首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated the toxicity of five technical-grade insecticides of four different classes to apple maggot females, Rhagoletis pomonella (Walsh), following a 10-min exposure period in insecticide-coated glass jars, with or without a feeding stimulant (sucrose) present. According to LC90 values for toxicity by ingestion and tarsal contact, imidacloprid was 1.5 times more toxic than dimethoate or abamectin, diazinon was less toxic, and phloxine B (a phototoxic dye) least toxic. Based on LC90 values for tarsal contact alone, dimethoate was 2.3, 4.0, and 18.4 times more toxic than imidacloprid, abamectin, and diazinon, respectively. Contact alone with phloxine B caused no mortality. When exposure was assessed using spheres coated with a latex paint mixture containing sucrose and formulated dimethoate (Digon 400 EC) or imidacloprid (Provado 1.6 F) at concentrations ranging from 5 to 70 g (AI)/cm2, both insecticides showed reduced effectiveness compared with toxicities from glass jar tests, with Digon two times more toxic than Provado. After exposure to artificial rainfall and retreatment with sucrose, Digon- and Provado-treated spheres exhibited greatest residual effectiveness, with diazinon-treated spheres less effective. Spheres treated with formulated abamectin (Agri-Mek 0.15 EC) at 1.0% (AI) performed only slightly better than phloxine B-treated spheres, which completely lost effectiveness after exposure to rainfall. Spheres treated with formulated imidacloprid (Merit 75 WP) at 1.5% (AI) showed equal or better residual efficacy in killing apple maggot flies (> 80% mortality, shorter lethal duration of feeding) over a 12-wk exposure period to outdoor weather than spheres treated with Digon at 1.0% (AI) after both types were retreated with sucrose. Our results indicate that imidacloprid is a promising safe substitute for dimethoate as a fly killing agent on lure-kill spheres. Imidacloprid formulated as Merit 75 WP had greater residual efficacy than imidacloprid formulated as Provado 1.6 F.  相似文献   

2.
Toxicity of fipronil to German and American cockroaches   总被引:2,自引:0,他引:2  
Topical and oral toxicity of fipronil, compared to chlorpyrifos, was determined for the German cockroach, Blattella germanica (L.), and American cockroach, Periplaneta americana (L.). Fipronil and Combat bait matrices were evaluated for their attractancies to both species. In the topical toxicity tests, LD50's of fipronil, at 72 h after topical application, were 0.03 and 0.02 µg/g for adult B. germanica and P. americana, respectively. Fipronil was significantly more toxic than topically applied chlorpyrifos (LD50's were 0.06 and 0.16 µg/g for B. germanica and P. americana, respectively). The oral toxicity of fipronil and chlorpyrifos in Petri dish experiments, against both species, was affected by stage (for B. germanica), diet concentration, and feeding assay. Fipronil caused higher mortality of B. germanica than chlorpyrifos in two feeding assays (continuous and abbreviated). Both compounds were equally toxic to adult males of P. americana at all rates. Fipronil caused higher nymphal mortality than chlorpyrifos 48–72 h after exposure in both feeding assays. In large population chamber tests, fipronil bait was more effective and faster in killing P. americana than Raid and Combat. LT50's were 0.8, 2.4, and 7.6 d for fipronil, Raid (a.i. = chlorpyrifos), and Combat (a.i. = hydramethylnon) baits, respectively. Mortality reached 96.5, 93.4, and 84.6%, respectively, at the end of the 14 d test. In the bait attractancy tests, both strains of B. germanica were attracted similarly to fipronil and Combat bait matrices. P. americana were attracted more to fipronil than to Combat bait matrix or to other alternative foods.  相似文献   

