermore, the study demonstrates magnetosensation in different developmental stages in the rainbow trout, i.e. juvenile and adult fish.  相似文献   

9.
Growth hormone (GH) has been demonstrated to alter the behavior of juvenile salmonids. However, the mechanisms behind this action are not yet understood. In mammals and birds, peripheral GH treatment has been shown to affect monoaminergic activity in the central nervous system, which may be a mechanism whereby GH alters behavior. To investigate if GH may influence behavior directly at the central nervous system, juvenile rainbow trout were injected with GH into the third ventricle of the brain, whereupon physical activity and food intake were observed during 2 h. Thereafter, brains were sampled and the content of serotonin, dopamine, and noradrenaline and their metabolites were measured in hypothalamus, telencephalon, optic tectum, and brainstem. The GH-treated fish increased their swimming activity relative to sham-injected controls, while appetite remained unchanged, compared with sham-injected controls. Analysis of brain content of monoamines revealed that the GH treatment caused a decrease in the dopamine metabolite homovanillic acid in the hypothalamus, indicating a lowered dopaminergic activity. It is concluded that GH may alter behavior by acting directly on the central nervous system in juvenile rainbow trout. Furthermore, GH seems to alter the dopaminergic activity in the hypothalamus. Whether this is a mechanism whereby GH affects swimming activity remains to be clarified.  相似文献   

10.
Physiological causes and consequences of social status in salmonid fish   总被引:3,自引:0,他引:3  
Social interactions in small groups of juvenile rainbow trout(Oncorhynchus mykiss) lead to the formation of dominance hierarchies.Dominant fish hold better positions in the environment, gaina larger share of the available food and exhibit aggressiontowards fish lower in the hierarchy. By contrast, subordinatefish exhibit behavioural inhibition, including reduced activityand feeding. The behavioural characteristics associated withsocial status are likely the result of changes in brain monoaminesresulting from social interactions. Whereas substantial physiologicalbenefits, including higher growth rates and condition factor,are experienced by dominant trout, low social status appearsto be a chronic stress, as indicated by sustained elevationof circulating cortisol concentrations in subordinate fish.High cortisol levels, in turn, may be responsible for many ofthe deleterious physiological consequences of low social status,including lower growth rates and condition factor, immunosuppressionand increased mortality. Circulating cortisol levels may alsobe a factor in determining the outcome of social interactionsin pairs of rainbow trout, and hence in determining social status.Rainbow trout treated with cortisol were significantly morelikely to become subordinate in paired encounters with smalleruntreated conspecifics.  相似文献   

11.
Relating intramuscular fuel use to endurance in juvenile rainbow trout   总被引:5,自引:0,他引:5  
This study examined fuel depletion in white muscle of juvenile rainbow trout sprinted to fatigue to determine whether the onset of fatigue is associated with a measurable metabolic change within the muscle and whether muscle glycogen levels influence endurance. In this study, "fuels" refer to any energy-supplying compounds and include glycogen, phosphocreatine (PCr), and ATP. Fuel depletion in white muscle was estimated by the calculation of the anaerobic energy expenditure (AEE; in micromol ATP equivalents g(-1)) from the reduction of PCr and ATP and the accumulation of lactate. Progression of fuel use during sprinting was examined by sampling fish before they showed signs of fatigue and following fatigue. Most of the AEE before fatigue was due to PCr depletion. However, at the first signs of fatigue, there was a 32% drop in ATP. Similarly, when fish were slowly accelerated to a fatiguing velocity, the only significant change at fatigue was a 30% drop in ATP levels. Muscle glycogen levels were manipulated by altering ration (1% vs. 4% body weight ration per day) combined with either daily or no exercise. Higher ration alone led to significantly greater muscle glycogen but had no effect on sprint performance, whereas sprint training led to higher glycogen and an average threefold improvement in sprint performance. In contrast, periodic chasing produced a similar increase in glycogen but had no effect on sprint performance. Taken together, these observations suggest that (i) a reduction in ATP in white muscle could act as a proximate signal for fatigue during prolonged exercise in fish and (ii) availability of muscle glycogen does not limit endurance.  相似文献   

