首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mass spectrometry analyses of the complex polar flagella from Helicobacter pylori demonstrated that both FlaA and FlaB proteins are post-translationally modified with pseudaminic acid (Pse5Ac7Ac, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno -n o n-ulosonic acid). Unlike Campylobacter, flagellar glycosylation in Helicobacter displays little heterogeneity in isoform or glycoform distribution, although all glycosylation sites are located in the central core region of the protein monomer in a manner similar to that found in Campylobacter. Bioinformatic analysis revealed five genes (HP0840, HP0178, HP0326A, HP0326B, HP0114) homologous to other prokaryote genes previously reported to be involved in motility, flagellar glycosylation or polysaccharide biosynthesis. Insertional mutagenesis of four of these homologues in Helicobacter (HP0178, HP0326A, HP0326B, HP0114) resulted in a non-motile phenotype, no structural flagella filament and only minor amounts of flagellin protein detectable by Western immunoblot. However, mRNA levels for the flagellin structural genes remained unaffected by each mutation. In view of the combined bioinformatic and structural evidence indicating a role for these gene products in glycan biosynthesis, subsequent investigations focused on the functional characterization of the respective gene products. A novel approach was devised to identify biosynthetic sugar nucleotide precursors from intracellular metabolic pools of parent and isogenic mutants using capillary electrophoresis-electrospray mass spectrometry (CE-ESMS) and precursor ion scanning. HP0326A, HP0326B and the HP0178 gene products are directly involved in the biosynthesis of the nucleotide-activated form of Pse, CMP-Pse. Mass spectral analyses of the cytosolic extract from the HP0326A and HP0326B isogenic mutants revealed the accumulation of a mono- and a diacetamido trideoxyhexose UDP sugar nucleotide precursor.  相似文献   

2.
Helicobacter pylori cagA-positive strains are associated with gastric adenocarcinoma. The cagA gene product CagA is delivered into gastric epithelial cells where it localizes to the plasma membrane and undergoes tyrosine phosphorylation at the EPIYA-repeat region, which contains the EPIYA-A segment, EPIYA-B segment, and Western CagA-specific EPIYA-C or East Asian CagA-specific EPIYA-D segment. In host cells, CagA specifically binds to and deregulates SHP-2 phosphatase via the tyrosine-phosphorylated EPIYA-C or EPIYA-D segment, thereby inducing an elongated cell shape known as the hummingbird phenotype. In this study, we found that CagA multimerizes in cells in a manner independent of its tyrosine phosphorylation. Using a series of CagA mutants, we identified a conserved amino acid sequence motif (FPLXRXXXVXDLSKVG), which mediates CagA multimerization, within the EPIYA-C segment as well as in a sequence that located immediately downstream of the EPIYA-C or EPIYA-D segment. We also found that a phosphorylation-resistant CagA, which multimerizes but cannot bind SHP-2, inhibits the wild-type CagA-SHP-2 complex formation and abolishes induction of the hummingbird phenotype. Thus, SHP-2 binds to a preformed and tyrosinephosphorylated CagA multimer via its two Src homology 2 domains. These results, in turn, indicate that CagA multimerization is a prerequisite for CagA-SHP-2 interaction and subsequent deregulation of SHP-2. The present work raises the possibility that inhibition of CagA multimerization abolishes pathophysiological activities of CagA that promote gastric carcinogenesis.  相似文献   

3.
YbgC proteins are bacterial acyl-CoA thioesterases associated with the Tol-Pal system. This system is important for cell envelope integrity and is part of the cell division machinery. In E. coli, YbgC associates with the cell membrane and is part of a protein network involved in lipid biogenesis. In the human pathogen Helicobacter pylori, a putative homologue of YbgC, named HP0496, was found to interact with the cytotoxin CagA by two different studies. We have determined its crystal structure and characterized its enzymatic activity. The structure of HP0496 shows that it is a member of the hot-dog family of proteins, with a epsilongamma tetrameric arrangement. Finally, enzymatic assays performed with the purified protein showed that HP0496 is an acyl-CoA thioesterase that favors long-chain substrates.  相似文献   

