共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Wu-mei Yuan Wan-ju Zhang Fen-lian Ma Jin-song Li Qian Zhang Li-shu Zheng 《Cellular & molecular biology letters》2017,22(1):26
Background
Many studies have investigated the characteristics and biological activities of type III interferon (IFN), finding that it has similar features to type I IFN but also unique actions because it is recognized by a different receptor.Results
A full-length recombinant human IFN-λ1 (rhIFN-λ1) cDNA was cloned into the pDF expression vector and stably expressed in Flp-In-CHO cells. After four purification steps (ammonium sulfate precipitation, SP Sepharose chromatography, Blue Sepharose 6 fast flow affinity chromatography and molecular sieve chromatography), the rhIFN-λ1 had a purity of about 90% and was found to have the predicted biological activities. The anti-viral activity of rhIFN-λ1 was determined as 106 IU/mg using the vesicular stomatitis virus (WISH-VSV) assay system. The anti-proliferation activity of rhIFN-λ1 was measured using the MTS method and the growth inhibition ratio was 57% higher than that for recombinant human IFN-α2b (rhIFN-α2b) when the rhIFN-λ1 concentration was 1000 IU/ml. rhIFN-λ1 had lower natural killer cell cytotoxicity than rhIFN-α2b.Conclusion
The Flp-In-CHO system is suitable for stably expressing rhIFN-λ1 that possesses the predicted anti-viral, anti-proliferation and natural killer cell cytotoxicity-promoting activities.5.
6.
7.
8.
9.
Eva M Carmona Jeffrey D Lamont Ailing Xue Mark Wylam Andrew H Limper 《Respiratory research》2010,11(1):1-12
Background
During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs) function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma.Method
Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS) were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL) samples from healthy subjects and those with asthma.Results
PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL)-13 and tumor necrosis factor (TNFα) stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL) fluid derived from healthy subjects as well as from those with asthma.Conclusion
Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a potential role for inflammation-induced changes in oxytocin receptor signaling in the regulation of airway hyper-responsiveness in asthma. 相似文献10.
Rubenstein RC Lockwood SR Lide E Bauer R Suaud L Grumbach Y 《American journal of physiology. Lung cellular and molecular physiology》2011,300(1):L88-L101
The functional expression of the epithelial sodium channel (ENaC) appears elevated in cystic fibrosis (CF) airway epithelia, but the mechanism by which this occurs is not clear. We tested the hypothesis that the cystic fibrosis transmembrane conductance regulator (CFTR) alters the trafficking of endogenously expressed human ENaC in the CFBE41o? model of CF bronchial epithelia. Functional expression of ENaC, as defined by amiloride-inhibited short-circuit current (I(sc)) in Ussing chambers, was absent under control conditions but present in CFBE41o? parental and ΔF508-CFTR-overexpressing cells after treatment with 1 μM dexamethasone (Dex) for 24 h. The effect of Dex was mimicked by incubation with the glucocorticoid hydrocortisone but not with the mineralocorticoid aldosterone. Application of trypsin to the apical surface to activate uncleaved, \"near-silent\" ENaC caused an additional increase in amiloride-sensitive I(sc) in the Dex-treated cells and was without effect in the control cells, suggesting that Dex increased ENaC cell surface expression. In contrast, Dex treatment did not stimulate amiloride-sensitive I(sc) in CFBE41o? cells that stably express wild-type (wt) CFTR. CFBE41o? wt cells also had reduced expression of α- and γ-ENaC compared with parental and ΔF508-CFTR-overexpressing cells. Furthermore, application of trypsin to the apical surface of Dex-treated CFBE41o? wt cells did not stimulate amiloride-sensitive I(sc), suggesting that ENaC remained absent from the surface of these cells even after Dex treatment. We also tested the effect of trafficking-corrected ΔF508-CFTR on ENaC functional expression. Incubation with 1 mM 4-phenylbutyrate synergistically increased Dex-induced ENaC functional expression in ΔF508-CFTR-overexpressing cells. These data support the hypothesis that wt CFTR can regulate the whole cell, functional, and surface expression of endogenous ENaC in airway epithelial cells and that absence of this regulation may foster ENaC hyperactivity in CF airway epithelia. 相似文献
11.
