首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to support bioanalytical LC/MS method development and plasma sample analysis in preclinical and clinical studies of the anti-hepatitis C-virus nucleotides, PSI-7977 and PSI-352938, the corresponding stable isotope labeled forms were prepared. These labeled compounds were prepared by addition reaction of the freshly prepared Grignard reagent 13CD3MgI to the corresponding 2 ′-ketone nucleosides followed by fluorination of the resulting carbinol with DAST. As expected, these 2 ′-C-(trideuterated-13C-methyl) nucleotide prodrugs showed similar anti-HCV activity to that of the corresponding unlabeled ones.  相似文献   

2.
A phosphoramidate prodrug of 2′-deoxy-2′-α-fluoro-β-C-methyluridine-5′-monophosphate, PSI-7851, demonstrates potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. PSI-7851 is a mixture of two diastereoisomers, PSI-7976 and PSI-7977, with PSI-7977 being the more active inhibitor of HCV RNA replication in the HCV replicon assay. To inhibit the HCV NS5B RNA-dependent RNA polymerase, PSI-7851 must be metabolized to the active triphosphate form. The first step, hydrolysis of the carboxyl ester by human cathepsin A (CatA) and/or carboxylesterase 1 (CES1), is a stereospecific reaction. Western blot analysis showed that CatA and CES1 are both expressed in primary human hepatocytes. However, expression of CES1 is undetectable in clone A replicon cells. Studies with inhibitors of CatA and/or CES1 indicated that CatA is primarily responsible for hydrolysis of the carboxyl ester in clone A cells, although in primary human hepatocytes, both CatA and CES1 contribute to the hydrolysis. Hydrolysis of the ester is followed by a putative nucleophilic attack on the phosphorus by the carboxyl group resulting in the spontaneous elimination of phenol and the production of an alaninyl phosphate metabolite, PSI-352707, which is common to both isomers. The removal of the amino acid moiety of PSI-352707 is catalyzed by histidine triad nucleotide-binding protein 1 (Hint1) to give the 5′-monophosphate form, PSI-7411. siRNA-mediated Hint1 knockdown studies further indicate that Hint1 is, at least in part, responsible for converting PSI-352707 to PSI-7411. PSI-7411 is then consecutively phosphorylated to the diphosphate, PSI-7410, and to the active triphosphate metabolite, PSI-7409, by UMP-CMP kinase and nucleoside diphosphate kinase, respectively.  相似文献   

3.
beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) is a potent inhibitor of hepatitis C virus (HCV) replication in the subgenomic HCV replicon system, and its corresponding 5'-triphosphate is a potent inhibitor of the HCV RNA polymerase in vitro. In this study the formation of PSI-6130-triphosphate was characterized in primary human hepatocytes. PSI-6130 and its 5'-phosphorylated derivatives were identified, and the intracellular concentrations were determined. In addition, the deaminated derivative of PSI-6130, beta-d-2'-deoxy-2'-fluoro-2'-C-methyluridine (RO2433, PSI-6026) and its corresponding phosphorylated metabolites were identified in human hepatocytes after incubation with PSI-6130. The formation of the 5'-triphosphate (TP) of PSI-6130 (PSI-6130-TP) and RO2433 (RO2433-TP) increased with time and reached steady state levels at 48 h. The formation of both PSI-6130-TP and RO2433-TP demonstrated a linear relationship with the extracellular concentrations of PSI-6130 up to 100 mum, suggesting a high capacity of human hepatocytes to generate the two triphosphates. The mean half-lives of PSI-6130-TP and RO2433-TP were 4.7 and 38 h, respectively. RO2433-TP also inhibited RNA synthesis by the native HCV replicase isolated from HCV replicon cells and the recombinant HCV polymerase NS5B with potencies comparable with those of PSI-6130-TP. Incorporation of RO2433-5'-monophosphate (MP) into nascent RNA by NS5B led to chain termination similar to that of PSI-6130-MP. These results demonstrate that PSI-6130 is metabolized to two pharmacologically active species in primary human hepatocytes.  相似文献   

