首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have recently described the structure elucidation of slow reacting substance of anaphylaxis (SRS-A) from lung and of a slow reacting substance (SRS) from basophilic leukaemia cells as 5-hydroxy-6-cysteinylglycinyl-7,9,11,14-eicosatetraenoic acid. The stereochemistry of this molecule has now been shown to be 5(S)-hydroxy-6(R)-cysteinylglycinyl-7,9-trans-11,14-cis-eicosatetraenoic acid by comparison of the synthetic and natural products and their derivatives using mass spectrometric and HPLC chromatographic techniques. The synthetic and natural compounds are also indistinguishable by their pharmacological properties, their conversion by soybean lipoxygenase, and their UV spectra.  相似文献   

2.
The chemotactic activity of leukotriene B4 (5S, 12R Dihydroxy 6, 14 cis, 8, 10 trans eicosatetraenoic acid) (LTB4) was examined by using a sensitive Boyden-chamber assay. The activity of LTB4 was compared to other biosynthetic stereoisomers: 5S, 12R Dihydroxy 6, 8, 10 trans 14 cis eicosatetraenoic acid (6-trans LTB4); 5S, 12S Dihydroxy 6, 8, 10 trans 14 cis eicosatetraenoic acid (12-epi-6-trans LTB4), 5S, 12S DiHETE; the metabolic product 20-Hydroxy LTB4 (20-OH LTB4); methylated LTB4 (Methyl-LTB4), and the related monoHETE 5-HETE and 12-HETE. The compounds were purified by several steps of reverse phase and straight phase HPLC. The LTB4 exhibits measurable chemotactic activity at 10(-9) M with maximal activity at 10(-7) M and an ED50 of 10(-8) M. The LTB4 isomers and monoHETE were less chemotactic than previously reported. The monoHETE (5-HETE and 12-HETE), the isomer 12-epi-6-trans LTB4, and 5S, 12S DiHETE fail to attract neutrophils at levels between 10(-6) and 10(-5) M. If these compounds are chemotactic, then activity is at least four orders of magnitude less than that of LTB4. The isomer 6-trans LTB4 at 10(-6) to 10(-5) M induced chemotaxis with an extrapolated ED50 value of 10(-5) M, indicating that a trans for cis change in configuration at position 6 reduces the chemotactic activity of LTB4 by 1000-fold. Conversely, the metabolic product 20-OH LTB4 is at least as active as the native compound LTB4. Methylation of the carboxyl group of LTB4 reduces its chemotactic activity by two orders of magnitude. These results indicate a high degree of stereospecificity for the LTB4 receptor with strict dependence on hydroxyl group, and triene configuration and considerable dependence on the carboxyl group. Modification at the aliphatic omega end of the LTB4 molecule has a minimal effect on function, suggesting that the hydrophobicity of this portion of the molecule is not important for optimal activity. Furthermore, we propose that metabolic products of LTB4 may be of greater importance than LTB4 as physiologic inflammatory mediators in vivo.  相似文献   

3.
A cell-free system obtained from tissue cultures of Andrographis paniculata produces 2-trans,6-trans-farnesol (trans,trans-farnesol) and 2-cis,6-trans-farnesol (cis,trans-farnesol) (5:1), incorporating 10% of the radioactivity from 3R-[2-(14)C]mevalonate. There is total loss of (3)H from 3RS-[2-(14)C,(4S)-4-(3)H(1)]mevalonate and total retention from the (4R) isomer in both the trans,trans-farnesol and cis,trans-farnesol formed. When 3RS-[2-(14)C,5-(3)H(2)]mevalonate is used as substrate, there is total retention of (3)H in the trans,trans-farnesol, but loss of one-sixth of the (3)H in the cis,trans-farnesol. With (1R)- and (1S)-[4,8,12-(14)C(3),1-(3)H(1)]-trans,trans -farnesol and (1R)- and (1S)-[4,8,12-(14)C(3),1-(3)H(1)]-cis, trans-farnesol as substrates, the label is lost from the (1R)-cis,trans and (1S)-trans,trans isomers but retained in the (1R)-trans,trans and (1S)-cis,trans isomers; this shows that the pro-1S hydrogen is exchanged in the conversion of trans,trans-farnesol into cis,trans-farnesol and the pro-1R hydrogen in the conversion of cis,trans-farnesol into trans,trans-farnesol. (1R)-[1-(3)H(1)]-trans,trans-Farnesol and (1R)-[1-(3)H(1)]-cis,trans-farnesol have been synthesized by asymmetric chemical synthesis and exchanged with liver alcohol dehydrogenase. Both the trans- and the cis-alcohol exchange the pro-1R hydrogen atom.  相似文献   

