首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin D1 promotes mitogen-independent cell cycle progression in hepatocytes.   总被引:12,自引:0,他引:12  
Cyclin D1 is widely believed to regulate progression through G1 phase of the cell cycle, and previous studies have shown that this protein is induced during hepatocyte proliferation in culture and in vivo. In this study, the role of cyclin D1 in the cell cycle of primary rat hepatocytes was further examined. Following epidermal growth factor stimulation, cyclin D1 was upregulated at time points corresponding to the mitogen restriction point, and this was associated with enhanced cyclin D1-associated kinase activity. To test whether cyclin D1 expression was sufficient to promote mitogen-independent progression through the G1-S transition, we constructed a replication-defective adenovirus that overexpressed human cyclin D1. Transfection with the cyclin D1 vector but not a control vector resulted in hepatocyte DNA synthesis in the absence of growth factor that was similar to that seen in mitogen-treated cells. Furthermore, cyclin D1 transfection led to activation of downstream biochemical events, including cyclin A and proliferating cell nuclear antigen expression and cyclin E- and cyclin A-associated kinase activation. These results suggest that cyclin D1 expression is sufficient to promote progression of hepatocytes through the G1 restriction point.  相似文献   

2.
3.
4.
INTRODUCTION/OBJECTIVES: Cell cycle progression is driven by the coordinated regulation of cyclin-dependent kinases (CDKs). In response to mitogenic stimuli, CDK4 and CDK2 form complexes with cyclins D and E, respectively, and translocate to the nucleus in the late G(1) phase. It is an on-going discussion whether mammalian cells need both CDK4 and CDK2 kinase activities for induction of S phase. METHODS AND RESULTS: In this study, we have explored the role of CDK4 activity during G(1) progression of primary rat hepatocytes. We found that CDK4 activity was restricted by either inhibiting growth factor induced cyclin D1-induction with the PI3K inhibitor LY294002, or by transient transfection with a dominant negative CDK4 mutant. In both cases, we observed reduced CDK2 nuclear translocation and reduced CDK2-Thr160 phosphorylation. Furthermore, reduced pRb hyperphosphorylation and reduced cellular proliferation were observed. Ectopic expression of cyclin D1 alone was not sufficient to induce CDK4 nuclear translocation, CDK2 activity or cell proliferation. CONCLUSIONS: Thus, epidermal growth factor-induced CDK4 activity was necessary for CDK2 activation and for hepatocyte proliferation. These results also suggest that, in addition to regulating cyclin D1 expression, PI3K is involved in regulation of nuclear shuttling of cyclin-CDK complexes in G(1) phase.  相似文献   

5.
The onset of S phase in fission yeast is regulated at Start, the point of commitment to the mitotic cell cycle. The p34cdc2 kinase is essential for G1 progression past Start, but until now its regulation has been poorly understood. Here we show that the cig2/cyc17 B-type cyclin has an important role in G1 progression, and demonstrate that p34cdc2 kinase activity is periodically associated with cig2 in G1. Cells lacking cig2 are defective in G1 progression, and this is particularly clear in small cells that must regulate Start with respect to cell size. We also find that the cig1 B-type cyclin can promote G1 progression. Whilst p25rum1 can inhibit cig2/cdc2 activity in vitro, and may transiently inhibit this complex in vivo, cig1 is regulated independently of p25rum1. Since cig1/cdc2 kinase activity peaks in mitotic cells, and decreases after mitosis with similar kinetics to cdc13-associated kinase activity, we suggest that cig2 is likely to be the principal fission yeast G1 cyclin. cig2 protein levels accumulate in G1 cells, and we propose that p25rum1 may transiently inhibit cig2-associated p34cdc2 activity until the critical cell size required for Start is reached.  相似文献   

6.
A putative G1 cyclin gene, Antma;CycD1;1 (CycD1), from Antirrhinum majus is known to be expressed throughout the cell cycle in the meristem and other actively proliferating cells. To test its role in cell cycle progression, we examined the effect of CycD1 expression in the tobacco (Nicotiana tabacum) cell suspension culture BY-2. Green fluorescent protein:CycD1 is located in the nucleus throughout interphase. Using epitope-tagged CycD1, we show that it interacts in vivo with CDKA, a cyclin dependent protein kinase that acts at both the G1/S and the G2/M boundaries. We examined the effect of induced expression at different stages of the cell cycle. Expression in G0 cells accelerated entry into both S-phase and mitosis, whereas expression during S-phase accelerated entry into mitosis. Consistent with acceleration of both transitions, the CycD1-associated cyclin dependent kinase can phosphorylate both histone H1 and Rb proteins. The expression of cyclinD1 led to the early activation of total CDK activity, consistent with accelerated cell cycle progression. Continuous expression of CycD1 led to moderate increases in growth rate. Therefore, in contrast with animal D cyclins, CycD1 can promote both G0/G1/S and S/G2/M progression. This indicates that D cyclin function may have diverged between plants and animals.  相似文献   