3.
Hyposoter didymator (Thunberg) (Hymenoptera: Ichneumonidae) is a koinobiont endoparasitoid that emerges from the parasitization of economically important noctuid pests. H. didymator also is considered one of the most important native biocontrol agents of noctuids in Spain. Side effects of five insecticides with very different modes of action (fipronil, imidacloprid, natural pyrethrins + piperonyl butoxide, pymetrozine, and triflumuron) at the maximum field recommended rate in Spain were evaluated on H. didymator parasitizing Spodoptera littoralis (Boisduval) larvae and pupae of the endoparasitoid. Parasitized larvae were topically treated or ingested treated artificial diet. Parasitoid cocoons were topically treated. Host mortality when parasitized larvae were treated, as well as further development of the parasitoid surviving (e.g., percentage of cocoons spun, adult emergence, hosts attacked, and numbered progeny) were determined. Toxicity after treatment of parasitized larvae differed depending on the mode of exposure and insecticide. Fipronil was always highly toxic; imidacloprid killed all host insects by ingestion, but it was less toxic to both host and parasitoids, when administered topically; natural pyrethrins + piperonyl butoxide and triflumuron showed differing degrees of toxicity, and pymetrozine was harmless. Parasitoid cocoons provided effective protection against all the insecticides, except fipronil.  相似文献   

4.
Effects of spinosad, spinosad bait, and the chloronicotinyl insecticides imidacloprid and thiacloprid on mortality of the adults and larvae of western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), were determined in the laboratory and the field. Spinosad and spinosad bait caused higher adult mortality than imidacloprid, which caused higher mortality than thiacloprid. Only spinosad bait prevented oviposition. All materials were more toxic to adults when ingested than when topically applied. Spinosad bait had the greatest residual toxicity on leaves, killing 100% of adults when aged for 14 d in the field. When materials were sprayed on infested cherries, numbers of live larvae in fruit after 8 d were lower in imidacloprid and thiacloprid than in spinosad and spinosad bait treatments, which did not differ from the control, but all materials reduced larval emergence over 30 d. In the field, spinosad and spinosad bait were as effective in suppressing larval infestations as azinphos-methyl and carbaryl, whereas imidacloprid was effective in most cases and thiacloprid was generally less effective than azinphos-methyl and carbaryl. Overall, results in the laboratory and field show that spinosad and chloronicotinyl insecticides differed significantly in their effectiveness against adults and larvae of R. indifferens but that spinosad, spinosad bait, and imidacloprid seem to be acceptable substitutes for organophosphate and carbamate insecticides for controlling this fruit fly.  相似文献   

5.
Melon fly, Zeugodacus cucurbitae (Coquillett) (Diptera: Tephritidae), is an important quarantine tephritid fruit fly with resident populations established in Hawai'i, USA. In the male‐annihilation approach, male flies are targeted using dispensers with cue‐lure (C‐L) and insecticides, typically organophosphates. The efficacy of the male annihilation approach is thought to be limited to individual male flies, contacting the lure and the pesticide, after which they die. Alternative classes of insecticides, such as fipronil, have been investigated for use in male‐annihilation. We hypothesized that ingestion of fipronil by male flies could lead to horizontal transfer and mortality in female flies. Horizontal insecticide transfer extends pesticide control beyond the individual contacting the toxicant through indirect contact via food sharing or other mechanisms. We tested the possibility for horizontal transfer of fipronil from male to female Z. cucurbitae through field and laboratory studies. Two repeated field trials were conducted to compare the numbers of female flies collected in fields treated with Amulet C‐L (0.34% fipronil active ingredient) bait stations, sanitation, and spot treatments of GF‐120 Fruit Fly Bait to numbers collected in fields where sanitation and spot‐treatments were used without Amulet C‐L. In fields with Amulet C‐L bait stations in conjunction with sanitation and weekly protein bait spot treatments of GF‐120 Fruit Fly Bait, female captures were significantly lower than those in field plots treated with weekly protein bait spot treatments and sanitation. In subsequent laboratory studies, all females died within 6 h after direct exposure to male flies that had access to Amulet C‐L for 1–4 min. The possibility that male regurgitant could be a mechanism for horizontal transfer and subsequent female mortality was determined by collecting regurgitated droplets from fipronil‐fed male flies and feeding them to males and females. Both male and female flies exposed to regurgitant from fipronil‐fed male flies or droplets containing fipronil had higher mortality than the male and female flies that were exposed to regurgitant or droplets with only the C‐L compound or sugar solution. Thus, female flies do experience mortality from exposure to regurgitant from males that have fed on fipronil laced solutions. This provides evidence of at least one mechanism of horizontal transfer of insecticide in tephritid fruit flies. These findings are discussed in the context of Zcucurbitae integrated pest management programs in Hawai'i.  相似文献   