4.
Lai C  Lin G  Wang W  Luo H 《Chirality》2011,23(7):487-494
Glyoxal and methylglyoxal are two endogenous and mutagenic 1,2-dicarbonyl compounds, which can readily form adducts with guanosine. The molecular structures of cyclic guanosine-glyoxal (G-g) and guanosine-methylglyoxal (G-mg) mono-adducts have been extensively studied before. However, diastereoisomers of these adducts have not yet been studied in detail. In this work, one pair of G-g and two pairs of G-mg diastereoisomers were baseline separated by reverse phase HPLC, whose structures were identified as the previously reported cyclic forms, and their absolute configurations were determined by circular dichroism, the octant rule, and molecular modeling. According to the HPLC elution order, configurations of two G-g (as well as trans G-mg) were (6R,7R) and (6S,7S), respectively. Meanwhile, the stability of each isomer in neutral solution was also investigated, which revealed the stability order G-g > cis G-mg > trans G-mg and also indicated distinct transformation processes for different G-mg configurations. Trans G-mg only racemized between each other, while cis G-mg transformed to both cis and trans forms. Different intermediates in the racemization processes were proposed to explain the observations. These results may shed light on further understanding the roles of these two small molecules in mutagenesis.  相似文献   

5.
A product of lipoxygenase (LOX) oxidation of docosahexaenoic acid (DHA), 10,17-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid [10,17(S)-diH(P)DHA] was obtained through various reaction pathways that involved DHA, 17(S)-hydro(pero)xydocosahexa-4Z,7Z,11Z,13Z,15E,19Z-enoic acid [17(S)-H(P)DHA], soybean lipoxygenase (sLOX), and potato tuber lipoxygenase (ptLOX) in various combinations. The structure of the product was confirmed by HPLC, ultraviolet (UV) light spectrometry, GC-MS, tandem MS, and NMR spectroscopy. It has been found that 10,17(S)-diH(P)DHA formed by sLOX through direct oxidation of either DHA or 17(S)-H(P)DHA was apparently identical to the product of ptLOX oxidation of the latter. The sLOX- and ptLOX-derived samples of 10,17-diHDHAs coeluted under the conditions of normal, reverse, and chiral phase HPLC analyses, displayed identical UV absorption spectra with maxima at 260, 270, and 280 nm, and had similar one-dimensional and two-dimensional proton NMR spectra. Analysis of their NMR spectra led to the conclusion that 10,17-diHDHA formed by sLOX had solely 11E,13Z,15E configuration of the conjugated triene fragment, which was identical to the previously published structure of its ptLOX-derived counterpart. Based on the cis,trans geometry of the reaction products, the conclusion is made that in the tested conditions sLOX catalyzed direct double dioxygenation of DHA. Compared with the previously described two-enzyme method that involved sLOX and ptLOX, the current simplified one-enzyme procedure uses only sLOX as the catalyst of both dioxygenation steps.  相似文献   

