首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of extracted phenolics or spent bran added to decorticated red sorghum kernels during fuel ethanol production was studied and compared to maize and whole red and white sorghums. After liquefaction, free amino nitrogen ranged from 65 to 101 mg/l and at the end of saccharification all mashes had approx. 80 g glucose and 2–5 g maltose/100 g meal (dry basis). Saccharified worts were fermented giving 50–90 ml ethanol/l. The lowest fermentation efficiency (76%) was obtained in the white sorghum. Ethanol yields indicate that sorghum bran or its associated phenolics did not significantly affect the efficiency of the sequential steps involved in ethanol production. Red sorghum is a good alternative to maize to produce ethanol and the difference regarding white sorghum and maize was mainly due to endosperm protein structure and composition.  相似文献   

2.
《Biomass》1987,12(1):57-70
The high polyphenol content of birdproff grain sorghum has been associated with impaired nutritional quality of the grain and with reduced brewing value of birdproof grain sorghum malt due to enzyme inhibition. In this investigation, high polyphenol grain sorghum was evaluated as a feedstock for fermentation ethanol production using NaOH pretreatment to inactivate the polyphenolic compounds prior to hydrolysis with commercial amylases. The polyphenolic inhibition of starch hydrolysis was minimal at a grain sorghum slurry concentration of 20% dry solids, but became pronounced at slurry concentrations of 28% and higher. At these high slurry concentrations the liquefaction and subsequent saccharification and fermentation were markedly improved by alkaline pretreatment. The highest ethanol concentration (12·3%, vol/vol), coupled with the best starch conversion efficiency to ethanol (83·5%), was obtained with a 28% grain sorghum slurry using a partial simultaneous saccharification and fermentation procedure. The residual fermented solids had a crude protein content of 45·4%. Tannic acid decreased yeast cell viability in synthetic media, but had no effect on the hydrolysis or fermentation of grain sorghum starch.  相似文献   

3.
Fusaium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae 2541 fermented soluble and insoluble carbohydrates of sweet sorghum stalk directly to ethanol. Both microorganisms were first grown aerobically and fermented sorghum stalk to ethanol thereafter. During fermentation, insoluble carbohydrates were hydrolysed to soluble sugars by the celluloytic system of F. oxysporum. Ethanol yields as high as 24.4 and 33.5 g/100 g dry stalks were obtained by F. oxysporum and the mixed culture respectively, representing a theoretical yield enhancement of 11.6% and 53.6% respectively. The corresponding ethanol concentrations in the fermentation medium were 4.6% and 6.4% (w/v). These results clearly demonstrated that a large portion of insoluble carbohydrate from sorghum was converted by simultaneous saccharification and fermentation to ethanol, making the process promising for bioethanol production.  相似文献   

4.
The rising demand for bioethanol, the most common alternative to petroleum-derived fuel used worldwide, has encouraged a feedstock shift to non-food crops to reduce the competition for resources between food and energy production. Sweet sorghum has become one of the most promising non-food energy crops because of its high output and strong adaptive ability. However, the means by which sweet sorghum stalks can be cost-effectively utilized for ethanol fermentation in large-scale industrial production and commercialization remains unclear. In this study, we identified a novel Saccharomyces cerevisiae strain, TSH1, from the soil in which sweet sorghum stalks were stored. This strain exhibited excellent ethanol fermentative capacity and ability to withstand stressful solid-state fermentation conditions. Furthermore, we gradually scaled up from a 500-mL flask to a 127-m3 rotary-drum fermenter and eventually constructed a 550-m3 rotary-drum fermentation system to establish an efficient industrial fermentation platform based on TSH1. The batch fermentations were completed in less than 20 hours, with up to 96 tons of crushed sweet sorghum stalks in the 550-m3 fermenter reaching 88% of relative theoretical ethanol yield (RTEY). These results collectively demonstrate that ethanol solid-state fermentation technology can be a highly efficient and low-cost solution for utilizing sweet sorghum, providing a feasible and economical means of developing non-food bioethanol.  相似文献   