12.
Rainbow trout (Oncorhynchus mykiss) and brook trout (or charr, Salvelinus fontinalis) display different rostral-caudal patterns of power production by the red or aerobic muscle during steady swimming. The anterior muscle of rainbow trout produces much less power for swimming than the posterior, while in brook trout there is no variation in power output. To determine if red muscle recruitment is associated with anterior-posterior patterns of power production, electromyography (EMG) was used to record red muscle activity at three body positions across a range of swimming speeds in fish of each species. The initial recruitment of the anterior red muscle in swimming rainbow trout was predicted to lag behind, i.e. occur at higher speeds, that of the posterior due to the variation in power production, but no variation in recruitment was expected for brook trout. Burst of red muscle EMG activity occurring with each tailbeat was analyzed for frequency (tailbeat frequency), duty cycle (DC) (duration of burst relative to the period of the tailbeat) and burst intensity (BI) (magnitude of the measured EMG activity). Brook trout swam with higher tailbeat frequencies and longer values of DC than rainbow trout. Both species showed a pattern of longitudinal variation in DC, with longer DC values in the anterior red muscle. BI also differed significantly along the length of rainbow trout but not brook trout. In the former, BI of anterior muscle was significantly less than the posterior at lower steady swimming speeds. The EMG data suggest that power production and muscle recruitment are related. In rainbow trout, where there is longitudinal variation in muscle power output, there are also significant rostral-caudal differences in red muscle recruitment.  相似文献   

13.
Groups of 6-7 cm length rainbow trout, Salmo gairdneri Richardson, were simultaneously trained at four water velocities (0, 1·4, 2·2 and 3·5 Ls-1) for a period of 46 days. Oxygen consumption and swimming ability (fatigue time) were then measured. Only training at 3·5 Ls-1 increased the swimming ability of the fish. A study of the relative proportion of the white and red muscles indicated that the white muscle was increasing its mass at velocities in excess of 2·2 Ls-1. The oxygen consumption rate of the trained fish was lower than that of the untrained fish when considered over the whole velocity range.  相似文献   

14.
We studied whether juvenile fishes were able to maintain swimming speed and position during simulated river pulsed flows in a laboratory flume. We used a glass flume (15.24 × 0.6 m) with river-rock substrate to determine the longitudinal displacement, movement distances and frequencies, velocity selection, and substrate use of juvenile (SL range: 6.1 ± 0.2 cm) hardhead Mylopharodon conocephalus (n = 13), rainbow trout Oncorhynchus mykiss (n = 11), and Sacramento sucker Catostomus occidentalis (n = 12) during a 100-min flow pulse, as velocity changed from slow to medium, fast, medium, and slow. Fish were capable of maintaining swimming speed and position up to the maximum flume velocity of 0.46 m·s−1, except for one hardhead that impinged on the rear fish screen. Fish swam faster in the flume during the medium and fast intervals than the slow intervals, but fish speeds were similar among the medium and faster intervals, when some fish took cover behind the rock substrate. In comparison with a Brett-type swim-tunnel, fish showed less increase in mean swimming speed as the flume velocity increased. Fish in the flume were able to use the rock substrate as hydraulic cover, decreasing the encountered water velocity, and, presumably, conserving energy.  相似文献   

15.
The hypothesis that body size and swimming velocity affect proximate body composition, wet mass and size‐selective mortality of fasted fish was evaluated using small (107 mm mean total length, L T) and medium (168 mm mean L T) juvenile rainbow trout Oncorhynchus mykiss that were sedentary or swimming ( c . 1 or 2 body length s−1) and fasted for 147 days. The initial amount of energy reserves in the bodies of fish varied with L T. Initially having less lipid mass and relatively higher mass‐specific metabolic rates caused small rainbow trout that were sedentary to die of starvation sooner and more frequently than medium‐length fish that were sedentary. Swimming at 2 body length s−1 slightly increased the rate of lipid catabolism relative to 1 body length s−1, but did not increase the occurrence of mortality among medium fish. Death from starvation occurred when fish had <3·2% lipid remaining in their bodies. Juvenile rainbow trout endured long periods without food, but their ability to resist death from starvation was limited by their length and initial lipid reserves.  相似文献   

16.
Biological evidence suggests that fish use mostly anterior muscles for steady swimming while the caudal part of the body is passive and,acting as a carrier of energy,transfers the momentum to the surrounding water.Inspired by those findings we hypothesize that certain swimming patterns can be achieved without copying the distributed actuation mechanism of fish but rather using a single actuator at the anterior part to create the travelling wave.To test the hypothesis a pitching flexible fin made of silicone rubber and silicone foam was designed by copying the stiffness distribution profile and geometry of a rainbow trout.The kinematics of the fin was compared to that of a steadily swimming trout.Fin's propulsive wave length and tail-beat amplitude were determined while it was actuated by a single servo motor.Results showed that the propulsive wave length and tail-beat amplitude of a steadily swimming 50 cm rainbow trout was achieved with our biomimetic fin while stimulated using certain actuation parameters (frequency 2.31 Hz and amplitude 6.6 degrees).The study concluded that fish-like swimming can be achieved by mimicking the stiffness and geometry of a rainbow trout and disregarding the details of the actuation mechanism.  相似文献   