6.
5,6-dihydroxy-5,6-dihydrothymidine (thymidine glycol) is a major product of the reaction of thymidine with reactive oxygen species, including those generated by ionizing radiation. Thymidine glycol exists as 2 diastereomeric pairs by virtue of the chirality of the C(5) and C(6) atoms. A simple procedure is described for synthesizing and purifying each of the diastereomeric pairs separately. After brominating thymidine, the two trans 5-bromo-6-hydroxy-5,6-dihydrothymidine (thymidine bromohydrin) C(5) diastereomers were easily separated by High Performance Liquid Chromatography. Each thymidine bromohydrin was quantitatively converted to the corresponding diastereomeric thymidine glycol pair by reflux in aqueous solution. The concentrations at equilibrium of the cis (5S,6R),(5R,6S) and trans (5S,6S),(5R,6R) forms of the thymidine glycol diastereomers were determined and were 80% cis and 20% trans for the 5S pair and 87% cis and 13% trans for the 5R pair. At equilibrium, the rate of cis-trans epimerization of the two sets of diastereomers was essentially identical. The 5S diastereomeric pair was significantly more alkali labile than the 5R pair due to the higher concentration of the 5S trans epimer at equilibrium. This differential alkali lability was also manifest when the thymine glycol moiety was present in chemically oxidized poly(dA-dT).poly(dA-dT) indicating that the chemical differences between the diastereomeric pairs are preserved in DNA. These chemical differences may affect the biological properties of this important oxidative derivative of thymine in DNA.  相似文献   

7.
The influence of steric effects on the helical geometry and the interconversion of type II to type I polyproline in water was examined by the synthesis and analysis of proline dimers and hexamers containing up to three (2S,5R)-5-tert-butylproline residues. In the dimers, the bulky 5-tert-butyl substituent was found to exert a significant influence on the local prolyl amide geometry such that the predominant trans-isomer in N-(acetyl)prolyl-prolinamide (1) was converted to 63% cis isomer in N-(acetyl)prolyl-5-tert-butylprolinamide (2) as measured by (1)H-nmr spectroscopy. Similarly, the presence of a 5-tert-butyl group on the C-terminal residue in the polyproline hexamer Ac-Pro(5)-t-BuPro-NH(2) (4) produced a local 5-tert-butylprolyl amide population containing 61% cis isomer in water. In spite of the presence of a local prolyl cis amide geometry, the downstream prolyl amides in 4 remained in the trans isomer as determined by NOESY spectroscopy. Conformational analysis by (13)C-nmr and CD spectroscopy indicated that Ac-Pro(6)-NH(2) (3) adopted the all-trans amide polyproline type II helix in water. As the amount of 5-tert-butylproline increased from one to three residues in hexamers 4-6, a gradual destabilization of the polyproline type II helical geometry was observed by CD spectroscopy in water; however, no spectrum was obtained, indicative of a complete conversion to a polyproline type I helix. The implications of these results are discussed with respect to the previously proposed theoretical mechanisms for the helical interconversion of polyproline, which has been suggested to occur by either a cooperative C- to N-terminal isomerization of the prolyl amide bonds or via a conformational intermediate composed of dispersed sequences of prolyl amide cis and trans isomers.  相似文献   

8.
The 5R,6S and 5S,6R isomers of leukotriene D4 (LTD4), 9cis LTD4, 9cis,11trans LTD4 and 11trans LTD4 were synthesized for comparative pharmacological studies on intestinal and respiratory smooth muscle preparations. The 5S,6R isomers are biologically active, modification of the double bond stereochemistry causing only a moderate reduction in activity. The 5R,6S isomers possess approximately 1% the biological activity of their respective 5S,6R forms.  相似文献   

