首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tumor necrosis factor (TNF)-alpha is a key molecule in lung inflammation. We have established the insulin-like growth factor binding protein 2 (IGFBP-2) as a marker associated with the growth arrest of lung alveolar epithelial cells (AEC). Here, we studied the effects of TNF-alpha on AEC proliferation and the putative protective role of retinoic acid (RA). We documented an antiproliferative action of TNF-alpha that was reversible only at 24 h and then became irreversible with induction of apoptosis. TNF-alpha treatment was associated with a dramatic induction of IGFBP-2. To discover the mechanism of action of IGFBP-2, we further tested the mitogenic potential of IGF-I to counteract TNF-alpha inhibition. Addition of IGF-I to the TNF-alpha containing medium did not stimulate proliferation, whereas des(1-3)IGF-I, an analog of IGF-I that bears low affinity for IGFBPs, was able to restore cell growth. Interestingly, we observed that RA abrogated TNF-alpha-induced growth arrest and that this effect was associated with a dramatic decrease in IGFBP-2 expression. These results suggest a protective role of RA from TNF-alpha antiproliferative action, through mechanisms involving modulation of IGFBP-2 production.  相似文献   

2.
Although several studies have shown that an induction of insulin-like growth factor (IGF) components occurs during hyperoxia-mediated lung injury, the role of these components in tissue repair is not well known. The present study aimed to elucidate the role of IGF system components in normal tissue remodeling. We used a rat model of lung injury and remodeling by exposing rats to > 95% oxygen for 48 h and allowing them to recover in room air for up to 7 days. The mRNA expression of IGF-I, IGF-II, and IGF-1 receptor (IGF-1R) increased during injury. However, the protein levels of these components remained elevated until day 3 of the recovery and were highly abundant in alveolar type II cells. Among IGF binding proteins (IGFBPs), IGFBP-5 mRNA expression increased during injury and at all the recovery time points. IGFBP-2 and -3 mRNA were also elevated during injury phase. In an in vitro model of cell differentiation, the expression of IGF-I and IGF-II increased during trans-differentiation of alveolar epithelial type II cells into type-I like cells. The addition of anti-IGF-1R and anti-IGF-I antibodies inhibited the cell proliferation and trans-differentiation to some extent, as evident by cell morphology and the expression of type I and type II cell markers. These findings demonstrate that the IGF signaling pathway plays a critical role in proliferation and differentiation of alveolar epithelium during tissue remodeling.  相似文献   

3.
The insulin-like growth factor type 1 receptor (IGF 1R) mediates the acute metabolic effects of IGF I as well as IGF I-stimulated cell proliferation and protection from apoptosis. IGF binding proteins (IGFBPs) can modulate these responses. We, therefore, investigated whether intrinsic IGFBPs interfere with IGF I-induced regulation of IGF 1R expression and with the biological response to IGF I in two human tumor cell lines, the non-small-cell lung cancer cell line A549 and the osteoblastic osteosarcoma cell line Saos-2/B-10. We compared the growth rates, IGFBP production, IGF I binding characteristics, IGF 1R protein and mRNA levels, and the acute IGF I response (stimulation of glycogen synthesis) after pretreatment of the cells in serum-free medium with or without added IGF I or medium supplemented with 5% fetal calf serum (FCS). In contrast to A549 cells, which produce IGF I and significant amounts of IGFBPs, survival and proliferation of Saos-2/B-10 cells, which do not produce IGF I or significant amounts of IGFBPs, depended on the addition of exogenous IGF I. IGF I increased the concentration of IGFBP-2 and -3 and decreased the concentration of IGFBP-4 in the medium of A549 cells. As compared to FCS, IGF I pretreatment in both cell lines decreased the number of specific IGF I binding sites, down-regulated total and membrane IGF 1R protein, and largely reduced or abolished the acute IGF I response without affecting IGF 1R mRNA levels. The data suggest that the IGF 1R protein of the two cell lines is translationally and/or posttranslationally down-regulated by its ligand in the presence and in the absence of locally produced IGFBPs and that the cell lines have retained this negative feedback to counteract IGF I stimulation.  相似文献   