5.
Pozol is an acid beverage obtained from the natural fermentation of nixtamal (heat- and alkali-treated maize) dough. The concentration of mono- and disaccharides from maize is reduced during nixtamalization, so that starch is the main carbohydrate available for lactic acid fermentation. In order to provide some basis to understand the role of amylolytic lactic acid bacteria (ALAB) in this fermented food, their diversity and physiological characteristics were determined. Forty amylolytic strains were characterized by phenotypic and molecular taxonomic methods. Four different biotypes were distinguished via ribotyping; Streptococcus bovis strains were found to be predominant. Streptococcus macedonicus, Lactococcus lactis, and Enterococcus sulfureus strains were also identified. S. bovis strain 25124 showed extremely low amylase yield relative to biomass (139 U g [cell dry weight](-1)) and specific rate of amylase production (130.7 U g [cell dry weight](-1) h(-1)). In contrast, it showed a high specific growth rate (0.94 h(-1)) and an efficient energy conversion yield to bacterial cell biomass (0.31 g of biomass g of substrate(-1)). These would confer on the strain a competitive advantage and are the possible reasons for its dominance. Transient accumulation of maltooligosaccharides during fermentation could presumably serve as energy sources for nonamylolytic species in pozol fermentation. This would explain the observed diversity and the dominance of nonamylolytic lactic acid bacteria at the end of fermentation. These results are the first step to understanding the importance of ALAB during pozol fermentation.  相似文献   

6.
Eight lactic acid bacteria were isolated from fermenting maize meal. They were identified as Lactobacillus brevis, L. casei, L. fermentum, Pediococcus acidilacti, P. pentosaceus, Lactobacillus spp. I and Pediococcus spp. I and II. L. brevis and Lactobacillus spp. I isolated from the spontaneously fermented maize meal together with L. brevis isolated from rye sour dough and L. plantarum from ogi, a fermented maize gruel, were selected as starter organisms. There was a decrease in the final pH from 4.9 to 3.8 and an increase in the acid equivalent and temperature of the spontaneously-generated sour maize meal at the end of 24h fermentation. There was a decrease in the pH and moisture content of the sour maize breads relative to the conventional wheat bread. An improvement in the shelf-life of the bread samples was also obtained. Crude protein values of the sour maize breads were between 4.36% and 8.87%, while crude fat contents ranged between 3.66% to 7.67%. The ash contents increased from 2.29% to 2.54% while total carbohydrate values were between 46.31% and 65.3%. Calcium, phosphorus and potassium contents ranged from 0.015, 0.26 and 0.018% to 0.036, 0.47 and 0.036% respectively. Physical examination of the bread samples showed that all were cracked and relatively hard. Weight, height and volume ranged from 316 to 380g; 4.2 to 5.2cm and 200 to 320cm3 respectively. Statistical analysis of the sensory attributes revealed a consumer acceptance of the sour maize breads, although ranking test showed preference for the baker's yeast leavened bread that served as a control.  相似文献   

7.
A new mesophilic anaerobic cellulolytic bacterium, CM126, was isolated from an anaerobic sewage sludge digester. The organism was non-spore-forming, rod-shaped, Gram-negative and motile with peritrichous flagella. It fermented microcrystalline Avicel cellulose, xylan, Solka floc cellulose, filter paper, L-arabinose, D-xylose, β-methyl xyloside, D-glucose, cellobiose and xylitol and produced indole. The % G + C content was 36. Acetic acid, ethanol, lactic acid, pyruvic acid, carbon dioxide and hydrogen were produced as metabolic products. This strain could grow at 20–44·5°C and at pH values 5·2–7·4 with optimal growth at 37–41·5°C and pH 7. Both endoglucanase and xylanase were detected in the supernatant fluid of a culture grown on medium containing Avicel cellulose and cellobiose. Exoglucanase could not be found in either supernatant fluid or the cell lysate. When cellulose and cellobiose fermentation were compared, the enzyme production rate in cellobiose fermentation was higher than in cellulose fermentation. The optimum pH for both enzyme activities was 5·0, the optimum temperature was 40°C for the endoglucanase and 50°C for the xylanase. Both enzyme activities were inhibited at 70°C. Co-culture of this organism with a Methanosarcina sp. (A145) had no effect on cellulose degradation and both endoglucanase and xylanase were stable in the co-culture.  相似文献   