9.
Both cis and trans unsaturated fatty acids and sodium dodecyl sulfate activated NADPH oxidase in plasma membranes of human neutrophils in the presence of neutrophil cytosol. In contrast, 5,8,11,14-icosatetraynoic acid, saturated fatty acids, esters, peroxides and 4 beta-phorbol 12-myristate 13-acetate, a potent activator of protein kinase C, were inactive. 5,8,11,14-icosatetraynoic acid inhibited superoxide formation elicited by fatty acids. Guanosine 5'[gamma-thio]triphosphate (GTP[gamma S]), a potent activator of guanine-nucleotide-binding proteins (N-proteins) enhanced superoxide formation elicited by fatty acids up to fourfold, supporting our previous suggestion that NADPH oxidase is regulated by an N-protein [Seifert, R. et al. (1986) FEBS Lett. 205, 161-165]. Cytosols from various tissues, soybean lipoxygenase and protein kinase C, purified from chicken stomach, did not substitute neutrophil cytosol. The activity of neutrophil cytosol was destroyed by heating at 95 degrees C. Superoxide formation was not affected by the inhibitor of protein kinase C 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7). Removal of cytosolic ATP by preincubation with hexokinase and glucose, dialysis of neutrophil cytosol or chelation of calcium with EGTA did not abolish the stimulatory effect of arachidonic acid and GTP[gamma S]. Thus, the cytosolic cofactor appears to be a neutrophil-specific and heat-labile protein, which is neither a lipoxygenase nor protein kinase C.  相似文献   

10.
Oxidation of thymine yields 5,6-dihydroxy-5,6-dihydrothymine (thymine glycol. Tg) which, as cis 5S,6R and 5R,6S 2'-deoxyribonucleoside diastereoisomers (dTg1, dTg2), are in equilibrium with their trans 5S,6S and 5R,6R epimers. The stereoselective excision of Tg from DNA by the mammalian orthologs of E. coli DNA N-glycosylase/AP lyases Nth and Nei was reported using substrates in which Tg opposed adenine. Since we showed that Tg is the major product of oxidation of 5-methylcytosine, we asked if the opposing purine influenced stereospecific enzymatic excision. The human ortholog hNth1 released Tg2 much more rapidly than Tg1 regardless of the opposing purine. In contrast, hNeil1 released Tg non-stereoselectively, but the rate of excision was much greater when Tg opposed guanine. Remarkably, the kinetics of excision of Tg by hNth1 and hNeil1 were biphasic, describing a double exponential curve which yielded two rate constants. We suggest that the greater rate constant describes the rate of enzymatic excision of Tg. The smaller rate constant represents the equilibrium constant for the cis and trans epimerization of dTg1 and dTg2 in high molecular weight DNA. Thus, only one of the epimers of dTg1 and dTg2 are enzymatically processed but it is not yet known whether it is cis or trans. Thus, base excision repair of Tg in mammals is mediated by at least two DNA N-glycosylase/AP lyases which are affected by the nature of the diastereoisomer of dTg, the rate of cis-trans epimerization of each diastereoisomer, and the nature of the opposing purine.  相似文献   

11.
The ability of the major neutrophil-derived lipoxygenase metabolites of arachidonic acid to increase the rate of 45Ca influx in rabbit neutrophils was examined. The results obtained demonstrate that (5S),(12R)-dihydroxy-6,8,11,14-(cis,trans,trans,cis)-eicosatetraenoic acid (leukotriene B4) is the most active of the arachidonic acid metabolites. The activity of leukotriene B4 is highly stereospecific in that its three nonenzymatically derived isomers are essentially inactive. The omega-hydroxylation of leukotriene B4 results in a compound that is nearly as active as leukotriene B4 as far as its ability to stimulate calcium influx and neutrophil aggregation while being a much weaker secretagogue. The further conversion of leukotriene B4 into a dicarboxylic acid removes all detectable biological activity. 5,6-Oxido-7,9,11,14-eicosatetraenoic acid (leukotriene A4) methyl ester was also found to increase the rate of calcium influx, while the degradation products of native leukotriene A4 were essentially inactive. These results demonstrate that a close correlation exists between the ability of the various lipoxygenase products to alter calcium homeostasis in rabbit neutrophils and their biological activities.  相似文献   