4.
PSI-352938, a cyclic phosphate nucleotide, and PSI-353661, a phosphoramidate nucleotide, are prodrugs of β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methylguanosine-5'-monophosphate. Both compounds are metabolized to the same active 5'-triphosphate, PSI-352666, which serves as an alternative substrate inhibitor of the NS5B RNA-dependent RNA polymerase during HCV replication. PSI-352938 and PSI-353661 retained full activity against replicons containing the S282T substitution, which confers resistance to certain 2'-substituted nucleoside/nucleotide analogs. PSI-352666 was also similarly active against both wild-type and S282T NS5B polymerases. In order to identify mutations that confer resistance to these compounds, in vitro selection studies were performed using HCV replicon cells. While no resistant genotype 1a or 1b replicons could be selected, cells containing genotype 2a JFH-1 replicons cultured in the presence of PSI-352938 or PSI-353661 developed resistance to both compounds. Sequencing of the NS5B region identified a number of amino acid changes, including S15G, R222Q, C223Y/H, L320I, and V321I. Phenotypic evaluation of these mutations indicated that single amino acid changes were not sufficient to significantly reduce the activity of PSI-352938 and PSI-353661. Instead, a combination of three amino acid changes, S15G/C223H/V321I, was required to confer a high level of resistance. No cross-resistance exists between the 2'-F-2'-C-methylguanosine prodrugs and other classes of HCV inhibitors, including 2'-modified nucleoside/-tide analogs such as PSI-6130, PSI-7977, INX-08189, and IDX-184. Finally, we determined that in genotype 1b replicons, the C223Y/H mutation failed to support replication, and although the A15G/C223H/V321I triple mutation did confer resistance to PSI-352938 and PSI-353661, this mutant replicated at only about 10% efficiency compared to the wild type.  相似文献   

5.
The current available treatment for hepatitis C virus (HCV)—the causative of liver cirrhosis and development of liver cancer—is a dual therapy using modified interferon and ribavirin. While this regimen increases the sustained viral response rate up to 40–80 % in different genotypes, unfortunately, it is poorly tolerated by patients. PSI-7977, a prodrug for PSI-7409, is a Non-Structural 5b (NS5b) polymerase nucleoside inhibitor that is currently in phase III clinical trials. The activated PSI-7977 is a direct acting antiviral (DAA) drug that acts on NS5b polymerase of HCV through a coordination bond with the two Mg+2 present at the GDD active site motif. The present work utilizes a molecular modeling approach for studying the interaction between the activated PSI-7977 and the 12 amino acids constituting a 5 Å region surrounding the GDD active triad motif for HCV genotypes 1a, 2b, 3b and 4a. The analysis of the interaction parameters suggests that PSI-7977 is probably a better DAA drug for HCV genotypes 1a and 3b rather than genotypes 2b and 4a.  相似文献   

6.
The 2 ′-deoxy-2 ′-fluoro-2 ′-C-methyluridine nucleotide prodrug, PSI-7851 and its single diastereomer PSI-7977 have displayed potent antiviral activity against hepatitis C virus in clinical trials, and PSI-7977 is currently in Phase III studies. As part of our SAR study of the 2 ′-deoxy-2 ′-fluoro-2 ′- C-methyl class of nucleosides, we prepared the cyclopentyl carbocyclic uridine analog 11 and its phosphoramidate prodrug 15. Both 11 and 15 were shown not to inhibit HCV replication. This lack of activity might be attributed to the inability of the monophosphate to be converted to the corresponding diphosphate or triphosphate or the inactivity of triphosphate of 11 as an inhibitor of the polymerase.  相似文献   

7.
Stable isotope-labeled precursors were synthesized for an analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the biosynthetic flow of capsaicinoids, capsinoids, and capsiconinoids. [1'-(13)C][5-(2)H]-Vanillin was prepared by the condensation of guaiacol with [(13)C]-chloroform and a D(2)O treatment. Labeled vanillylamine, vanillyl alcohol, ferulic acid, and coniferyl alcohol were prepared from the labeled vanillin. The labeled vanillylamine was converted to labeled capsaicinoid in a crude enzyme solution extracted from pungent Capsicum fruits.  相似文献   