6.
By applying insecticides at lower rates of active ingredients per unit area, survival rates of the pests' natural enemies can be enhanced, whereas pest mortality can remain high. The effects of reduced application rates of the insecticides lambda-cyhalothrin and dimethoate on the mortality of bird cherry-oat aphid, Rhopalosiphon padi (L.), and lacewing Micromus tasmaniae Walker were determined in the laboratory and field. Cholinesterase (ChE) and glutathione S-transferase (GST) activities in survivors provided a measure of sublethal effects and general fitness. In the laboratory, lacewings were less sensitive than aphids to both insecticides, and dimethoate was more toxic than lambda-cyhalothrin. However, these results could not be recreated in the field, in part due to very low recapture rates. In summary, lambda-cyhalothrin seemed to have no effect on aphids, but it was toxic to lacewings. Dimethoate was far less toxic in the field, but aphids were still more sensitive than were lacewings. Cholinesterase activity was reduced by dimethoate exposure in the laboratory in both species, but there were species-specific differences. Dimethoate and lambda-cyhalothrin had no effects on GST activity in either species. The high mortality rate for lacewings and aphids exposed to dimethoate in the field suggests that the application rate could be reduced to as low as 10% of that recommended by manufacturers, and this should still be highly efficacious against aphids, while protecting the predatory lacewing. Measurement of enzyme activity could provide a useful indicator of "fitness" of survivors.  相似文献   

7.
The efficacy of toxic baits should be judged by their ability to kill entire ant colonies, including the colony queen or queens. We studied the efficacy of four toxic baits to the Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae). These baits were Xstinguish that has the toxicant fipronil, Exterm-an-Ant that contains both boric acid and sodium borate, and Advion ant gel and Advion ant bait arena that both have indoxacarb. Experimental nests contained 300 workers and 10 queen ants that were starved for either 24 or 48 h before toxic bait exposure. The efficacy of the toxic baits was strongly influenced by starvation. In no treatment with 24-h starvation did we observe 100% worker death. After 24-h starvation three of the baits did not result in any queen deaths, with only Exterm-an-Ant producing an average of 25% mortality. In contrast, 100% queen and worker mortality was observed in colonies starved for 48 h and given Xstinguish or Exterm-an-Ant. The baits Advion ant gel and Advion ant bait arena were not effective against Argentine ants in these trials, resulting in <60% mortality in all treatments. Because of the strong influence of starvation on bait uptake, control efficacy may be maximized by applying bait when ants are likely to be starved. Our results suggest queen mortality must be assessed in tests for toxic bait efficacy. Our data indicate that of these four baits, Xstinguish and Exterm-an-Ant are the best options for control of Argentine ants in New Zealand.  相似文献   

8.
The gall wasp Callirhytis cornigera (Osten Sacken) is a cynipid with alternating generations that produce large, woody stem galls and tiny blister-like leaf galls on pin oak, Quercus palustris Muenchhausen, in the United States. We tested 3 approaches to control the leaf-galling generation, and determined their impact on associated parasitoids and effectiveness in reducing numbers of new stem galls. First, trees were sprayed with bifenthrin or chlorpyrifos in late March to kill females emerging from stem galls before they oviposited into buds. Second, concentrated solutions of abamectin, imidacloprid, or bidrin were injected from pressurized containers into tree sapwood to control larvae developing in young leaf galls. Finally, systemic insecticides (acephate, abamectin, dimethoate, or imidacloprid) were sprayed at early leaf expansion (2 May) or to young, expanded leaves (17 May) to target larvae in leaf galls. Parasitoids, mostly eulophids, accounted for approximately 70% mortality of leaf-galling C. cornigera larvae on untreated trees. Whole-canopy sprays during C. cornigera emergence from stem galls reduced overall numbers of galled leaves and leaf galls. Trunk injections of bidrin or abamectin resulted in significant mortality of gall inhabitants, including parasitoids. However, neither of the aforementioned approaches significantly reduced numbers of new stem galls. Sprays of abamectin, dimethoate, or imidacloprid applied on 2 May caused high mortality of all gall inhabitants. There was no net benefit, however, because parasitism caused a similar reduction in C. cornigera survival on unsprayed shoots. Sprays applied later in leaf expansion had little impact on gall inhabitants. Of the treatments tested, bifenthrin sprays at bud break provided the greatest reduction in new leaf galls, whereas bidrin injections provided the greatest reduction in gall wasps emerging from galled leaves. This study suggests that gall wasp outbreaks are unlikely to be controlled by a single treatment, regardless of application method.  相似文献   