8.
With the aim of improving the safety and nutritional quality of traditional African weaning porridge, the reduction of the viscosity of a high solids fermented pearl millet porridge by addition of sorghum malt (amylase rich flour, ARF) was investigated. The effect of fermentation, cooking, malt addition and recooking on the microflora of, and the survival of an inoculated pathogen were determined. Addition of 5% (w/v) sorghum ARF to the gelatinized millet porridge gave an acceptable viscosity of 2500–3000 cP at a high solid content of 30%. Fermentation inhibited the growth of microorganisms in the porridge and recooking the fermented porridge after sorghum ARF addition further eliminated (<102 c.f.u./g) the moulds and coliforms that were introduced with the sorghum ARF. The recooked, fermented millet plus sorghum ARF porridge prevented the proliferation of the inoculated Escherichia coli and reduced it to <102 c.f.u./g within 18 h. The porridge could supply children under 3 years with the daily required protein using 1.4 feedings per day and required energy with 4 feedings a day.  相似文献   

9.

Key message

Coordinated association and linkage mapping identified 25 grain quality QTLs in multiple environments, and fine mapping of the Wx locus supports the use of high-density genetic markers in linkage mapping.

Abstract

There is a wide range of end-use products made from cereal grains, and these products often demand different grain characteristics. Fortunately, cereal crop species including sorghum [Sorghum bicolor (L.) Moench] contain high phenotypic variation for traits influencing grain quality. Identifying genetic variants underlying this phenotypic variation allows plant breeders to develop genotypes with grain attributes optimized for their intended usage. Multiple sorghum mapping populations were rigorously phenotyped across two environments (SC Coastal Plain and Central TX) in 2 years for five major grain quality traits: amylose, starch, crude protein, crude fat, and gross energy. Coordinated association and linkage mapping revealed several robust QTLs that make prime targets to improve grain quality for food, feed, and fuel products. Although the amylose QTL interval spanned many megabases, the marker with greatest significance was located just 12 kb from waxy (Wx), the primary gene regulating amylose production in cereal grains. This suggests higher resolution mapping in recombinant inbred line (RIL) populations can be obtained when genotyped at a high marker density. The major QTL for crude fat content, identified in both a RIL population and grain sorghum diversity panel, encompassed the DGAT1 locus, a critical gene involved in maize lipid biosynthesis. Another QTL on chromosome 1 was consistently mapped in both RIL populations for multiple grain quality traits including starch, crude protein, and gross energy. Collectively, these genetic regions offer excellent opportunities to manipulate grain composition and set up future studies for gene validation.
  相似文献   

10.
Eight lactic acid bacteria were isolated from fermenting maize meal. They were identified as Lactobacillus brevis, L. casei, L. fermentum, Pediococcus acidilacti, P. pentosaceus, Lactobacillus spp. I and Pediococcus spp. I and II. L. brevis and Lactobacillus spp. I isolated from the spontaneously fermented maize meal together with L. brevis isolated from rye sour dough and L. plantarum from ogi, a fermented maize gruel, were selected as starter organisms. There was a decrease in the final pH from 4.9 to 3.8 and an increase in the acid equivalent and temperature of the spontaneously-generated sour maize meal at the end of 24h fermentation. There was a decrease in the pH and moisture content of the sour maize breads relative to the conventional wheat bread. An improvement in the shelf-life of the bread samples was also obtained. Crude protein values of the sour maize breads were between 4.36% and 8.87%, while crude fat contents ranged between 3.66% to 7.67%. The ash contents increased from 2.29% to 2.54% while total carbohydrate values were between 46.31% and 65.3%. Calcium, phosphorus and potassium contents ranged from 0.015, 0.26 and 0.018% to 0.036, 0.47 and 0.036% respectively. Physical examination of the bread samples showed that all were cracked and relatively hard. Weight, height and volume ranged from 316 to 380g; 4.2 to 5.2cm and 200 to 320cm3 respectively. Statistical analysis of the sensory attributes revealed a consumer acceptance of the sour maize breads, although ranking test showed preference for the baker's yeast leavened bread that served as a control.  相似文献   