4.
The chemical structure of free lipid A isolated from rough- and smooth-form lipopolysaccharides (R-LPS and S-LPS, respectively) of the human gastroduodenal pathogen Helicobacter pylori was elucidated by compositional and degradative analysis, nuclear magnetic resonance spectroscopy, and mass spectrometry. The predominant molecular species in both lipid A components are identical and tetraacylated, but a second molecular species which is hexaacylated is also present in lipid A from S-LPS. Despite differences in substitution by acyl chains, the hydrophilic backbone of the molecules consisted of beta(1,6)-linked D-glucosamine (GlcN) disaccharide 1-phosphate. Because of microheterogeneity, nonstoichiometric amounts of ethanolamine-phosphate were also linked to the glycosidic hydroxyl group. In S-LPS, but not in R-LPS, the hydroxyl group at position 4' was partially substituted by another phosphate group. Considerable variation in the distribution of fatty acids on the lipid A backbone was revealed by laser desorption mass spectrometry. In tetraacyl lipid A, the amino group of the reducing GlcN carried (R)-3-hydroxyoctadecanoic acid (position 2), that of the nonreducing GlcN carried (R)-3-(octadecanoyloxy)octadecanoic acid (position 2'), and ester-bound (R)-3-hydroxyhexadecanoic acid was attached at position 3. Hexaacyl lipid A had a similar substitution by fatty acids, but in addition, ester-bound (R)-3-(dodecanoyloxy)hexadecanoic acid or (R)-3(tetradecanoyloxy)hexadecanoic acid was attached at position 3'. The predominant absence of ester-bound 4'-phosphate and the presence of tetraacyl lipid A with fatty acids of 16 to 18 carbons in length differentiate H. pylori lipid A from that of other bacterial species and help explain the low endotoxic and biological activities of H. pylori LPS.  相似文献   

5.
Purification and characterization of urease from Helicobacter pylori   总被引:58,自引:0,他引:58  
Urease was purified 112-fold to homogeneity from the microaerophilic human gastric bacterium, Helicobacter pylori. The urease isolation procedure included a water extraction step, size exclusion chromatography, and anion exchange chromatography. The purified enzyme exhibited a Km of 0.3 +/- 0.1 mM and a Vmax of 1,100 +/- 200 mumols of urea hydrolyzed/min/mg of protein at 22 degrees C in 31 mM Tris-HCl, pH 8.0. The isoelectric point was 5.99 +/- 0.03. Molecular mass estimated for the native enzyme was 380,000 +/- 30,000 daltons, whereas subunit values of 62,000 +/- 2,000 and 30,000 +/- 1,000 were determined. The partial amino-terminal sequence (17 residues) of the large subunit of H. pylori urease (Mr = 62,000) was 76% homologous with an internal sequence of the homohexameric jack bean urease subunit (Mr = 90,770; Takashima, K., Suga, T., and Mamiya, G. (1988) Eur. J. Biochem. 175, 151-165) and was 65% homologous with amino-terminal sequences of the large subunits of heteropolymeric ureases from Proteus mirabilis (Mr = 73,000) and from Klebsiella aerogenes (Mr = 72,000; Mobley, H. L. T., and Hausinger, R. P. (1989) Microbiol. Rev. 53, 85-108). The amino-terminal sequence (20 residues) of the small subunit of H. pylori urease (Mr = 30,000) was 65 and 60% homologous with the amino-terminal sequences of the subunit of jack bean urease and with the Mr = 11,000 subunit of P. mirabilis urease (Jones, B. D., and Mobley, H. L. T. (1989) J. Bacteriol. 171, 6414-6422), respectively. Thus, the urease of H. pylori shows similarities to ureases found in plants and other bacteria. When used as antigens in an enzyme-linked immunosorbent assay, neither purified urease nor an Mr = 54,000 protein that co-purified with urease by size exclusion chromatography was as effective as crude preparations of H. pylori proteins at distinguishing sera from persons known either to be infected with H. pylori or not.  相似文献   