7.
In mouse macrophage cells, the increase of the intracellular cAMP level activates protein kinase A (PKA) and results in inhibition of cell cycle progression in both G1 and G2/M phases. G1 arrest is mediated by a cdk inhibitor, p27Kip1, which prevents G1 cyclin/cdk complexes from being activated in response to colony stimulating factor-1, whereas inhibition of G2/M progression has not been fully elucidated. In this report we analyzed the effect of cAMP on G2/M progression in a mouse macrophage cell line, BAC1.2F5A. Flow cytometric analysis and mitotic index measurement using both synchronized and asynchronized cells revealed that addition of cAMP-elevating agents (8-bromoadenosine 3':5'-cyclic monophosphate and 3-isobutyl-methyl-xanthine), although they did not affect S phase progression or M/G1 transition, temporarily arrested cells in G2 but eventually the cells proceeded to M phase, resulting in about 4 hours delay of G2 progression. Timing of cyclin B1/Cdc2 kinase activation was also retarded by about 4 hours, which was accompanied by inhibition of efficient accumulation of cyclin B1 proteins. Initial induction and accumulation of cyclin B1 mRNA were not hampered, but the half life of cyclin B1 proteins was significantly shorter during G2 phase in the presence of cAMP-elevating agents compared with that of the cells blocked from progressing through M phase by nocodazole. These results imply that the cAMP/PKA pathway regulates G2 phase progression by altering the stability of a crucial cell cycle regulator.  相似文献   

8.
9.
Cdk2 was once believed to play an essential role in cell cycle progression, but cdk2-/- mice have minimal phenotypic abnormalities. In this study, we examined the role of cdk2 in hepatocyte proliferation, centrosome duplication, and survival. Cdk2-/- hepatocytes underwent mitosis and had normal centrosome content after mitogen stimulation. Unlike wild-type cells, cdk2-/- liver cells failed to undergo centrosome overduplication in response to ectopic cyclin D1 expression. After mitogen stimulation in culture or partial hepatectomy in vivo, cdk2-/- hepatocytes demonstrated diminished proliferation. Cyclin D1 is a key mediator of cell cycle progression in hepatocytes, and transient expression of this protein is sufficient to promote robust proliferation of these cells in vivo. In cdk2-/- mice and animals treated with the cdk2 inhibitor seliciclib, cyclin D1 failed to induce hepatocyte cell cycle progression. Surprisingly, cdk2 ablation or inhibition led to massive hepatocyte and animal death following cyclin D1 transfection. In a transgenic model of chronic hepatic cyclin D1 expression, seliciclib induced hepatocyte injury and animal death, suggesting that cdk2 is required for survival of cyclin D1-expressing cells even in the absence of substantial proliferation. In conclusion, our studies demonstrate that cdk2 plays a role in liver regeneration. Furthermore, it is essential for centrosome overduplication, proliferation, and survival of hepatocytes that aberrantly express cyclin D1 in vivo. These studies suggest that cdk2 may warrant further investigation as a target for therapy of liver tumors with constitutive cyclin D1 expression.  相似文献   