4.
The insulin-like growth factor (IGF) binding proteins (IGFBPs) have several functions, including transporting the IGFs in the circulation, mediating IGF transport out of the vascular compartment, localizing the IGFs to specific cell types, and modulating both IGF binding to receptors and growth-promoting actions. The functions of IGFBPs appear to be altered by posttranslational modifications. IGFBP-3, -4, -5, and -6 have been shown to be glycosylated. Likewise all the IGFBPs have a complex disulfide bond structure that is required for maintenance of normal IGF binding. IGFBP-2, -3, -4, and -5 are proteolytically cleaved, and specific proteases have been characterized for IGFBP-3, -4, and -5. Interestingly, attachment of IGF-I or II to IGFBP-4 results in enhancement of proteolysis, whereas attachment of either growth factor to IGFBP-5 results in inhibition of proteolytic cleavage. Cleavage of IGFBP-3 results in the appearance of a 31 kDa fragment that is 50-fold reduced in its affinity for the IGF-I or IGF-II. In spite of the reduction in its affinity, this fragment is capable of potentiating the effect of IGF-I on cell growth responses; therefore, proteolysis may be a specific mechanism that alters IGFBP modulation of IGF actions. Other processes that result in a reduction in IGF binding protein affinity are associated with potentiation of cellular responses to IGF-I and -II. Specifically, the binding of IGFBP-3 to cell surfaces is associated with its ability to enhance IGF action and with a ten- to 12-fold reduction in its affinity for IGF-I and IGF-II. Likewise, binding of IGFBP-5 to extracellular matrix (ECM) results in an eightfold reduction in its affinity and a 60% increase in cell growth in response to IGF-I. Another post-translational modification that modifies IGFBP activity is phosphorylation. IGFBP-1, -2, -3, and -5 have been shown to be phosphorylated. Phosphorylation of IGFBP-1 results in a sixfold enhancement in its affinity for IGF-I and -II. Following this enhancement of IGFBP-1 affinity, this binding protein loses its capacity to potentiate IGF-I growth-promoting activity. Future studies using site-directed mutagenesis to modify these proteins should enable us to determine the effect of these posttranslational modifications on the ability of IGFBPs to modulate IGF biologic activity. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Insulin-like growth factor (IGF)-I and IGF-II are expressed at biologically effective levels by bone cells. Their stability and activity are modulated by coexpression of IGF binding proteins (IGFBPs). Secreted IGFBPs may partition to soluble, cell-associated, and matrix-bound compartments. Extracellular localization may sequester, store, or present IGFs to appropriate receptors. Of the six IGFBPs known, rat osteoblasts synthesize all but IGFBP-1. Of these, IGFBP-3, -4, and -5 mRNAs are induced by an increase in cAMP. Little is known about extracellular IGFBP localization in bone and nothing about IGFBP expression by nonosteoblastic periosteal bone cells. We compared basal IGFBP expression in periosteal and osteoblast bone cell cultures and assessed the effects of changes in cAMP-dependent protein kinase A or protein kinase C. Basal IGFBP gene expression differed principally in that more IGFBP-2 and -5 occurred in osteoblast cultures, and more IGFBP-3 and -6 occurred in periosteal cultures. An increase in cAMP enhanced IGFBP-3, -4, and -5 mRNA and accordingly increased soluble IGFBP-3, -4, and -5 and matrix-bound IGFBP-3 and -5 in both bone cell populations. In contrast, protein kinase C activators suppressed IGFBP-5 mRNA, and its basal protein levels remained very low. We also detected low Mr bands reactive with antisera to IGFBP-2, -3, and -5, suggesting proteolytic processing or degradation. Our studies reveal that various bone cell populations secrete and bind IGFBPs in selective ways. Importantly, inhibitory IGFBP-4 does not significantly accumulate in cell-associated compartments, even though its secretion is enhanced by cAMP. Because IGFBPs bind IGFs less tightly in cell-bound compartments, they may prolong anabolic effects by agents that increase bone cell cAMP. J. Cell. Biochem. 71:351–362, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Insulin-like growth factor-1 (IGF1) has been reported to stimulate hair elongation and to facilitate maintenance of the hair follicle in anagen phase. However, little is known about IGF1 signaling in the hair follicle. In this study we investigate the effects of IGF1, glucocorticoids, and retinoids on dermal papilla (DP) cell production of insulin-like growth factor binding proteins (IGFBPs). IGFBPs comprise a family of IGF binding proteins that are produced and released by most cell types. They bind to IGFs to either enhance or inhibit IGF activity. In the present report we identify IGFBP-3 as being produced and released by cultured human dermal papilla (DP) cells. IGFBP-3 levels are increased fivefold by retinoic acid, eightfold by dexamethasone, and tenfold by IGF1. DP cells are known to produce IGF1, and so the observed stimulation of DP cell IGFBP-3 production by IGF1 is consistent with the idea that DP cells possess the IGF transmembrane receptor kinase and are autoregulated by IGFs. The level of another IGFBP, tentatively identified as IGFBP-2, is, in contrast, not regulated by these agents. IGFBP-3 has been shown to inhibit the activity of IGFs in a variety of systems. Our results are consistent with a model in which retinoids and glucocorticoids inhibit IGF action on DP cells and surrounding matrix cells by stimulating increased DP cell production of IGFBP-3. The IGFBP-3, in turn, forms a complex with free IGF1 to reduce the concentration of IGF1 available to stimulate hair elongation and maintenance of anagen phase. © 1996 Wiley-Liss, Inc.  相似文献   