12.
One carbonyl oxygen of the cyclic hexapeptide cyclo(-Gly1-Pro2-Phe3-Val4-Phe5-Phe6-) (A) can be selectively exchanged with sulphur using Yokoyama's reagent. Surprisingly it was not the C=] of Gly1 but that of Phe5 which was substituted and cyclo(-Gly1-Pro2-Phe3-Val4-Phe5 psi [CS-NH]Phe6-) (B) was obtained. Thionation results in a conformational change of the peptide backbone although the C=O of Phe5 and the corresponding C=S are not involved in internal hydrogen bonds. Two isomers in slow exchange, containing a cis Gly1-Pro2 bond in a beta VIa-turn (minor) and a trans Gly-Pro bond in a beta II'-turn (major), were analyzed by restrained molecular dynamics in vacuo and in DMSO as well as using time dependent distance constraints. It is impossible to fit all experimental data to a static structure of each isomer. Interpreting the conflicting NOEs, local segment flexibility is found. MD simulations lead to a dynamic model for each structure with evidence of an equilibrium between a beta I- and beta II-turn about the Val4-Phe5 amide bond in both the cis and trans isomers. Additionally proton relaxation rates in the rotating frame (R1 rho) were measured to verify the assumption of this fast beta I/beta II equilibrium within each isomer. Significant contributions to R1 rho-rates from intramolecular motions were found for both isomers. Therefore it is possible to distinguish between at least four conformers interconverting on different time scales based on NMR data and MD refinement. This work shows that thionation is a useful modification of peptides for conformation-activity investigations.  相似文献   

13.
The cis/trans conformational equilibrium of the two Ac-Pro isomers of the beta-turn model dipeptide [13C]-Ac-L-Pro-D-Ala-NHMe, 98% 13C enriched at the acetyl carbonyl atom, was investigated by the use of variable temperature gradient enhanced 1H-nmr, two-dimensional (2D) 1H,1H nuclear Overhauser effect spectroscopy (NOESY), 13C,1H one-dimensional steady-state intermolecular NOE, and molecular dynamics calculations. The temperature dependence of the cis/trans Ala(NH) protons are in the region expected for random-coil peptides in H2O (delta delta/delta T = -9.0 and -8.9 ppb for the cis and trans isomers, respectively). The trans NH(CH3) proton indicates smaller temperature dependence (delta delta/delta T approximately -4.8 ppb) than that of the cis isomer (-7.5 ppb). 2D 1H,1H NOESY experiments at 273 K demonstrate significant NOEs between ProH alpha-AlaNH and AlaNH-NH(R) for the trans isomer. The experimental NOE data, coupled with computational analysis, can be interpreted by assuming that the trans isomer most likely adopts an ensemble of folded conformations. The C-CONH(CH3) fragment exhibits significant conformational flexibility; however, a low-energy conformer resembles closely the beta II-turn folded conformations of the x-ray structure of the related model peptide trans-BuCO-L-Pro-Me-D-Ala-NHMe. On the contrary, the cis isomer adopts open conformations. Steady-state intermolecular solute-solvent (H2O) 13C,1H NOE indicates that the water accessibility of the acetyl carbonyl carbons is nearly the same for both isomers. This is consistent with rapid fluctuations of the conformational ensemble and the absence of a highly shielded acetyl oxygen from the bulk solvent. Variable temperature 1H-nmr studies of the cis/trans conformational equilibrium indicate that the trans form is enthalpically favored (delta H degree = -5.14 kJ mole-1) and entropically (delta S degree = -5.47 J.K-1.mole-1) disfavored relative to the cis form. This demonstrates that, in the absence of strongly stabilizing sequence-specific interresidue interactions involving side chains and/or charged terminal groups, the thermodynamic difference of the cis/trans isomers is due to the combined effect of intramolecular and intermolecular (hydration) induced conformational changes.  相似文献   