11.
Aims:  Four local small-scale factories were studied to determine the sources of enterococci in traditional fermented sausages.
Methods and Results:  Different points during the production of a traditional fermented sausage type ( fuet ) were evaluated. Randomly amplified polymorphic DNA (RAPD)-PCR was used to type 596 Enterococcus isolates from the final products, the initial meat batter, the casing, the workers' hands and the equipment. Species-specific PCR-multiplex and the partial sequencing of atpA gene and 16S rRNA gene sequencing allowed the identification of the isolates: Enterococcus faecalis (31·4%), Enterococcus faecium (30·7%), Enterococcus sanguinicola (14·9%), Enterococcus devriesei (9·7%), Enterococcus malodoratus (7·2%), Enterococcus gilvus (1·0%), Enterococcus gallinarum (1·3%), Enterococcus casseliflavus (3·4%), Enterococcus hermanniensis (0·2%), and Enterococcus durans (0·2%) . A total of 92 different RAPD-PCR profiles were distributed among the different factories and samples evaluated. Most of the genotypes found in fuet samples were traced back to their source.
Conclusions:  The major sources of enterococci in the traditional fermented sausages studied were mainly the equipment followed by the raw ingredients, although a low proportion was traced back to human origin.
Significance and Impact of the Study:  This work contributes to determine the source of enterococcal contamination in fermented sausages and also to the knowledge of the meat environment.  相似文献   

12.
Clostridium pasteurianum fermented glucose to acetate, butyrate, CO2 and H2. In batch cultures the fermentation pattern was only slightly affected by culture pH over the range 8·0 to 5·5. The acetate/butyrate ratio was always higher than or equal to one. Between 2·14 and 2·33 mol H2 was produced per mol glucose fermented. At unregulated pH, more butanol and less butyrate was formed. In a carbon-limited chemostat, the steady-state acetate/butyrate ratio was always lower than one. H2 production was approximately 1·70 mol per mol glucose consumed. Substantial amounts of extracellular protein were formed. With decreasing pH, acetate and formate production decreased, while H2 production was highest at pH 6.0. With increasing dilution rate ( D ), the product spectrum hardly changed, but more biomass was formed. Y glucosemax and Y ATPmax were 55·97 and 31·48 g dry weight per mol glucose or ATP respectively. With increasing glucose input the formation of fatty acids and H2 slightly decreased.
Continuous cultures fermented mannitol to acetate, butyrate, butanol, CO2 and H2. With acetate as co-substrate, butanol production and molar growth yields, Y mannitol and Y ATP, markedly decreased, while the butyrate and H2 production increased. The latter reached a value of 2·21 mol H2 per mol mannitol consumed.  相似文献   

13.
Several studies have reported that lactic acid bacteria may increase the production of free fatty acids by lipolysis of milk fat, though no studies have been found in the literature showing the effect of kefir grains on the composition of fatty acids in milk. In this study the influence of kefir grains from different origins [Rio de Janeiro (AR), Viçosa (AV) e Lavras (AD)], different time of storage, and different fat content on the fatty acid content of cow milk after fermentation was investigated. Fatty acid composition was determined by gas chromatography. Values were considered significantly different when p<0.05. The highest palmitic acid content, which is antimutagenic compost, was seen in AV grain (36.6g/100g fatty acids), which may have contributed to increasing the antimutagenic potential in fermented milk. Higher monounsaturated fatty acid (25.8g/100g fatty acids) and lower saturated fatty acid (72.7g/100g fatty acids) contents were observed in AV, when compared to other grains, due to higher Δ9-desaturase activity (0.31) that improves the nutritional quality of lipids. Higher oleic acid (25.0g/100g fatty acids) and monounsaturated fatty acid (28.2g/100g fatty acids) and lower saturated fatty acid (67.2g/100g fatty acids) contents were found in stored kefir relatively to fermented kefir leading to possible increase of antimutagenic and anticarcinogenic potential and improvement of nutritional quality of lipids in storage milk. Only high-lipidic matrix displayed increase polyunsaturated fatty acids after fermentation. These findings open up new areas of study related to optimizing desaturase activity during fermentation in order to obtaining a fermented product with higher nutritional lipid quality.  相似文献   