7.
The liver is a major source of circulating insulin-like growth factor I (IGF-I), and it also synthesizes several classes of IGF binding proteins (IGFBPs). Synthesis of IGF-I and IGFBPs is regulated by hormones, growth factors, and cytokines. They are nutritionally regulated and expressed in developmentally specific patterns. To gain insight into cellular regulatory mechanisms that determine hepatic synthesis of IGF-I and IGFBPs and to identify potential target cells for IGF-I within the liver, we studied the cellular sites of synthesis of IGF-I, IGF receptor, growth hormone (GH) receptor, and IGFBPs in freshly isolated rat hepatocytes, endothelial cells, and Kupffer cells. We also localized cellular sites of IGFBP synthesis by in situ hybridization histochemistry. Western ligand and immunoblot analyses were used to determine IGFBP secretion by isolated cells. Two IGF-I mRNA subtypes with different 5' ends (class 1 and class 2) were detected in all isolated liver cell preparations. Type 1 IGF receptor mRNA was detected in endothelial cells, indicating that these cells are a local target for IGF actions in liver. GH receptor was expressed in all cell preparations, consistent with GH regulation of IGF-I and IGFBP synthesis in multiple liver cell types. The IGFBPs expressed striking cell-specific expression. IGFBP-1 was synthesized only in hepatocytes, and IGFBP-3 was expressed in Kupffer and endothelial cells. IGFBP-4 was expressed at high levels in hepatocytes and at low levels in Kupffer and endothelial cells. Cell-specific expression of distinct IGFBPs in the liver provides the potential for cell-specific regulation of hepatic and endocrine actions of IGF-I.  相似文献   

8.
Insulin-like growth factor I (IGF-I) is a peptidic growth factor implicated in the proliferation of a wide variety of cell types, and especially endometrial epithelial cells. Its action is modulated by the presence of IGF-binding proteins (IGFBPs) which are secreted by IGF-I target cells. The partition of IGFBPs between cell-associated and soluble form determines the potentiation or the inhibition of IGF-I action. It is commonly accepted that cell-associated IGFBPs potentiate the IGF-I action while the soluble form of IGFBPs has an inhibitory effect. In endometrial adenocarcinoma, IGF-I is involved in tumoral progression and IGFBPs may be key modulators of the IGF-I-induced cell proliferation. Here we showed that the responsiveness of human endometrial adenocarcinoma cells (HEC-IA cell line) to the mitogenic activity of IGF-I was dependent on the pre-incubation conditions. This responsiveness to IGF-I was conditioned by a differential expression of the IGF system components (IGFBPs and IGF-I receptor) and particularly of the IGFBPs. Indeed, the IGF-I-induced proliferation of the HEC-1A cells was attenuated by the presence of cell-associated IGFBPs. Moreover, the IGF-I incubation induced a release of IGFBP-3 in the culture media as the consequence of an interaction between IGF-I and the cell-associated IGFBP-3. This effect was dose-dependent and was associated with the attenuation of the IGF-I action on cellular proliferation. Thus, IGFBP-3 might be initially expressed as a cell-associated form and then released in the interstitial fluid after a direct interaction with IGF-I. Therefore, in HEC-IA endometrial adenocarcinoma cells responsive to IGF-I, the IGFBP-3 is the main binding protein expressed and both soluble and cell-associated forms act as inhibitors of IGF-I-induced cellular proliferation.  相似文献   