9.
A laboratory culture of Catolaccus grandis (Burks), an ectoparasitoid of the boll weevil, Anthonomus grandis grandis Boheman, was exposed to lethal and sublethal doses of insecticides and an insect growth regulator using a spray chamber bioassay. Materials tested were azinphos-methyl, endosulfan, fipronil, malathion, cyfluthrin, dimethoate, spinosad, methyl parathion, acephate, oxamyl, and tebufenozide. At full rates, spinosad was significantly less toxic to female C. grandis than other treatments except endosulfan. Fipronil and malathion were significantly more toxic to females than other treatments. Most of the chemicals tested were highly toxic to male C. grandis; spinosad was least toxic. At reduced rates, most of 4 selected chemicals tested were low in toxicity to C. grandis; however, a reduced rate of malathion was significantly more toxic to females than other treatments. No C. grandis pupae developed from parasitism during a 24-h treatment period with malathion or spinosad. The sex ratio of progeny from sprayed adults appeared to be unaffected by the treatments.  相似文献   

10.
We evaluated the effects of interspecific competition on ant bait performance with two urban pest ants, the Argentine ant, Linepithema humile (Mayr), and the little black ant, Monomorium minimum (Buckley). In a laboratory study, the impact of a solid sulfluramid bait on M. minimum was diminished when L. humile were present, whereas the presence of M. minimum reduced the performance of a liquid fipronil bait against L. humile. Argentine ants were not adversely affected by sulfluramid bait at any time, whereas M. minimum was unaffected by fipronil bait until 14 d of exposure. In field studies measuring diel foraging activity, M. minimum seemed to delay L. humile foraging to food stations by approximately 30 min during summer 2001. However, L. humile subsequently recruited to food stations in very high numbers, thereby displacing M. minimum. L. humile visited food stations over an entire 24-h period, whereas M. minimum was only observed visiting food stations during daylight hours. Adjusting the timing of bait placement in the field may minimize any negative effects of interspecific competition between these two species on toxic bait performance.  相似文献   

11.
Predictions in integrated pest management on the compatibility of an insecticide with biological control often are based on incomplete screening tests. While measuring levels of mortality from direct insecticide exposure is a very common screening method, possible sublethal effects as a result of either direct or indirect insecticide exposure remain relatively unknown. The impact of sublethal effects on the success of biological control can be as deleterious as mortality. Here, we report the reduced host foraging ability and longevity of the parasitoid Microplitis croceipes Cresson (Hymenoptera: Braconidae) after feeding on extrafloral nectar from cotton (Gossypium hirsutum L., Malvaceae) plants that were treated with systemic insecticides. The insecticides used in this study are regularly applied in cotton-growing areas in the United States. For all tested insecticides, longevity of M. croceipes females that fed on nectar from cotton was affected for at least 10 days after plants were treated with insecticides. Moreover, the parasitoid's host foraging ability was severely affected for periods ranging from 2 days (imidacloprid) to 18 days (aldicarb) after insecticide application. The consequences of these sublethal effects on the success of biological control are discussed.  相似文献   