14.
We investigated the effect of various monofunctional platinum complexes on the thermal stability and conformation of a self-complementary 22-mer duplex oligonucleotide by means of CD and UV melting profiles. We studied several families of triamine complexes of the general formula PtA2AmCl where A2=(NH3)2 and ethylenediamine and where Am=N1-4-methyl-pyridine, N7-guanosine, and 9-ethyl-guanine. Platination by the N1-4-methyl-pyridine and 9-ethyl-guanine complexes led to a decrease in the Tm of the oligonucleotide by 2-11.5 degrees C while platination with the N7-guanosine complexes led to a rise in the melting temperature of the oligonucleotides by 4.5 degrees C. A similar inverse correlation between the two groups of platinum compounds was found in the CD spectra. In all cases, the cis isomer had a more pronounced effect on both the melting curve and the CD spectrum. The cis isomer was found to have a more destabilizing effect than its trans counterpart. This indicates that the cis geometry in fact forces a greater structural constraint on the backbone of the double helix. We have also found that the sugar of the guanosine has a significant influence on both the Tm and CD spectra; the sugar moiety contributes to the stability of the double helix, probably through the formation of hydrogen bonds.  相似文献   

15.
In many estrogen responsive systems the isomers of tamoxifen are known to have different biological character-the trans isomer is generally an antagonist and the cis isomer an agonist. Attempts to similarly characterize the isomers of hydroxytamoxifen (which differ greatly in their affinity for the estrogen receptor) are shown to be complicated by their facile isomerization. This isomerization was studied in cultures of estrogen receptor positive MCF-7 human breast cancer cells and monitored by HPLC under reversed phase conditions. Hydroxytamoxifen isomers that are initially 99% pure, undergo a time and temperature dependent isomerization, so that after 2 days in tissue culture medium at 37 degrees C they have isomerized to the extent of 20%. This isomerization occurs in the cell-free medium alone and cannot be attributed to a metabolic conversion by the cells. The isomerization occurs much more slowly at 4 than at 37 degrees C and can be reduced considerably by various antioxidants (butylated hydroxytoluene, ascorbate, alpha-tocopherol, retinoic acid and retinal); however, at concentrations that block isomerization, these antioxidants are toxic to the cells. Although the medium contains both the cis and trans isomers of hydroxytamoxifen, the MCF-7 cells preferentially accumulate the trans isomer and the material associated with the nuclear estrogen receptor is, in all cases, mainly the higher affinity trans isomer. A similar preference of the estrogen receptor for the trans isomer is seen with diethylstilbestrol, resulting again in almost exclusive accumulation of the trans isomer in the receptor binding site. These experiments indicate the importance of verifying the isomer compositions of easily isomerizable non-steroidal estrogens and antiestrogens, such as diethylstilbestrol and hydroxytamoxifen, both in stock solutions and in experimental samples (especially those derived from receptor-associated material), so as to ascertain that the activity of the individual isomers is being correctly assigned.  相似文献   

16.
The cis and trans isomers of zearalenone [2,4-dihyroxy-6-(10-hydroxy-6-oxo-1-undecenyl)-benzoic acid mu-lactone] and zearalenol [2,4-dihydroxy-6-(6,10-dihydroxy-1-undecenyl)-benzoic acid mu-lactone] were tested for uterotropic activity in the white rat. The metabolites were administered through the oral route (per os) and by topical application to the freshly shaven skin on the back. cis-Zearalenone was significantly more active than trans when fed orally to the rats in the diet or when applied topically by skin application. However, the cis isomer of zearalenol was not significantly different than its trans isomer. trans-Zearalenone was less active than trans-zearalenol.  相似文献   

17.
The cis and trans isomers of zearalenone [2,4-dihyroxy-6-(10-hydroxy-6-oxo-1-undecenyl)-benzoic acid mu-lactone] and zearalenol [2,4-dihydroxy-6-(6,10-dihydroxy-1-undecenyl)-benzoic acid mu-lactone] were tested for uterotropic activity in the white rat. The metabolites were administered through the oral route (per os) and by topical application to the freshly shaven skin on the back. cis-Zearalenone was significantly more active than trans when fed orally to the rats in the diet or when applied topically by skin application. However, the cis isomer of zearalenol was not significantly different than its trans isomer. trans-Zearalenone was less active than trans-zearalenol.  相似文献   