9.
Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.  相似文献   

10.
Insulin-like growth factor binding proteins (IGFBPs) are found both associated with cells and in extracellular fluids. Cell-associated IGFBPs increase [125I]-IGF binding to cell monolayers, whereas extracellular (soluble, released) IGFBPs decrease binding. In the current study, we show that either IGFBP-3 or IGFBP-5 are the major forms of IGFBP released from monolayers of human GM10 fibroblasts, T98G glioblastoma cells and forskolin-treated bovine MDBK cells. IGFBPs represent the most abundant [125I]-IGF-I binding site on GM10 and T98G cell monolayers, but 4-17% of the total cell-associated IGFBPs are released from the cell monolayer at 8°C during their quantification. Most of the IGFBPs (> 70%) are released from MDBK cells. Quantitative estimates of [125I]-IGF binding to the cell monolayers are altered because of the ability of the released IGFBPs to reduce the amount of radiolabeled ligand that is available to bind to the cell surface. Lanthanum (La3+) depresses IGFBP release from all three cell types (> 80% for GM10 and T98G cells and > 65% for MDBK cells). The effect was cation specific, noted with La3+ or Zn2+ but not with either Mn2+, Sr2+ or Se3+. The effect was also IGFBP specific; La3+ markedly depressed the release of IGFBP-3 and IGFBP-5, but had less of an effect on IGFBP-2 and IGFBP-4. Concomitant with a decrease in IGFBP-3 and IGFBP-5 release, La3+ caused an increase in [125I]-IGF-I binding to cell-associated IGFBPs and type I IGF receptors. The released soluble IGFBPs have a three- to 20-fold greater affinity (Ka) for [125I]-IGF-I compared to cell-associated IGFBPs. La3+ did not alter the affinity constants of cell-associated IGFBPs. In summary, we have identified a means to prevent loss of IGFBPs from cell monolayers during binding assays. This procedure will be useful in accurately quantifying the levels of IGFBPs on cell monolayers and in determining the role of cell-associated IGFBPs in controlling IGF activity. Retention of cell-associated low affinity IGFBPs may be important in controlling the size of the pericellular IGF pool and in regulating IGF-I access to the type I IGF receptor. J. Cell. Biochem. 66:256-267. © 1997 Wiley-Liss, Inc.  相似文献   

11.
12.
Proteolytic modification of insulin-like growth factor binding proteins (IGFBPs) plays an important physiological role in regulating insulin-like growth factor (IGF) bioavailability. Recently, we demonstrated that matrix metalloproteinase-7 (MMP-7)/Matrilysin produced by various cancer cells catalyzes the proteolysis of IGFBP-3 in vitro and regulates IGF bioavailability, resulting in an anti-apoptotic effect against anchorage-independent culture. In the present study, we investigated whether MMP-7 contributes to proteolysis of the other five IGFBPs, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5, and IGFBP-6, and whether this results in phosphorylation of the IGF type 1 receptor (IGF-1R). MMP-7 cleaved all six IGFBPs, resulting in IGF-mediated IGF-1R phosphorylation, which was inhibited by EDTA treatment. These results suggest that MMP-7 derived from cancer cells can regulate IGF bioavailability in the microenvironment surrounding the tumor, where various kinds of IGF/IGFBP complexes are found, thereby favoring cancer cell growth and survival during the processes of invasion and metastasis.  相似文献   

13.
The insulin-like growth factor (IGF)-binding proteins (IGFBPs) are a family of six homologous proteins with high binding affinity for IGF-I and IGF-II. Information from NMR and mutagenesis studies is advancing knowledge of the key residues involved in these interactions. IGF binding may be modulated by IGFBP modifications, such as phosphorylation and proteolysis, and by cell or matrix association of the IGFBPs. All six IGFBPs have been shown to inhibit IGF action, but stimulatory effects have also been established for IGFBP-1, -3, and -5. These generally involve a decrease in IGFBP affinity and may require cell association of the IGFBP, but precise mechanisms are unknown. The same three IGFBPs have well established effects that are independent of type I IGF receptor signaling. IGFBP-1 exerts these effects by signaling through alpha(5)beta(1)-integrin, whereas IGFBP-3 and -5 may have specific cell-surface receptors with serine kinase activity. The regulation of cell sensitivity to inhibitory IGFBP signaling may play a role in the growth control of malignant cells.  相似文献   