10.
Nam HJ  Kim S  Lee MW  Lee BS  Hara T  Saya H  Cho H  Lee JH 《Cellular signalling》2008,20(7):1349-1358
Growth factors accelerate G0 to S progression in the cell cycle, however, the roles of growth factors in other cell cycle phases are largely unknown. Here, we show that treatment of HeLa cells with hepatocyte growth factor (HGF) at G2 phase induced the G2/M transition delay as evidenced by FACS analysis as well as by mitotic index and time-lapse analyses. Growth factors such as epidermal growth factor (EGF) and fibroblast growth factor (FGF) also induced G2/M transition delay like HGF. HGF treatment at G2 phase causes a delayed activation of cyclin B1-associated kinase and a diminished nuclear translocation of cyclin B1. Either U0126, a MAPK kinase (MEK) inhibitor, or kinase-dead mutant of ribosomal S6 kinase (RSK) abolished the delay. Additionally, knockdown of RSK1, but not RSK2, with siRNA abrogated the delay, indicating that the extracellular-regulated protein kinase (ERK)-RSK1 mediates the HGF-induced delay. We further found that the delay in G2/M transition of cells expressing oncogenic HGF receptor, M1268T, was abolished by RSK1 knockdown. Intriguingly, we observed that HGF induced chromosomal segregation defects, and depletion of RSK1, but not RSK2, aggravated these chromosomal aberrations. Taken together, the ERK-RSK1 activation by growth factors delays G2/M transition and this might be required to maintain genomic integrity during growth factor stimulation.  相似文献   

11.
In this study, activation of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signalling pathway was analyzed in proliferating rat hepatocytes both in vivo after partial hepatectomy and in vitro following epidermal growth factor (EGF)-pyruvate stimulation. First, a biphasic MEK/ERK activation was evidenced in G(1) phase of hepatocytes from regenerating liver but not from sham-operated control animals. One occurred in early G(1) (30 min to 4 h), and the other occurred in mid-late G(1), peaking at around 10.5 h. Interestingly, the mid-late G(1) activation peak was located just before cyclin D1 induction in both in vivo and in vitro models. Second, the biological role of the MEK/ERK cascade activation in hepatocyte progression through the G(1)/S transition was assessed by adding a MEK inhibitor (PD 98059) to EGF-pyruvate-stimulated hepatocytes in primary culture. In the presence of MEK inhibitor, cyclin D1 mRNA accumulation was inhibited, DNA replication was totally abolished, and the MEK1 isoform was preferentially targeted by this inhibition. This effect was dose dependent and completely reversed by removing the MEK inhibitor. Furthermore, transient transfection of hepatocytes with activated MEK1 construct resulted in increased cyclin D1 mRNA accumulation. Third, a correlation between the mid-late G(1) MEK/ERK activation in hepatocytes in vivo after partial hepatectomy and the mitogen-independent proliferation capacity of these cells in vitro was established. Among hepatocytes isolated either 5, 7, 9, 12 or 15 h after partial hepatectomy, only those isolated from 12- and 15-h regenerating livers were able to replicate DNA without additional growth stimulation in vitro. In addition, PD 98059 intravenous administration in vivo, before MEK activation, was able to inhibit DNA replication in hepatocytes from regenerating livers. Taken together, these results show that (i) early induction of the MEK/ERK cascade is restricted to hepatocytes from hepatectomized animals, allowing an early distinction of primed hepatocytes from those returning to quiescence, and (ii) mid-late G(1) MEK/ERK activation is mainly associated with cyclin D1 accumulation which leads to mitogen-independent progression of hepatocytes to S phase. These results allow us to point to a growth factor dependency in mid-late G(1) phase of proliferating hepatocytes in vivo as observed in vitro in proliferating hepatocytes and argue for a crucial role of the MEK/ERK cascade signalling pathway.  相似文献   

12.
13.
Classical cytotoxic therapy has been minimally useful in the treatment of hepatocellular carcinoma. In an effort to develop a new approach to the treatment of this neoplasm, we have investigated the signal transduction pathways regulating the growth of human hepatoma cells. In the data reported here, cyclic AMP (cAMP), a negative growth regulator for many cells of epithelial origin, induced G1 synchronization and apoptosis in the HepG2 human hepatoma cell line. The effects of cAMP on the components of the G1/S transition were analyzed. There was no detectable effect of two different cAMP analogs, 8-bromo cAMP or dibutyryl cAMP on the level of the D-type cyclins, cyclin E, cyclin-dependent kinase 2, cyclin-dependent kinase 4, p53, or the cyclin-dependent kinase inhibitors p21 or p27. In contrast, the cAMP analogs induced a dramatic downregulation of cyclin A protein, cyclin A messenger RNA, and cyclin A-dependent kinase activity. Cyclin A-dependent kinase has been shown to be required for the G1-S transition. Furthermore, cyclin A deregulation has been implicated in the pathogenesis of hepatocellular carcinoma. The data reported here suggest a novel signal transduction-based approach to hepatoma therapy.  相似文献   