Padró M Mejías-Luque R Cobler L Garrido M Pérez-Garay M Puig S Peracaula R de Bolós C 《Glycoconjugate journal》2011,28(2):99-110
Inflammation of stomach mucosa has been postulated as initiator of gastric carcinogenesis and the presence of pro-inflammatory
cytokines can regulate specific genes involved in this process. The cellular expression pattern of glycosyltransferases and
Lewis antigens detected in the normal mucosa changed during the neoplassic transformation. The aim of this work was to determine
the regulation of specific fucosyltransferases and sialyltransferases by IL-1β and IL-6 pro-inflammatory cytokines in MKN45
gastric cancer cells. IL-1β induced significant increases in the mRNA levels of FUT1, FUT2 and FUT4, and decreases of FUT3
and FUT5. In IL-6 treatments, enhanced FUT1 and lower FUT3 and FUT5 mRNA expression were detected. No substantial changes
were observed in the levels of ST3GalIII and ST3GalIV. The activation of FUT1, FUT2 and FUT4 by IL-1β is through the NF-κB
pathway and the down-regulation of FUT3 and FUT5 by IL-6 is through the gp130/STAT-3 pathway, since they are inhibited specifically
by panepoxydone and AG490, respectively. The levels of Lewis antigens after IL-1β or IL-6 stimulation decreased for sialyl-Lewis
x, and no significant differences were found in the rest of the Lewis antigens analyzed, as it was also observed in subcutaneous
mice tumors from MKN45 cells treated with IL-1β or IL-6. In addition, in 61 human intestinal-type gastric tumors, sialyl-Lewis
x was highly detected in samples from patients that developed metastasis. These results indicate that the expression of the
fucosyltransferases involved in the synthesis of Lewis antigens in gastric cancer cells can be specifically modulated by IL-1β
and IL-6 inflammatory cytokines. 相似文献
12.
The airway epithelium plays a role in host defense through the binding of innate immune receptors, which leads to the activation of inflammatory mediators, including antimicrobial peptides. The active form of vitamin D, 1,25(OH)(2)D(3), induces the expression of the antimicrobial peptide LL-37 in both myeloid cells and airway epithelial cells (AEC). Here, we demonstrate that mRNA encoding triggering receptor expressed on myeloid cells (TREM)-1 was induced up to 12-fold by 1,25(OH)(2)D(3) in normal human bronchial epithelial (NHBE) cells and in well-differentiated cultures of six airway epithelial cell lines from patients with cystic fibrosis and healthy individuals. TREM-2 and DAP12 were also expressed in airway cultures, but not induced by vitamin D. Induction occurs through a vitamin D response element identified in its proximal promoter region, and was regulated by PU.1 expressed in the AEC. Activation of TREM-1 by a cross-linking antibody led to an induction of both human β-defensin-2 and TNF-α mRNA, demonstrating its functionality in these cells. Our results expand on the role played by the airway epithelium in innate immunity and suggest that vitamin D can modulate the innate immune defense of the airway epithelium, and could potentially be developed as an adjunctive therapy for airway infections. 相似文献
13.
14.
Demetrius Ellis Tran Dang Sothi Norman P. Curthoys Byron Ballou Ellis D. Avner 《In vitro cellular & developmental biology. Plant》1988,24(8):811-816
Summary The effect of hydrocortisone (HC) in modulating glucocorticoid receptors (GR) and sodium-potassium adenosine triphosphatase
(Na−K ATPase) activity was studied in primary cultures of immunoisolated murine proximal tubular epithelial cells (PTEC).
Utilizing monoclonal antibody against stage-specific embryonic antigen-1, a homogeneous population of PTEC was obtained in
high yield. The cells were cultured to confluence and further treated for 48 h in serum-free growth medium containing no HC
(control); 50 nM HC; or 50 nM HC plus 20 nM of the antiglucocorticoid, RU 38486. PTEC treated with 50 nM HC had 56% of GR binding and 160% Na−K ATPase activity as compared to controls (P<0.01). GR binding was abolished by incubation in RU 38486 whereas Na−K ATPase fell below control values (P<0.05). Brief incubations of HC-treated PTEC with 0.5 mM ouabain resulted in a fall in GR binding without a change in Na−K ATPase activity. These data indicate that in PTEC, HC regulates
GR binding and they suggest that stimulation of Na−K ATPase activity is a direct biological response to this receptor-hormone
interaction. Thus, primary cultures of immunoaffinity-isolated PTEC offer a good model system for investigating the molecular
basis underlying the regulation of GR binding and postreceptor events influenced by glucocorticoids. 相似文献
15.