14.
The ovarian insulin-like growth factor (IGF)/IGF binding protein (IGFBP) system operates to permit maximal stimulation of steroidogenesis in the dominant follicle. In atretic follicles, the predominant IGFBPs are IGFBP-2 and IGFBP-4, which appear to be selectively cleaved in healthy follicles. We have recently demonstrated potent inhibition by IGFBP-4 of both theca and granulosa cell steroid production. The degree to which the inhibition occurred suggested that it was greater than might be expected by sequestration of IGF alone. Our study was designed to test this idea. Granulosa cells were harvested from follicles dissected intact from patients undergoing total abdominal hysterectomy and bilateral salpingoophorectomy. Granulosa cells were incubated with or without gonadotropins and IGFBP-4 in the presence or absence of either the IGF type I receptor blocker alphaIR3 or excess IGFBP-3 to remove the effects of endogenous IGF action. Steroid accumulation in the medium was assessed. IGFBP-4 continued to exert potent inhibitory effects when the action of endogenous IGF was removed from the system, demonstrating that its actions are independent of IGF binding. There was no effect on cell metabolism, and the effects on steroidogenesis were reversible after IGFBP-4 removal from the culture medium. No similar effects were seen with IGFBP-2. These reasults are the first evidence of IGF-independent IGFBP-4 actions and the first evidence of IGF-independent actions of any IGFBPs in the ovary.  相似文献   

15.
Insulin-like growth factors (IGF), IGF receptors and IGF binding proteins (IGFBPs) play an important role in cell growth and differentiation. The liver is the major source of IGF-1 and at least two IGFBPs (IGFBP-1 and IGFBP-3). IGFBPs most often serve to attenuate the effects of IGF at the receptor level and thereby limit IGF-induced cell growth and differentiation. Although changes in IGFBP expression have been described during controlled liver growth such as hepatic regeneration following partial hepatectomy, there is limited knowledge of IGFBPs gene expression in uncontrolled growth or hepatocellular carcinoma. In the present study, we employed Northern blotting techniques to document the expression of IGFBP-1, 3 and 4 in normal human livers, cirrhotic and hepatocellular carcinoma tissues. The results revealed no differences in IGFBP-1, 3 and 4 mRNA levels between normal and cirrhotic tissues. However, the expression of all three IGFBPs mRNA were significantly down regulated in hepatocellular carcinoma tissues. These findings are in keeping with IGFBPs playing an important inhibitory role in the development and/or growth of hepatocellular carcinoma in humans.  相似文献   

16.
Glucocorticoids inhibit the proliferation, but induce the differentiation, of bone marrow stromal cells into osteoblast-like cells. The mechanisms, however, are still conjectural. Since insulin-like growth factors (IGFs) have profound effects on osteoblast growth and differentiation, it is possible that glucocorticoids exert their effects on bone marrow stromal cells in part via regulation of IGFs. Therefore, we analyzed the effects of dexamethasone (Dex) on the expression of IGF I and IGF II in cultured preosteoblastic normal human bone marrow stromal cells (HBMSC). Whereas Dex decreased the concentration of IGF I in the conditioned medium since early in the treatment, the concentration of IGF II was increased progressively as culture period lengthened. As the activities of IGF I and IGF II are regulated by the IGF binding proteins (IGFBPs), we analyzed the effects of Dex on the expression of IGFBPs. Dex increased IGFBP-2 in a time-dependent manner. The increase in IGFBP-2, however, was only to the same extent as that of IGF II at most, depending on the length of treatment. Therefore, the increase in IGFBP-2 would dampen, but not eliminate, the increased IGF II activities. By contrast, Dex decreased IGFBP-3 levels, the latter increasing the bioavailability of IGF II. Although IGFBP-4 mRNA levels were stimulated by Dex, IGFBP-4 concentration in the conditioned medium was unchanged as measured by RIA. IGFBP-5 and IGFBP-6 mRNA levels were decreased by Dex in a time-dependent fashion. IGFBP-5 protein level was also decreased 1–4 days after Dex treatment. IGFBP-1 mRNA was not detectable in HBMSC. These accumulated data indicate that Dex regulates IGF I and IGF II and their binding proteins differentially in normal human bone marrow stromal cells. The progressive increase in IGF II may contribute to Dex-induced cell differentiation. J. Cell. Biochem. 71:449–458, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
High affinity insulin-like growth factor-binding proteins (IGFBP-1 to -6) are a family of structurally homologous proteins that induce cellular responses by insulin-like growth factor (IGF)-dependent and -independent mechanisms. The IGFBP-3 receptor, which mediates the IGF-independent growth inhibitory response, has recently been identified as the type V transforming growth factor-beta receptor (TbetaR-V) (Leal, S. M., Liu, Q. L., Huang, S. S., and Huang, J. S. (1997) J. Biol. Chem. 272, 20572-20576). To characterize the interactions of high affinity IGFBPs with TbetaR-V, mink lung epithelial cells (Mv1Lu cells) were incubated with 125I-labeled recombinant human IGFBPs (125I-IGFBP-1 to -6) in the presence of the cross-linking agent disuccinimidyl suberate and analyzed by 5% SDS-polyacrylamide gel electrophoresis and autoradiography. 125I-IGFBP-3, -4, and -5 but not 125I-IGFBP-1, -2, and -6 bound to TbetaR-V as demonstrated by the detection of the approximately 400-kDa 125I-IGFBP.TbetaR-V cross-linked complex in the cell lysates and immunoprecipitates. The analyses of 125I-labeled ligand binding competition and DNA synthesis inhibition revealed that IGFBP-3 was a more potent ligand for TbetaR-V than IGFBP-4 or -5. Most of the high affinity 125I-IGFBPs formed dimers at the cell surface. The cell-surface dimer of 125I-IGFBP-3 preferentially bound to and was cross-linked to TbetaR-V in the presence of disuccinimidyl suberate. IGFBP-3 did not stimulate the cellular phosphorylation of Smad2 and Smad3, key transducers of the transforming growth factor-beta type I/type II receptor (TbetaR-I.TbetaR-II) heterocomplex-mediated signaling. These results suggest that IGFBP-3, -4, and -5 are specific ligands for TbetaR-V, which mediates the growth inhibitory response through a signaling pathway(s) distinct from that mediated by the TbetaR-I and TbetaR-II heterocomplex.  相似文献   