12.
Orius insidoisus (Say) is an important predator in corn, sorghum, and alfalfa. Foliar insecticides commonly used on corn (permethrin, bifenthrin, and fipronil); sorghum (chlorpyrifos, carbofuran, dimethoate, and cyfluthrin); and both crops (A-cyhalothrin and ethyl parathion) were evaluated in 1998 and 1999 for their residual effects on O. insidiosus by caging adults on treated plants at several time intervals: at application (day 0) and 2, 3, and 6 d after application. In addition, imidacloprid, fipronil, and thiamethoxam used as seed treatments on corn and sorghum were tested for their effects on O. insidiosus by caging adults on plants in the presence and absence of greenbugs, Schizaphis graminum (Rondani). Finally, six of the same insecticides that also are used on alfalfa were evaluated in the field for their effects on O. insidiosus and other insects. On day 0, ethyl parathion. bifenthrin, and [lambda]-cyhalothrin on corn caused significantly higher mortality to O. insidiosus than permethrin and fipronil. Ethyl parathion and carbofuran on sorghum caused significantly higher mortality than chlorpyrifos, dimethoate, and A-cyhalothrin, which differed significantly from the control. Mortality with cyfluthrin did not differ significantly from that in the control. Insecticides had no significant effects on O. insidiosus 3 and 6 d after application in 1998 with the exception of permethrin on day 3. Similar patterns of mortality were observed in 1999 experiments. No significant differences in mortality of adults occurred with fipronil and thiamethoxam in the presence and absence of greenbugs. Imidachloprid caused significantly higher mortality to O. insidiosus adults than thiamethoxam or fipronil in some instances when greenbugs were not supplied as food. In alfalfa, the insecticides caused significant mortality to most of the insects evaluated. Ethyl parathion, permethrin, chlorpyrifos, and cyfluthrin caused significantly higher mortality to O. insidiosus than carbofuran and A-cyhalothrin, which differed significantly from the control in 1998. In 1999, all treatments significantly reduced O. insidiosus numbers and did not differ significantly from each other.  相似文献   

13.
The effectiveness of parasitoids as biological control agents can be constrained by insecticide use, not only through direct mortality but also as a result of sublethal effects. Several pest aphids have become resistant to a range of insecticides and a resistant strain of Myzus persicae was used in laboratory experiments to investigate sublethal effects of the insecticides pirimicarb and dimethoate on the parasitoid Diaeretiella rapae . Both insecticides produced sublethal effects on D. rapae when the parasitoid attacked and developed in aphids that had been dipped in insecticide solutions. Dimethoate affected oviposition behaviour; females were apparently repelled by residues on the surface of dipped aphids, thus reducing their attack rate and hence the number of mummies produced. Also, the reproductive performance of parasitoids that had developed in pirimicarb-dipped aphids appeared to be adversely affected, in comparison with parasitoids that emerged from uncontaminated hosts, and this was reflected both in lower mummy production and lower attack rates. Pirimicarb, but not dimethoate, affected the sex ratio of the offspring of D. rapae that had developed in dipped aphids, causing a significant increase in the proportion of males. This only occurred when the male parent had developed in a pirimicarb-dipped aphid, suggesting that the effect involves male sterility or mating behaviour, although they appeared to mate normally. These sublethal effects are potential constraints on the efficiency and effectiveness of D. rapae as a biological control agent of aphid pests, but to assess fully their potential impact further studies need to be done using more realistic extended laboratory and semi-field techniques.  相似文献   

14.
The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information on multiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid-induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies.  相似文献   

15.
Laboratory-reared predators, the insidious flower bug, Orius insidiosus (Say), and big-eyed bug Geocoris punctipes (Say), were exposed to 10 insecticides, including three newer insecticides with novel modes of action, using a residual insecticide bioassay. These species are important predators of several economic pests of cotton. Insecticides tested were: azinphos-methyl, imidacloprid, spinosad, tebufenozide, fipronil, endosulfan, chlorfenapyr, cyfluthrin, profenofos, and malathion. There was considerable variation in response between both species tested to the insecticides. Tebufenozide and cyfluthrin were significantly less toxic to male O. insidiosus than malathion. Tebufenozide was also significantly less toxic to female O. insidiosus than malathion. Imidacloprid, tebufenozide, and spinosad were significantly less toxic to male G. punctipes than chlorfenapyr, endosulfan, and fipronil. Spinosad, tebufenozide, and azinphos-methyl were significantly less toxic to female G. punctipes than fipronil and endosulfan. Fecundity of O. insidiosus was significantly greater in the spinosad treatment compared with other treatments including the control. Consumption of bollworm, Helicoverpa zea (Boddie), eggs by O. insidiosus was significantly lower in the fipronil, profenofos, and cyfluthrin treatments compared with other treatments including the control. Consumption of H. zea eggs by G. punctipes was significantly lower in the malathion, profenofos, endosulfan, fipronil, azinphos-methyl, and imidacloprid treatments compared with the control. Egg consumption by G. punctipes was not significantly different in the tebufenozide treatment compared with the control. The lower toxicity of spinosad to G. punctipes is consistent with other reports. Based on these results, the following insecticides are not compatible with integrated pest management of cotton pests: malathion, endosulfan, profenofos, fipronil, and cyfluthrin; while imidacloprid, tebufenozide, azinphos-methyl, and spinosad should provide pest control while sparing beneficial species.  相似文献   