6.
Asparaginase was purified from Helicobacter pylori 26695 and its pathophysiological role explored. The K(m) value of asparagine was 9.75 ± 1.81 μM at pH 7.0, and the optimum pH range was broad and around a neutral pH. H. pylori asparaginase converted extracellular asparagine to aspartate. H. pylori cells were unable to take up extracellular asparagine directly. Instead, aspartate produced by the action of the asparaginase was transported into H. pylori cells, where it was partially converted to β-alanine. Asparaginase exhibited striking cytotoxic activity against histiocytic lymphoma cell line U937 cells via asparagine deprivation. The cytotoxic activity of live H. pylori cells against U937 cells was significantly diminished by deletion of the asparaginase gene, indicating that asparaginase functions as a cytotoxic agent of the bacterium. The cytotoxic effect was negligible for gastric epithelial cell line AGS cells, suggesting that the effect differs across host cell types. An asparaginase-deficient mutant strain was significantly less capable of colonizing Mongolian gerbils. Since asparagine depletion by exogenous asparaginase has been shown to suppress lymphocyte proliferation in vivo, the present results suggest that H. pylori asparaginase may be involved in inhibition of normal lymphocyte function at the gastric niche, allowing H. pylori to evade the host immune system.  相似文献   

7.
Helicobacterpylori (Hp) resistance to clarithromycin, one of the antibiotics most used to eradicate infection, is connected with the presence of a point mutation on the level of adenine at position 2143 or 2144 of 23S rRNA. AIM: The aim of the study is to evaluate of the presence of these mutation vs control clarithromycin resistant Hp strains present in North Sardinia; to verify the real association between the type of mutation and the resistance-level; to use easier molecular biology methods to quickly locate the resistance-associated mutations beginning with the bioptic material. The clarithromycin susceptibility of Hp isolates was tested by the E-test method (antibiotic assay). Genomic DNA of Hp strains was amplified using specific primers for the domain V. of ribosomic 23S rRNA and sequenced after the reaction with a primer within the fragment 23S. At the same time PCR-RFLP reliability was examined underlining the presence of these mutations with BsaI, BbsI, MboII restriction enzymes. Two mutations in 2143 (A- - G) and 2144 (A- - G) were found by domain V sequencing. The strains with mutation 2143 are characterized by a greater resistance level (MIC>64 g/ml) than those with mutation 2144 (MIC <64 g/ml). Restriction endonucleases BbsI and MboII recognise the site containing the mutation 2143 (A- - G), while BsaI recognise the mutation 2144 (A- - G). These methods might enable us to identify the presence of Hp directly from bioptic material and possible clarithromycin resistance and plan a suitable therapeutic strategy and consequently a better control of the infection.  相似文献   

8.
Functional characterization of Helicobacter pylori DnaB helicase   总被引:1,自引:1,他引:0  
Helicobacter pylori causes gastric ulcer diseases and gastric adenocarcinoma in humans. Not much is known regarding DNA replication in H.pylori that is important for cell survival. Here we report the cloning, expression and characterization of H.pylori DnaB (HpDnaB) helicase both in vitro and in vivo. Among the DnaB homologs, only Escherichia coli DnaB has been studied extensively. HpDnaB showed strong 5′ to 3′ helicase and ATPase activity. Interestingly, H.pylori does not have an obvious DnaC homolog which is essential for DnaB loading on the E.coli chromosomal DNA replication origin (oriC). However, HpDnaB can functionally complement the E.coli DnaB temperature-sensitive mutant at the non-permissive temperature, confirming that HpDnaB is a true replicative helicase. Escherichia coli DnaC co-eluted in the same fraction with HpDnaB following gel filtration analysis suggesting that these proteins might physically interact with each other. It is possible that a functional DnaC homolog is present in H.pylori. The complete characterization of H.pylori DnaB helicase will also help the comparative analysis of DnaB helicases among bacteria.  相似文献   