14.
Ogiis processed traditionally by the use of uncontrolled spontaneous fermentation of maize, sorghum and millet. In this study, traditionally applied spontaneous fermentation was compared with accelerated batch fermentation (or back-slopping) and the use of starter cultures to initiate fermentation. Lactic acid bacteria populations comprised 95 of the total viable bacteria and remained prominent throughout the fermentations, while number of moulds and coliform bacteria declined as the fermentation progressed. The fermentation method involving the application of starter culture helps most to control the prevalence of coliforms and moulds. Lactic acid bacteria, such as Lactococcus raffinolactis, Pediococcussp.,Pediococcus pentosaceus, Lactobacillus plantarum, Lb. suebicus and Lb. brevis,were isolated at different processing stages of ogi using accelerated batch fermentation (back-slopping) technique. Highest increase in acidity was observed immediately after wet-milling and sieving fermenting maize grains at 28 and 48 h. Sharp increases in the reducing sugar levels were noted between 24 and 28 h of fermentations during wet-milling and sieving processes.  相似文献   

15.
Tropical maize is an alternative energy crop being considered as a feedstock for bioethanol production in the North Central and Midwest United States. Tropical maize is advantageous because it produces large amounts of soluble sugars in its stalks, creates a large amount of biomass, and requires lower inputs (e.g. nitrogen) than grain corn. Soluble sugars, including sucrose, glucose and fructose were extracted by pressing the stalks at dough stage (R4). The initial extracted syrup fermented faster than the control culture grown on a yeast extract/phosphate/sucrose medium. The syrup was subsequently concentrated 1.25–2.25 times, supplemented with urea, and fermented using Saccharomyces cerevisiae for up to 96 h. The final ethanol concentrations obtained were 8.1 % (v/v) to 15.6 % (v/v), equivalent to 90.3–92.2 % of the theoretical yields. However, fermentation productivity decreased with sugar concentration, suggesting that the yeast might be osmotically stressed at the increased sugar concentrations. These results provide in-depth information for utilizing tropical maize syrup for bioethanol production that will help in tropical maize breeding and development for use as another feedstock for the biofuel industry.  相似文献   

16.
Pozol is an acid beverage obtained from the natural fermentation of nixtamal (heat- and alkali-treated maize) dough. The concentration of mono- and disaccharides from maize is reduced during nixtamalization, so that starch is the main carbohydrate available for lactic acid fermentation. In order to provide some basis to understand the role of amylolytic lactic acid bacteria (ALAB) in this fermented food, their diversity and physiological characteristics were determined. Forty amylolytic strains were characterized by phenotypic and molecular taxonomic methods. Four different biotypes were distinguished via ribotyping; Streptococcus bovis strains were found to be predominant. Streptococcus macedonicus, Lactococcus lactis, and Enterococcus sulfureus strains were also identified. S. bovis strain 25124 showed extremely low amylase yield relative to biomass (139 U g [cell dry weight]−1) and specific rate of amylase production (130.7 U g [cell dry weight]−1 h−1). In contrast, it showed a high specific growth rate (0.94 h−1) and an efficient energy conversion yield to bacterial cell biomass (0.31 g of biomass g of substrate−1). These would confer on the strain a competitive advantage and are the possible reasons for its dominance. Transient accumulation of maltooligosaccharides during fermentation could presumably serve as energy sources for nonamylolytic species in pozol fermentation. This would explain the observed diversity and the dominance of nonamylolytic lactic acid bacteria at the end of fermentation. These results are the first step to understanding the importance of ALAB during pozol fermentation.  相似文献   