16.
  • 1 Mixtures of organophosphorus and pyrethroid insecticides are widely used to combat resistance in agricultural pests, although few studies have been conducted on the effects of pesticide mixtures on beneficial nontarget organisms.
  • 2 In the present study, we exposed adult females (F0) of Hylyphantes graminicola (Araneae: Linyphiidae) to fenvalerate, dimethoate and their commercially available 1 : 1 mixture (by mass). We investigated the acute toxicity of these pesticides to the exposed adults, as well as sublethal effects on reproduction and acetylcholinesterase and carboxylesterase activity. We also studied the effects of parental exposure on the size, development and enzyme activity of unexposed offspring.
  • 3 All three formulations were acutely toxic to H. graminicola, with synergism between dimethoate and fenvalerate leading to greater toxicity in the 1 : 1 mixture than for the two insecticides alone. The sublethal effects of direct pesticide exposure were a reduction in acetylcholinesterase and carboxylesterase activity and a reduction in the number of egg sacs produced by exposed spiders relative to the control spiders. The unexposed offspring of the fenvalerate and mixture exposed spiders were smaller and took longer to mature than the control spiders. Offspring of all exposed spiders also had significantly reduced carboxylesterase activity relative to control spiders.
  • 4 We concluded that the effects of parental exposure on the offspring were likely to increase their susceptibility to future pesticide exposures, and reduce the capacity of this spider to serve as a pest control agent.
  相似文献   

17.
Laboratory studies investigated the interaction between the fungal entomopathogen Beauveria bassiana (Balsamo) Vuillemin and sublethal doses of the insecticides imidacloprid and cyromazine when applied to larvae of the Colorado potato beetle, Leptinotarsa decemlineata (Say). When second instars were fed potato leaf discs treated with sublethal doses of imidacloprid and a range of doses of B. bassiana, a synergistic action was demonstrated. Similar results were observed when larvae were sprayed directly with B. bassiana conidia and immediately fed leaf discs treated with imidacloprid. No synergistic interaction was detected when larvae were fed leaf discs treated with sublethal doses ofimidacloprid 24 h after application of B. bassiana conidia to larvae. However, a synergistic interaction was detected when larvae were fed leaf discs treated with imidacloprid and sprayed with B. bassiana conidia 24 h later. Although sublethal doses of both imidacloprid and the triazine insect growth regulator (IGR) cyromazine prolonged the duration of the second instar, only imidacloprid interacted with B. bassiana to produce a synergistic response in larval mortality. In leaf consumption studies, the highest dose of B. bassiana tested promoted feeding in inoculated second instars. Feeding was inhibited when larvae were fed foliage treated with sublethal doses of imidacloprid and significantly reduced when fed foliage treated with a sublethal dose of cyromazine. Starvation of larvae for 24 h immediately after B. bassiana treatment produced a similar result to the combined treatment of B. bassiana and imidacloprid and increased the level of mycosis when compared with B. bassiana controls. Imidacloprid treatment affected neither the rate of germination of B. bassiana conidia on the insect cuticle nor the rate at which conidia were removed from the integument after application. The statistical analysis used to detect synergism and the possible role of starvation-induced stress factors underlying the observed synergistic interactions are discussed.  相似文献   