9.
Cendron L  Zanotti G 《The FEBS journal》2011,278(8):1223-1231
Helicobacter pylori cytotoxin-associated gene-pathogenicity island (cagPAI) is responsible for the secretion of the CagA effector through a type IV secretion system (T4SS) apparatus, as well as of peptidoglycan and possibly other not yet identified factors. Twenty-nine different polypeptide chains are encoded by this cluster of genes, although only some of them show a significant similarity with the constitutive elements of well characterized secretion systems from other bacteria. The other cagPAI components represent almost unique proteins in this scenario. The majority of the T4SS include approximately fifteen components, taking into account either the transmembrane complex subunits, ATPases or substrate factors. The composition of the cagPAI is very complex: it includes proteins most likely involved at different levels in the pilus assembly, stabilization and processing of secreted substrate, as well as regulatory particles possibly involved in the control of the entire apparatus. Despite recent findings with respect to components that play a role in the interaction with the host cell, the function of several cagPAI proteins remains unclear or unknown. This is particularly true for those that represent unique members with no clear similarity to those of other T4SS and no obvious evidence of involvement in the secretion of CagA or induction of pro-inflammatory responses. We summarize what is known about these accessory components, both from a molecular and structural point of view, as well as their putative physiological role.  相似文献   

10.
11.
Helicobacter pylori flagellin is heavily glycosylated with the novel sialic acid-like nonulosonate, pseudaminic acid (Pse). The glycosylation process is essential for assembly of functional flagellar filaments and consequent bacterial motility. Because motility is a key virulence factor for this and other important pathogens, the Pse biosynthetic pathway offers potential for novel therapeutic targets. From recent NMR analyses, we determined that the conversion of UDP-alpha-D-Glc-NAc to the central intermediate in the pathway, UDP-4-amino-4,6-dideoxy-beta-L-AltNAc, proceeds by formation of UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose by the dehydratase/epimerase PseB (HP0840) followed with amino transfer by the aminotransferase, PseC (HP0366). The central role of PseC in the H. pylori Pse biosynthetic pathway prompted us to determine crystal structures of the native protein, its complexes with pyridoxal phosphate alone and in combination with the UDP-4-amino-4,6-dideoxy-beta-L-AltNAc product, the latter being converted to the external aldimine form in the active site of the enzyme. In the binding site, the AltNAc sugar ring adopts a 4C1 chair conformation, which is different from the predominant 1C4 form found in solution. The enzyme forms a homodimer where each monomer contributes to the active site, and these structures have permitted the identification of key residues involved in stabilization, and possibly catalysis, of the beta-L-arabino intermediate during the amino transfer reaction. The essential role of Lys183 in the catalytic event was confirmed by site-directed mutagenesis. This work presents for the first time a nucleotide-sugar aminotransferase co-crystallized with its natural ligand, and, in conjunction with the recent functional characterization of this enzyme, these results will assist in elucidating the aminotransferase reaction mechanism within the Pse biosynthetic pathway.  相似文献   

12.
Chan EC  Chang CC  Li YS  Chang CA  Chiou CC  Wu TZ 《Biochemistry》2000,39(16):4838-4845
Phospholipase activities of human gastric bacterium, Helicobacter pylori, are regarded as the pathogenic factors owing to their actions on epithelial cell membranes. In this study, we purified and characterized neutral sphingomyelinase (N-SMase) from the superficial components of H. pylori strains for the first time. N-SMase was purified 2083-fold with an overall recovery of 37%. The purification steps included acid glycine extraction, ammonium sulfate precipitation, CM-Sepharose, Mono-Q, and Sephadex G-75 column chromatography. Approximate molecular mass for the native N-SMase was around 32 kDa. When N-omega-trinitrophenylaminolauryl sphingomyelin (TNPAL-SM) was used as a substrate, the purified enzyme exhibited a K(m) of 6.7 microM and a V(max) of 15.6 nmol of TNPAL-sphingosine/h/mg of protein at 37 degrees C in 50 mM phosphate-buffered saline, pH 7.4. N-SMase reaches optimal activity at pH 7.4 and has a pI of 7.15. The enzyme activity is magnesium dependent and specifically hydrolyzed sphingomyelin and phosphatidylethanolamine. The enzyme also exhibits hemolytic activity on human erythrocytes. According to Western blot analysis, a rabbit antiserum against purified N-SMase from H. pylori cross-reacted with SMase from Bacillus cereus. Sera from individuals with H. pylori infection but not uninfected ones recognizing the purified N-SMase indicated that it was produced in vivo. In enzyme-linked immunosorbent assays, the purified N-SMase used as an antigen was as effective as crude protein antigens in detecting human antibodies to H. pylori.  相似文献   