18.
Insulin-like growth factor (IGF) I is a potent mitogen for human osteosarcoma cells such as the Saos-2/B-10 cell line. IGF binding proteins (IGFBPs) prevent stimulation of DNA synthesis by IGFs. In contrast to recombinant human (rh) IGFBP-2, -3, -4, and -5, 10-100 nM rhIGFBP-6 stimulated [(3)H]thymidine incorporation into DNA and multiplication of Saos-2/B-10 cells. Upon withdrawal of serum, 30 nM IGFBP-6 also decreased apoptosis (within 4 h) and increased protein content and sodium-dependent phosphate uptake (within 24 h), but less potently than IGF I. (125)I-labeled rhIGFBP-6 did not bind to the cells, and cold IGFBP-6 did not affect (125)I-labeled IGF I binding. Production of IGF I, IGF II, and IGFBP-6 by the cells or significant degradation of rhIGFBP-6 could not be detected within 24 h of incubation. Thus, among the rhIGFBPs tested, rhIGFBP-6 is unique in stimulating osteosarcoma cell growth. Furthermore, it has an antiapoptotic effect.  相似文献   

19.
Insulin-like growth factor (IGF)-I and -II are potent mitogens and their mitogenic effects are modulated by IGF binding proteins (IGFBPs). In this study, we evaluated whether the enhanced expression of IGFBP-3 may increase the sensitivity of human gastric cancer cells to the anticancer drugs. We further investigated the potential mechanism for the growth inhibitory effect of anticancer drug induced-IGFBP-3 expression. These IGFBP-3-expressing gastric cancer cells showed a lower proliferation rate than IGFBP-3-non-expressing cells. Treatment with anticancer drugs resulted in up-regulation of IGFBP-3 expression in IGFBP-3-expressing cells. Interestingly the anticancer drug-induced-growth inhibition was more evident in IGFBP-3-expressing cells causing the IGFBP-3 expressing cells but not the IGFBP-3 non-expressing cells to accumulate in the G1/G0 phase and induce apoptosis. The exogenous addition of IGFBP-3 inhibited the growth of IGFBP-3-non-expressing cells, causing them to undergo apoptosis. Our data suggest that IGFBP-3 may have an important role in the biology of gastric cancer cell growth and provides a potential marker for predicting the responsiveness to anticancer drugs.  相似文献   

20.
The Type-2 insulin-like growth factor receptor (IGF2R) mediates the transport of lysosomal hydrolases to lysosomes and the clearance of insulin-like growth factor II (IGF-II). Mutant mice lacking IGF2R usually die perinatally, but are completely rescued from lethality in the absence of IGF-II. IGF2R/IGF-II-deficient mice have elevated levels of circulating IGF binding protein (IGFBP)-3 and show a strong IGFBP-6 immunoreactivity in all pancreatic islet cells and in secretory granules of different size in acinar cells and interlobular connective tissue of exocrine pancreas. Fibroblasts derived from double mutant mice missort the lysosomal protease cathepsin D, and are able to degrade endocytosed (125I)IGFBP-3 intracellularly, however, with lower efficiency than in control cells. These results show that the deficiency of IGF2R and IGF-II affects the expression and metabolism of IGFBPs in a tissue- and cell type-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号