17.
Summary Sorghum flour was fermented in the traditional way for Kisra production. Wet or dry preparations of fermented sorghum dough from Sudanese households were employed as inocula. Microbiological and chemical analysis was performed throughout the fermentation process. Cell counts reached values of up to 9 × 108 cfu/g and contained >99% lactobacilli. Strains of Lactobacillus fermentum, L. reuteri and L. amylovorus or L. fermentum and L. amylovorus were found as dominant organisms in doughs inoculated with wet or dry sorghum dough preparations, respectively. The ratios of the lactobacilli remained constant after up to four consecutive fermentations. After inoculation with the dry dough preparation the yeast Candida krusei was detected at 106 cfu/g. During the fermentation the pH declined from 5.5 to values of approximately 3.4. The maltose content of the dough decreased continuously, wheraas glucose was accumulated as an intermediate. The relative content of most amino acids in the doughs did not significantly change during the fermentation. However, the concentrations of cysteine and methionine decreased, whereas threonine was enriched in the dough. Correspondence to: R. F. Vogel  相似文献   

18.
【背景】环境因子是影响微生物生长代谢的重要因素,解析半开放条件下酿造过程中环境因子对微生物群落演替的作用对于清香型白酒生产调控具有重要意义。配糟在白酒发酵过程中起着调节发酵速度的作用,其对微生物群落组成变化的影响尚不明确。【目的】揭示使用不同发酵周期配糟对清香型白酒发酵过程中环境因子及微生物群落演替的影响。【方法】采用PacBio测序平台和多元统计分析比较使用2种配糟酒醅中微生物群落结构组成,结合蒙特卡洛置换检验明确环境因子对微生物群落的影响。【结果】与使用正常发酵周期配糟酒醅相比,使用延长发酵周期配糟酒醅水分较低,而酸度、氨基酸态氮、总游离氨基酸、还原糖和残余淀粉较高;微生物多样性和丰富度分析发现,使用延长发酵周期配糟酒醅中细菌α多样性极显著高于使用正常发酵周期配糟酒醅(P<0.001),而真菌α多样性显著/极显著低于使用正常发酵周期配糟酒醅(P<0.05, P<0.001);通过组间差异性分析发现,细菌群落共产生28个差异指示种,而真菌群落共产生15个差异指示种;水分、酸度、氨基酸态氮、还原糖、残余淀粉和总游离氨基酸对微生物群落结构的影响显著(P<0.05)...  相似文献   

19.
Alcoholic fermentation represents a significant example of production of compounds utilizable as alternative energy sources. High ethanol concentration in the fermented wort is needed in order to reduce the energy consumption in the process of alcohol recovery. A particular Saccharomyces strain, of the oviformis species, obtained from fermented worts exhibiting high ethanol concentrations is studied and compared with a common S. cerevisiae strain in order to show its skill in fermenting very concentrated sugar solutions with an energy saving of ca. 10%.  相似文献   

20.
The genus Pectinatus has been often reported in beer spoilage with off-flavours. The bacteria are strictly anaerobic, Gram-negative rods. Propionate and acetate are the main fermentation products from glucose in the two species belonging to the genus, P. cerevisiiphilus and P. frisingensis. Amino acids routinely present at a high level in beer were not growth substrates for both species, and a significant accumulation of succinate was observed with lactate as growth substrate. Both Pectinatus ssp. showed almost identical fermentation balances on glucose. Growth kinetics of both glucose-grown species were unchanged under a N2, H2 or 20% CO2-containing atmosphere. Combinations of culture medium pH values from pH 3·9 to pH 7·2, of glucose levels between 5 and 55 mmol l-1, and of lactate concentrations varied from 4 to 40 mmol l-1 demonstrated that biomass and volatile fatty acids production were proportional to glucose concentration for both Pectinatus species. A significant increase of volatile fatty acid production was measured for both species at the lowest pH values with a lactate or a glucose concentration increase. The maximum biomass production was observed at pH 6·2 for P. cerevisiiphilus , and between pH 4·5 and pH 4·9 for P. frisingensis. Glucose and lactate or pH value were dependent with regard to propionate and acetate production in P. frisingensis. On the other hand, the variations of these three parameters were independent with regard to biomass production for both strains, and to volatile fatty acids production for P. cerevisiiphilus. Addition of ethanol to glucose-grown cultures completely inhibited growth at 1·3 mol l-1 ethanol for P. cerevisiiphilus , and at 1·8 mol l-1 for P. frisingensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号