14.
Alam S  Sen E  Brashear H  Meyers C 《Journal of virology》2006,80(10):4927-4939
Adeno-associated virus type 2 (AAV2) seropositivity is negatively correlated with the development of human papillomavirus (HPV)-associated cervical cancer. We have begun analysis of the molecular mechanisms underlying AAV2-mediated onco-suppression through cell cycle regulation in HPV-infected keratinocytes isolated from a low-grade cervical lesion. AAV2 superinfection of HPV type 31b (HPV31b)-positive cells at early times postinfection resulted in degradation of the cyclin-dependent kinase (CDK) inhibitor p21(WAF1) protein in a proteosome-dependent manner. Downstream consequences of lowering p21(WAF1) levels included a proportional loss of cyclin E/CDK2 complexes bound to p21(WAF1). The loss of stable p21(WAF1)/cyclin E/CDK2 complexes coincided with an increase in CDK2-associated kinase activity and cyclin E levels. Both events have the potential to enhance the G(1)/S transition point mediated by active cyclin E/CDK2 complexes. Concurrently, cyclin A and E2F levels were decreased, conditions reminiscent of delayed entrance into the S phase of the cell cycle. On the other hand, infection of primary human foreskin keratinocytes with AAV2 resulted in upregulation of p21(WAF1) protein levels, reminiscent of a block in G(1) phase progression. We propose that by down regulating p21(WAF1), AAV2 initiates cell cycle activities leading to enhanced G(1)/S phase-like conditions which may be favorable for AAV2-specific functions and may lead to downstream interference with HPV-associated cervical cancer progression.  相似文献   

15.
Cyclin E2, the cycle continues   总被引:3,自引:0,他引:3  
The eukaryotic cell cycle is regulated by a family of serine/threonine protein kinases known as cyclin-dependent kinases (CDKs). The activation of a CDK is dependent on its association with a cyclin regulatory subunit. The formation of distinct cyclin-CDK complexes controls the progression through the first gap phase (G(1)) and initiation of DNA synthesis (S phase). These complexes are in turn regulated by protein phosphorylation and cyclin-dependent kinase inhibitors (CKIs). Cyclin E2 has emerged as the second member of the E-type cyclin family. Cyclin E2-associated kinase activity is regulated in a cell cycle dependent manner with peak activity at the G(1) to S transition. Ectopic expression of cyclin E2 in human cells accelerates G(1), suggesting that cyclin E2 is rate limiting for G(1) progression. Although the pattern and level of cyclin E2 expression in some primary tumor and normal tissue RNAs are distinct from cyclin E1, both E-type cyclins appear to have inherent functional redundancies. This functional redundancy has facilitated the rapid characterization of cyclin E2 and uncovered unique features associated with each E-type cyclin.  相似文献   

16.
Thyroid cell proliferation is regulated by the concerted action of TSH/cAMP and serum growth factors. The specific contributions of cAMP-dependent vs. -independent signals to cell cycle progression are not well understood. We examined the molecular basis for the synergistic effects of TSH and serum on G1/S phase cell cycle progression in rat thyroid cells. Although strictly required for thyroid cell proliferation, TSH failed to stimulate G1 phase cell cycle progression. Together with serum, TSH increased the number of cycling cells. TSH enhanced the effects of serum on retinoblastoma protein hyperphosphorylation, cyclin-dependent kinase 2 activity, and cyclin A expression. Most notably, TSH and serum elicited strikingly different effects on p27 localization. TSH stimulated the nuclear accumulation of p27, whereas serum induced its nuclear export. Unexpectedly, TSH enhanced the depletion of nuclear p27 in serum-treated cells. Furthermore, only combined treatment with TSH and serum led to rapamycin-sensitive p27 turnover. Together, TSH and serum stimulated p70S6K activity that remained high through S phase. These data suggest that TSH regulates cell cycle progression, in part, by increasing the number of cycling cells through p70S6K-mediated effects on the localization of p27.  相似文献   

17.
The effect of growth factors on the cell cycle progression, except G1/S transition, is poorly understood. Herein, we examined the effect of hepatocyte growth factor (HGF) treated at S phase on the cell cycle progression of HeLa cells. Interestingly, the treatment resulted in G2 delay, evidenced by flow cytometric and mitotic index analyses. The delay corresponded with the delay of degradation of cyclin A and cyclin B, and the delay of decrease of Cdk1/cyclin B and Cdk2/cyclin A kinase activities. As for the signaling responsible, sustained activation of ERK, but neither of p38MAPK nor of JNK, was observed after HGF treatment at S phase. Furthermore, U0126, an inhibitor of MEK1, and DN-MEK partially abrogated the G2 delay, indicating that activation of MEK-ERK pathway is involved. Taken together, HGF treatment of HeLa cells at S phase induces G2 delay partially through sustained activation of ERK signaling.  相似文献   