8.
The results of 1H-n.m.r. and 13C-n.m.r. studies of linear and cyclic oligosaccharides in the series of gentiodextrins, both in their hydroxylated and acetylated form, were compared to those obtained for the corresponding natural or synthetic polysaccharide. The 13C-signals of each d-glucopyranose unit of acetylated oligosaccharides are more distinct than those of the parent hydroxylated compounds. In order to relate the change of the various signals with the degree of polymerization, gentiotriose undecaacetate, enriched in 13C at C-1″, was prepared, as well as gentiotetraose tetradecaacetate selectively labeled at C-1″ and C-1?. A (1→6)-β-d-glucan having a D.P. of ~10 was chemically prepared. During the course of the polycondensation, the 2,3,4,2′,3′,4′-hexa-O-acetyl-di-β-d-glucopyranosyl 1,6′:6,1′-di-anhydride, and the 2,3,4,2′,3′,4′,2″,3″,4″,2?,3?,4?-dodeca-O-acetyl-tetra-β-d-glucopyranosyl 1,6?:6,1?-tetraanhydride, respectively, were formed.  相似文献   

9.
Thymidine with the stereoselectively 2H/13C-Labeled sugar moiety, (2'R)(5'S)-[1',2',3',4',5'-(13)C5;2',5'-(2)H2]-thymidine, was synthesized from uniformly 13C-labeled glucose, via the selectively deuterated ribose derivative prepared by the stereo-controlled deuteride transfer reactions. The labeled sugar moiety of the thymidine was then transferred to 2'-deoxyadenosine, 2'-deoxyguanosine, and 2'-deoxyuridine, by the enzymatic transglycosylation reactions by purine and pyrimidine nucleoside phosphorylases, in good yields. Labeled 2'-deoxyuridine was chemically converted to 2'-deoxycytidine. Consequently, all of the 2'-deoxynucleosides prepared by this method has the identically labeled sugar moiety. By using DNA oligomers containing the identically labeled sugar residue for NMR studies, any possible complexity in NMR data analyses expected to be observed for DNA oligomers containing variously labeled nucleosides can be minimized.  相似文献   

10.
Conjugates of prostaglandins and thromboxanes with tritium labeled amino acids were prepared and employed as labeled ligands in prostaglandin and thromboxane radioimmunoassays. Assays for PGF2 alpha, 15-keto-13, 14-dihydro-PGF2 alpha, TXB2 and 15-keto-13,14-dihydro-TXB2 were evaluated in comparative studies using either these heterologous ligands or the corresponding homologous tritiated eicosanoid as tracers. Binding properties for the respective antibodies were found to be similar using either tracer. Three biological studies were also conducted, viz. study of the release of TXB2 during collagen induced platelet aggregation, of 15-keto-13,14-dihydro-TXB2 during guinea pig pulmonary anaphylaxis, and of PGF2 alpha (measured as 15-keto-13,14-dihydro-PGF2 alpha in peripheral plasma) during bovine luteolysis. The analyses gave comparable results using either the heterologous or the homologous assay. Thus, this type of labeled prostanoid conjugates may serve as a convenient alternative to homologous tracers in radioimmunoassay. Heterologous tracers may even in certain cases provide the only simple solution to the problem of preparing a labeled ligand of high specific activity.  相似文献   

11.
Conjugates of prostaglandins and thromboxanes with tritium labeled amino acids were prepared and employed as labeled ligands in porstaglandin and thromboxane radioimmunoassays. Assays for PGF, 15-keto-13, 14-dihydro-PGF, TXB2 and 15-keto-13, 14-dihydro-TXB2 were evaluated in comparative studies using either these heterologous ligands or the corresponding homologus tritiated eicosanoid as tracers. Binding properties for the respective antibodies were found to be similar using either tracer.Three biological studies were also conducted, viz. study of the release of TXB2 during collagen induced platelet aggregation, of 15-keto-13, 14-dihydro-TXB2 during guinea pig pulmonary anaphylaxis, and of PGF (measured as 15-keto-13, 14-dihydro-PGF in peripheral plasma) during bovine luteolysis. The analyses gave comparable results using either the heterologous or the homologous assay.Thus, this type of labeled prostanoid conjugates may serve as a convenient alternative to homologous tracers in radioimmunoassay. Heterologous tracers may even in certain cases provide the only simple solution to the problem of preparing a labeled ligand of high specific activity.  相似文献   