13.
14.
CagA is a major disease-associated factor injected by the gastric pathogen Helicobacter pylori. In this issue, Hayashi et al. (2012) report the crystallographic structure of the CagA N terminus (residues 24-876) at 3.19 ? resolution. This study revealed three distinct domains, giving novel insights into intramolecular and intermolecular protein and phosphatidylserine interactions.  相似文献   

15.
16.
Cloning and characterization of the fur gene from Helicobacter pylori   总被引:1,自引:0,他引:1  
The fur homologue of Helicobacter pylori was isolated by screening a plasmid-based, genomic DNA library using the Fur titration assay (FURTA). The analysis of the DNA sequence revealed significant homology with Fur proteins from various other bacterial species. The highest degree of homology was observed for the Fur protein from Campylobacter jejuni. The H. pylori fur gene on a plasmid could partially complement the fur mutation in Escherichia coli strain H1681. The repressor activity depended on addition of iron to the medium indicating that iron acts as a co-repressor for the H. pylori protein similar to Fur from other bacteria. Comparison of Fur from H. pylori strain NCTC11638 with the recently published genomic DNA sequence of another strain (26695) confirmed the identity of the fur homologue and revealed that the fur locus is highly conserved in both strains.  相似文献   

17.
We report, for the first time, the presence in Helicobacter pylori of an aliphatic amidase that, like urease, contributes to ammonia production. Aliphatic amidases are cytoplasmic acylamide amidohydrolases (EC 3.5.1.4) hydrolysing short-chain aliphatic amides to produce ammonia and the corresponding organic acid. The finding of an aliphatic amidase in H. pylori was unexpected as this enzyme has only previously been described in bacteria of environmental (soil or water) origin. The H. pylori amidase gene amiE (1017 bp) was sequenced, and the deduced amino acid sequence of AmiE (37 746 Da) is very similar (75% identity) to the other two sequenced aliphatic amidases, one from Pseudomonas aeruginosa and one from Rhodococcus sp. R312. Amidase activity was measured as the release of ammonia by sonicated crude extracts from H. pylori strains and from recombinant Escherichia coli strains overproducing the H. pylori amidase. The substrate specificity was analysed with crude extracts from H. pylori cells grown in vitro; the best substrates were propionamide, acrylamide and acetamide. Polymerase chain reaction (PCR) amplification of an internal amiE sequence was obtained with each of 45 different H. pylori clinical isolates, suggesting that amidase is common to all H. pylori strains. A H. pylori mutant (N6-836) carrying an interrupted amiE gene was constructed by allelic exchange. No amidase activity could be detected in N6-836. In a N6–urease negative mutant, amidase activity was two- to threefold higher than in the parental strain N6. Crude extracts of strain N6 slowly hydrolysed formamide. This activity was affected in neither the amidase negative strain (N6-836) nor a double mutant strain deficient in both amidase and urease activities, suggesting the presence of an independent discrete formamidase in H. pylori. The existence of an aliphatic amidase, a correlation between the urease and amidase activities and the possible presence of a formamidase indicates that H. pylori has a large range of possibilities for intracellular ammonia production.  相似文献   