18.
Reactions of trans and cis isomers of the Ru(II) complex [RuCl(2)(DMSO)(4)] with single-stranded hexanucleotide d(T(2)GGT(2)) were studied in aqueous solutions in the absence and presence of excess chloride by high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS). Despite the different reactive species formed from the two isomers in aqueous solution, similar reaction products are obtained in their interaction with d(T(2)GGT(2)). Both [RuCl(2)(DMSO)(4)] isomers bind to the oligonucleotide in the bidentate mode to form thermodynamically stable bis-guanosine adducts, Ru(G-N7)(2). Significant differences were observed in the reaction rates, however the reaction with trans- [RuCl(2)(DMSO)(4)] is ca. 5-10 times faster in comparison to that observed for the cis analogue. This difference is interpreted in terms of different rate-limiting steps for the trans and cis complexes, respectively. It is suggested that the rate of the reaction with the trans isomer is controlled by dissociation of a Cl(-) ligand from the initially formed trans,cis,cis-[RuCl(2)(DMSO)(2)(H(2)O)(2)]. In the contrast, release of a dimethyl sulfoxide molecule from the reactive species cis,fac-[RuCl(2)(DMSO)(3)(H(2)O)] is likely to be rate limiting for the cis analogue. Significant influence of electrostatic interactions on the reaction rate was observed for the trans isomer. Mechanistic interpretation of the observed reactivity trends based on data obtained from UV-Vis spectroscopy, HPLC and MALDI-TOF MS studies is presented and discussed within the paper.  相似文献   

19.
Dimorphecolic acid (9-OH-18:2Delta(10)(trans)(,12)(trans)) is the major fatty acid of seeds of Dimorphotheca species. This fatty acid contains structural features that are not typically found in plant fatty acids, including a C-9 hydroxyl group, Delta(10),Delta(12)-conjugated double bonds, and trans-Delta(12) unsaturation. Expressed sequence tag analysis was conducted to determine the biosynthetic origin of dimorphecolic acid. cDNAs for two divergent forms of Delta(12)-oleic acid desaturase, designated DsFAD2-1 and Ds-FAD2-2, were identified among expressed sequence tags generated from developing Dimorphotheca sinuata seeds. Expression of DsFAD2-1 in Saccharomyces cerevisiae and soybean somatic embryos resulted in the accumulation of the trans-Delta(12) isomer of linoleic acid (18: 2Delta(9)(cis)(,12)(trans)) rather than the more typical cis-Delta(12) isomer. When co-expressed with DsFAD2-1 in soybean embryos or yeast, DsFAD2-2 converted 18:2Delta(9)(cis)(,12)(trans) into dimorphecolic acid. When DsFAD2-2 was expressed alone in soybean embryos or together with a typical cis-Delta(12)-oleic acid desaturase in yeast, trace amounts of the cis-Delta(12) isomer of dimorphecolic acid (9-OH-18:2Delta(10)(trans,)(12)(cis)) were formed from DsFAD2-2 activity with cis-Delta(12)-linoleic acid [corrected]. These results indicate that DsFAD2-2 catalyzes the conversion of the Delta(9) double bond of linoleic acid into a C-9 hydroxyl group and Delta(10)(trans) double bond and displays a substrate preference for the trans-Delta(12), rather than the cis-Delta(12), isomer of linoleic acid. Overall these data are consistent with a biosynthetic pathway of dimorphecolic acid involving the concerted activities of DsFAD2-1 and DsFAD2-2. The evolution of two divergent Delta(12)-oleic acid desaturases for the biosynthesis of an unusual fatty acid is unprecedented in plants.  相似文献   

20.
Photo-responsive phosphoramidite monomers, which bear an azobenzene between acridine and the phosphoramidite unit, were synthesized, and incorporated into oligonucleotides. Upon UV irradiation, the azobenzene in the modified DNA efficiently isomerized from the trans isomer into the cis isomer. Although the Tm values of their duplexes with complementary DNA were not much changed by the isomerization, site-selective RNA scission was significantly accelerated by the UV irradiation when Mn(II) ion was used as the catalyst for RNA scission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号