18.
Spinosad bait is used to control western cherry fruit fly, Rhagoletis indifferens Curran (Diptera: Tephritidae), by killing flies before they oviposit. However, effects of different insecticide baits on management of reproductively mature flies are largely unknown. Objectives here were to determine mortality and oviposition of reproductively mature R. indifferens exposed to different insecticide baits for varying periods in the presence and absence of dried yeast extract and sucrose food. Spinosad bait (spinosad in a mix of protein, sugar, and other ingredients) was compared with acetamiprid, thiamethoxam, and imidacloprid in sucrose or Nu-Lure + sucrose bait. When flies were exposed to treatments and then offered cherries, Prunus avium (L.) L., for oviposition or when they were exposed to treatments and cherries simultaneously, both thiamethoxam bait and imidacloprid bait resulted in higher mortality and lower oviposition than spinosad bait and acetamiprid bait. Exposures to thiamethoxam bait and imidacloprid bait for six and 24 h were similarly effective, but 6-h exposures to spinosad bait and acetamiprid bait were less effective than 24-h exposures. There was little difference between sucrose and Nu-Lure + sucrose baits. When food was present, thiamethoxam bait and imidacloprid bait caused greater mortality and lower oviposition than spinosad bait and acetamiprid bait, but when food was absent, patterns were less consistent. Because of its ability to kill flies sooner after it is exposed to flies when food is present or absent, thiamethoxam or imidacloprid in sucrose or Nu-Lure bait may reduce infestations in cherries more than spinosad bait when mature R. indifferens are present in orchards.  相似文献   

19.
The survival and infectivity of infective juveniles (IJs) of three species of entomopathogenic nematodes, Steinernema carpocapsae Weiser, S. arenarium (Artyukhovsky) (Rhabditida: Steinernematidae) and Heterorhabditis bacteriophora Poinar (Rhabditida: Heterorhabditidae), were determined after exposure to different concentrations (250, 500, 1000 and 2000 ppm) of fipronil, an insecticide acting on the GABA receptors to block the chloride channel. Heterorhabditis bacteriophora was very tolerant to all concentrations of fipronil, with the highest mortality of 17% being observed at 2000 ppm of fipronil after 72 h exposure. Steinernema carpocapsae showed a similar response, with the highest mortality of 11.25% of IJs being observed after 72 h exposure to 2000 ppm of fipronil. Steinernema arenarium was, however, more sensitive to fipronil, and at 2000 ppm mortality rates of 94.6% and 100% were observed after 24 and 72 h, respectively. Fipronil had negligible effects on the infectivity of the three nematode species tested. The IJs which survive exposure to all concentrations of fipronil tested can infect and reproduce in Galleria larvae. The moderate effects on entomopathogenic nematodes of a lower fipronil concentration (250 ppm) and the field rates (12-60 ppm) of fipronil used as insecticide, suggest that direct mixing of entomopathogenic nematodes and fipronil at field rates is a viable integrated pest management option.  相似文献   

20.
BACKGROUND: The honeybee, Apis mellifera, is undergoing a worldwide decline whose origin is still in debate. Studies performed for twenty years suggest that this decline may involve both infectious diseases and exposure to pesticides. Joint action of pathogens and chemicals are known to threaten several organisms but the combined effects of these stressors were poorly investigated in honeybees. Our study was designed to explore the effect of Nosema ceranae infection on honeybee sensitivity to sublethal doses of the insecticides fipronil and thiacloprid. METHODOLOGY/FINDING: Five days after their emergence, honeybees were divided in 6 experimental groups: (i) uninfected controls, (ii) infected with N. ceranae, (iii) uninfected and exposed to fipronil, (iv) uninfected and exposed to thiacloprid, (v) infected with N. ceranae and exposed 10 days post-infection (p.i.) to fipronil, and (vi) infected with N. ceranae and exposed 10 days p.i. to thiacloprid. Honeybee mortality and insecticide consumption were analyzed daily and the intestinal spore content was evaluated 20 days after infection. A significant increase in honeybee mortality was observed when N. ceranae-infected honeybees were exposed to sublethal doses of insecticides. Surprisingly, exposures to fipronil and thiacloprid had opposite effects on microsporidian spore production. Analysis of the honeybee detoxification system 10 days p.i. showed that N. ceranae infection induced an increase in glutathione-S-transferase activity in midgut and fat body but not in 7-ethoxycoumarin-O-deethylase activity. CONCLUSIONS/SIGNIFICANCE: After exposure to sublethal doses of fipronil or thiacloprid a higher mortality was observed in N. ceranae-infected honeybees than in uninfected ones. The synergistic effect of N. ceranae and insecticide on honeybee mortality, however, did not appear strongly linked to a decrease of the insect detoxification system. These data support the hypothesis that the combination of the increasing prevalence of N. ceranae with high pesticide content in beehives may contribute to colony depopulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号