18.
Protein methylase II (AdoMet:protein-carboxyl O-methyltransferase, EC 2.1.1.24) was identified and purified 115-fold from Helicobacter pylori through Q-Sepharose ion exchange column, AdoHcy-Sepharose 4B column, and Superdex 200 HR column chromatography using FPLC. The purified preparation showed two protein bands of about 78 kDa and 29 kDa molecular mass on SDS-PAGE. On non-denaturing gel electrophoresis, the enzyme migrated as a single band with a molecular mass of 410 kDa. In addition, MALDI-TOF-MS analysis and Superdex 200 HR column chromatography of the purified enzyme showed a major mass signal with molecular mass values of 425 kDa and 430 kDa, respectively. Therefore, the above results led us to suggest that protein methylase II purified from H. pylori is composed of four heterodimers with 425 kDa (4x(78+29)=428 kDa). This magnitude of molecular mass is unusual for protein methylases II so far reported. The enzyme has an optimal pH of 6.0, a K(m) value of 5.0x10(-6) M for S-adenosyl-L-methionine and a V(max) of 205 pmol methyl-(14)C transferred min(-1) mg(-1) protein.  相似文献   

19.
摘要【目的】构建融合基因原核表达载体pET-28a- cag4,并表达重组融合蛋白cag4,分析重组融合蛋白的酶活性,为新型抗生素(或是抗菌药物)的研发提供作用靶位。【方法】本研究利用PCR技术从幽门螺杆菌NCTC11637中克隆了cag4基因;经T-A克隆,酶切鉴定,构建了原核表达载体pET-28a- cag4;经测序鉴定正确后,转化进入大肠埃希菌 BL21(DE3)进行异源表达。利用IPTG体外诱导后,经SDS-PAGE和Western Bolt鉴定目的蛋白表达后,采用Ni2+-NTA柱在变性条件下纯化目的蛋白,并对重组蛋白进行透析复性处理。将SDS煮沸法获得的溶壁微球菌肽聚糖掺入SDS-PAGE作为底物,进行酶谱分析。【结果】在大肠埃希菌 BL21(DE3)中获得高效表达的重组蛋白; 经SDS-PAGE和Western Bolt鉴定表达后,采用Ni2+-NTA柱在变性条件下纯化,并进行透析复性处理。将SDS煮沸法获得的溶壁微球菌肽聚糖掺入SDS-PAGE作为底物,进行酶谱分析,表明目的蛋白具有明显的肽聚糖水解活性; 通过监测浊度下降速率,比较其在不同pH条件下活性的变化,即?A/(min?mg protein),结果表明,幽门螺杆菌cag4蛋白具有溶菌糖基转移酶活性。【结论】幽门螺杆菌cag4蛋白具有溶菌糖基转移酶活性。  相似文献   

20.
Helicobacter pylori, a microaerophilic Gram-negative spiral bacterium residing in the human stomach, contains a small size soluble cytochrome c. This cytochrome c was purified from the soluble fraction of H. pylori by conventional chromatographies involving octyl-cellulose and CM-Toyopearl. Its reduced form gave an alpha absorption band at 553 nm, and thus the cytochrome was named H. pylori cytochrome c-553. The cytochrome, giving a band below 10,000 Da upon SDS-PAGE, was determined to have a mass of 8,998 by time of flight mass spectroscopy. Its N-terminal peptide sequence was TDVKALAKS---, indicating that the nascent polypeptide was cleaved to produce a signal peptide of 19 amino acid residues and a mature protein composed of 77 amino acid residues. The cb-type cytochrome c oxidase oxidized ferrocytochrome c-553 of this bacterium actively (V(max) of about 250 s(-1)) with a small K(m) (0.9 microM). Analysis of the effect of the salt concentration on the oxidase activity indicated that oxidation of cytochrome c-553 is highly inhibited under high ionic conditions. The amino acid sequence of H. pylori cytochrome c-553 showed the closest similarity to that of Desulfovibrio vulgaris cytochrome c-553, and these sequences showed a weak relationship to that of the cytochrome c(8)-group among class I cytochromes c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号