18.
Little is known about the posttranslational control of the cyclin-dependent protein kinase (CDK) inhibitor p21. We describe here a transient phosphorylation of p21 in the G2/M phase. G2/M-phosphorylated p21 is short-lived relative to hypophosphorylated p21. p21 becomes nuclear during S phase, prior to its phosphorylation by CDK2. S126-phosphorylated cyclin B1 binds to T57-phosphorylated p21. Cdc2 kinase activation is delayed in p21-deficient cells due to delayed association between Cdc2 and cyclin B1. Cyclin B1-Cdc2 kinase activity and G2/M progression in p21-/- cells are restored after reexpression of wild-type but not T57A mutant p21. The cyclin B1 S126A mutant exhibits reduced Cdc2 binding and has low kinase activity. Phosphorylated p21 binds to cyclin B1 when Cdc2 is phosphorylated on Y15 and associates poorly with the complex. Dephosphorylation on Y15 and phosphorylation on T161 promotes Cdc2 binding to the p21-cyclin B1 complex, which becomes activated as a kinase. Thus, hyperphosphorylated p21 activates the Cdc2 kinase in the G2/M transition.  相似文献   

19.
The molecular mechanism by which thyroid hormones exert their effects on cell growth is still unknown. In this study, we used chick embryo hepatocytes at different stages of development as a model to investigate the effect of the two thyroid hormones, T3 and T4, and of their metabolite T2, on the control of cell proliferation. We observed that T2 provokes increase of DNA-synthesis as well as T3 and T4, independently of developmental stage. We found that this stimulatory effect on the S phase is reverted by specific inhibitors of protein kinase C (PKC) and p42/44 mitogen-activated protein kinase (p42/44 MAPK), Ro 31-8220 or PD 98059. Furthermore, the treatment with thyroid hormones induces the activation of PKCalpha and p42/44 MAPK, suggesting their role as possible downstream mediators of cell response mediated by thyroid hormones. The increase of DNA-synthesis is well correlated with the increased levels of cyclin D1 and cdk4 that control the G1 phase, and also with the activities of cell-cycle proteins involved in the G1 to S phase progression, such as cyclin E/A-cdk2 complexes. Interestingly, the activity of cyclin-cdk2 complexes is strongly repressed in the presence of PKC and p42/44 MAPK inhibitors. In conclusion, we demonstrated that the thyroid hormones could modulate different signaling pathways that are able to control cell-cycle progression, mainly during G1/S transition.  相似文献   

20.
The phosphorylation of ribosomal protein S6 is thought to be required for biosynthesis of the cell's translational apparatus, a critical component of cell growth and proliferation. We have studied the signal transduction pathways involved in hepatic S6 phosphorylation during late gestation in the rat. This is a period during which hepatocytes show a high rate of proliferation that is, at least in part, independent of mitogenic signaling pathways that are operative in mature hepatocytes. Our initial studies demonstrated that there was low basal activity of two S6 kinases in liver, S6K1 and S6K2, on embryonic day 19 (2 days preterm). In addition, insulin- and growth factor-mediated S6K1 and S6K2 activation was markedly attenuated compared with that in adult liver. Nonetheless, two-dimensional gel electrophoresis demonstrated that fetal liver S6 itself was highly phosphorylated. To characterize the fetal hepatocyte pathway for S6 phosphorylation, we went on to study the sensitivity of hepatocyte proliferation to the S6 kinase inhibitor rapamycin. Unexpectedly, administration of rapamycin to embryonic day 19 fetuses in situ did not affect hepatocyte DNA synthesis. This resistance to the growth inhibitory effect of rapamycin occurred even though S6K1 and S6K2 were inhibited. Furthermore, fetal hepatocyte proliferation was sustained even though rapamycin administration resulted in the dephosphorylation of ribosomal protein S6. In contrast, rapamycin blocked hepatic DNA synthesis in adult rats following partial hepatectomy coincident with S6 dephosphorylation. We conclude that hepatocyte proliferation in the late gestation fetus is supported by a rapamycin-resistant mechanism that can function independently of ribosomal protein S6 phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号