P.-J. Royer K. Henrio M. Pain J. Loy A. Roux A. Tissot P. Lacoste C. Pison S. Brouard the COLT consortium 《Respiratory research》2017,18(1):208
Background
Airway epithelial cells (AEC) act as the first line of defence in case of lung infections. They constitute a physical barrier against pathogens and they participate in the initiation of the immune response. Yet, the modalities of pathogen recognition by AEC and the consequences on the epithelial barrier remain poorly documented.Method
We investigated the response of primary human AEC to viral (polyinosinic-polycytidylic acid, poly(I:C)) and bacterial (lipopolysaccharide, LPS) stimulations in combination with the lung remodeling factor Transforming Growth Factor-β (TGF-β).Results
We showed a strong production of pro-inflammatory cytokines (Interleukin (IL)-6, Tumor Necrosis Factor α, TNFα) or chemokines (CCL2, CCL3, CCL4, CXCL10, CXCL11) by AEC stimulated with poly(I:C). Cytokine and chemokine production, except CXCL10, was Toll Like Receptor (TLR)-3 dependent and although they express TLR4, we found no cytokine production after LPS stimulation. Poly(I:C), but not LPS, synergised with TGF-β for the production of matrix metalloproteinase-9 (MMP-9) and fibronectin. Mechanistic analyses suggest the secretion of Wnt ligands by AEC along with a degradation of the cellular junctions after poly(I:C) exposure, leading to the release of β-catenin from the cell membrane and stimulation of the Wnt/β-catenin pathway.Conclusion
Our results highlight the cross talk between TGF-β and TLR signaling in bronchial epithelium and its impact on the remodeling process.16.
17.
In a microarray analysis of human retinal pigment epithelial cells (HRPE) treated with TGF-β, in addition to the alteration of a number of known Extracellular matrix (ECM)-related genes regulated by TGF-β, we found a significant increase in the expression of Kallmann Syndrome (KAL)-1 gene, that codes for the protein anosmin-1. Enhanced expression of KAL-1 by TGF-β was validated by real-time PCR analysis. In in vitro experiments, TGF-β receptor inhibitor abolished TGF-β-induced expression of KAL-1. Immunofluorescence staining showed increased presence of anosmin-1 in TGF-β treated HRPE cells, with distinct localization at the intercellular junctions. Treatment of HRPE cells with TGF-β enhanced secretion of anosmin-1 and the release of anosmin-1 was further augmented by heparin sulfate. Enhanced secretion of anosmin-1 in the presence of TGF-β and heparin was also observed in other ocular cells such as corneal epithelial and corneal fibroblast cultures. The role of anosmin-1, a protein with adhesion functions, in retinal structure, function and pathology has not been known and remains to be investigated. 相似文献
18.
Background
Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β.Methods
BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests.Results
Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition.Conclusion
Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma. 相似文献19.
Jiaqi Liu Huayu Zhu Hongtao Wang Jun Li Fu Han Yang Liu Wanfu Zhang Ting He Na Li Zhao Zheng Dahai Hu 《Journal of molecular histology》2018,49(2):185-193
Keloid, a benign skin disorder, forms during wound healing in genetically susceptible individuals. To better control keloid and understand the molecular mechanisms, this study screened gene hypermethylations of GEO database microarray data on keloids and identified the hypermethylation of the secreted frizzled related protein-1 (SFRP1) promoter. Subsequently, hypermethylation and mRNA and protein levels were assessed in 57 cases of keloid vs. normal skin tissues. Fibroblasts from tissues were isolated for the assessment of gene regulation in vitro. The methods used were bioinformatic analysis, lentiviral infection carrying SFRP1 cDNA, qRT-PCR, western blot, immunohistochemistry, luciferase reporter assay, methylation-specific PCR and methylated DNA immunoprecipitation-qPCR, ELISA, and/or 5-Aza-2′-deoxycytidine treatment. The data revealed that the SFRP1 promoter was hypermethylated in keloid tissues, compared with that in normal skin tissues. The SFRP1 promoter methylation contributed to the downregulation of SFRP1 mRNA and protein in keloid tissues and keloid fibroblasts. The 5-Aza treatment significantly upregulated SFRP1 mRNA and protein level in keloid fibroblasts. Furthermore, the knockdown of DNMT1 expression, and not the expression of DNMT3a or DMNT3b, was responsible for the hypermethylation of the SFRP1 promoter and upregulation of SFRP1 mRNA and protein in keloid fibroblasts. In addition, the infection of lentivirus carrying SFRP1 cDNA significantly inhibited the signaling activity of Wnt/β-catenin and the mRNA and protein expression of β-catenin and α-SMA in keloid fibroblasts. In summary, the lost SFRP1 expression-induced Wnt/β-catenin signaling due to the hypermethylation of the SFRP1 promoter could associate with keloid development, suggesting that SFRP1 might be a therapeutic target for keloid treatment. 相似文献
20.