17.
The proposal that plasma ammonia accumulation might impair the swimming performance of fish was first made over a decade ago, and has now proven to be the case for a number of salmonid species. The first experimental evidence was indirect, when a negative linear relationship between plasma ammonia concentrations and maximum sustainable swimming speed (U(crit)) was found following the exposure of brown trout (Salmo trutta) to sub-lethal concentrations of copper in soft acidic water. Since then, negative linear relationships between plasma ammonia concentration and U(crit) have been demonstrated following exposure of brown trout, rainbow trout (Oncorhynchus mykiss) and coho salmon (Oncorhynchus kisutch) to elevated water ammonia. For brown trout, the relationships between plasma ammonia and U(crit) were remarkably similar following either exposure to elevated water ammonia or to sub-lethal copper. This indicates that the impairment of swimming performance resulting from exposure to sub-lethal concentrations of heavy metals may be attributable in large part to an accumulation of endogenous ammonia. The negative relationship between plasma ammonia concentration and U(crit) was similar in size-matched rainbow and brown trout but, under similar regimes of ammonia exposure, rainbow trout were able to maintain a significantly lower plasma ammonia concentration, revealing inter-specific differences in ammonia permeability and/or transport. One primary mechanism by which ammonia accumulation may impair exercise performance is a partial depolarisation of membrane potential in tissues such as the brain and white muscle. This may prejudice the co-ordination of swimming movements and reduce or abolish the development of muscle tension, thus, compromising swimming efficiency and performance at the top end of the range.  相似文献   

18.
The purpose of this study was to determine if carbamoyl phosphate synthetase III (CPSase III) and related urea cycle enzyme activities in skeletal muscle tissue of juvenile rainbow trout (Oncorhynchus mykiss) increase during short- or long-term exercise, in parallel with changes in whole-body urea excretion rates. Urea excretion was elevated by 65% in fish that swam at high-speed (50 cm/s) vs. low-speed (20 cm/s) over a 2-h period, with no significant changes in CPSase III, ornithine transcarbamoylase or glutamine synthetase activities in muscle tissue. Fish that swam for 4 days at high-speed had higher rates of ammonia excretion and GSase activity in muscle and liver tissue relative to low-speed swimmers. Calculations showed that 47-53% of excreted urea, theoretically could be accounted for by total muscle CPSase III activity in juvenile and adult trout. The data indicate that increases in the rate of urea excretion during short-term high intensity exercise are not linked to higher activities of urea cycle enzymes in muscle tissue, but this does not rule out the possibility of increased flux through muscle CPSase III and related enzymes. Furthermore, these results indicate that urea cycle enzyme activities in skeletal muscle tissue can account for a significant portion of total urea excretion in juvenile and adult trout.  相似文献   

19.
20.
Groups of rainbow trout (Salmo gairdneri, Richardson) were continuously swum at 20 cm s-1 (1.0 body lengths s-1) for 0, 3, 30, and 200 days. No significant changes in fish condition factor, combined red and white muscle mass, muscle fibre size or fibre size distribution were observed. After 200 days of swimming there was a significant 2.2 fold increase in red muscle mass. Number of capillaries per red muscle fibre increased significantly in each group by a maximum of 27% after 200 days exercise. Number of capillaries per white muscle fibre increased significantly by 95% after 200 days exercise. Blood lactate, haemoglobin (Hb) concentration haematocrit, erythrocyte adenosine triphosphate, and whole blood oxygen affinity P50 were unchanged by swimming. After 30 and 200 days swimming there was a shift in expression of white muscle lactate dehydrogenase (LDH) isozymes from LDH-A to LDH-B. Within the duplicated LDH-B isozyme complex, there was a shift in expression from LDH-B to LDH-B' subunits. These results suggest that sustained swimming at 1(-1) bl s-1 increased the aerobic capacity of red and particularly white (fast) muscle of rainbow trout but did not alter the gas transport characteristics of the blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号