12.
To aid in the identification and quantification of biologically and agriculturally significant natural products, tandem mass spectrometry can provide accurate structural information with high selectivity and sensitivity. In this study, diagnostic fragmentation patterns of isoflavonoids were examined by liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). The fragmentation scheme for [M+H?2CO]+ ions derived from isoflavones and [M+H?B-ring?CO]+ ions derived from 5-hydroxyisoflavones, were investigated using different isotopically labeled isoflavones, specifically [1′,2′,3′,4′,5′,6′,2,3,4-13C9] and [2′,3′,5′,6′,2-D5] isoflavones. Specific isotopically labeled isoflavones were prepared through the biosynthetic incorporation of pharmacologically applied 13C- and D-labelled L-phenylalanine precursors in soybean plants following the application of insect elicitors. Using this approach, we empirically demonstrate that the [M+H?2CO]+ ion is generated by an intramolecular proton rearrangement during fragmentation. Furthermore, [M+H?B-ring?CO]+ ion is demonstrated to contain a C2H moiety derived from C-ring of 5-hydroxyisoflavones. A mechanistic understanding of characteristic isoflavone fragmentation patterns contributes to the efficacy and confidence in identifying related isoflavones by LC-MSn.  相似文献   

13.
The structures of the altered alpha-melanotropin (alpha MSH or alpha-N-acetyl-ACTH(1-13)NH2)-related molecules produced by cultured rat intermediate pituitary cells were investigated. Peptide analyses demonstrated that the alpha MSH-related molecules produced by acutely prepared intermediate pituitary cells were primarily des-, mono-, and diacetylated ACTH(1-13)NH2; in contrast, longer term cultures produced primarily des-, mono-, and diacetylated ACTH(1-14)OH. No significant amount of labeled ACTH(1-13)OH-related material was observed under any incubation conditions. Intermediate pituitary cells in culture stopped producing alpha-amidated alpha MSH-related molecules with a half-time of approximately 15 to 18 h; instead, ACTH(1-14)OH-related molecules were synthesized. In several pulse-chase experiments, performed under conditions where cultured intermediate pituitary cells were capable of synthesizing alpha MSH-related molecules terminating in -Val13-NH2, labeled molecules ending in -Val13-Gly14-OH were not found to give rise to major amounts of labeled molecules ending in -Val13-NH2. This failure to observe conversion of glycine-extended molecules into alpha-amidated products was not due to selective secretion from the cells, since the acetylation and amidation states of labeled molecules that were secreted under basal conditions reflected those of the molecules stored in the cells, and the basal rate of secretion was very low.  相似文献   

14.
15.
An incorporation study of [1-(13)C] and [1,2-(13)C2] labeled sodium acetates into sorbicillinol 1 established a ring closure system between C-1 and C-6 and the positions that were oxidized and/or methylated on a hexaketide chain. Subsequent investigations, using 13C-labeled 1 prepared from [1-(13)C] labeled sodium acetate, clearly demonstrated that both bisorbicillinol 2 and sorbicillin 6 incorporated 13C-labeled 1 into their carbon skeletons. 13C-labeled bisorbicillinols 2 derived from [1-(13)C]- and [2-(13)C]-labeled sodium acetates clearly indicate that these were on the biosynthetic route from 1 to bisorbibutenolide (bislongiquinolide) 3 and bisorbicillinolide 4 via 2 as a branching point in the fungus.  相似文献   

16.
A method to obtain uniformly isotopically labeled (15N and 15N/13C) protein from mammalian cells is described. The method involves preparation of isotopically labeled media consisting of amino acids isolated from bacterial and algal extracts supplemented with cysteine and enzymatically synthesized glutamine. The approach is demonstrated by producing 15N-labeled and 15N/13C-labeled urokinase from Sp2/0 cells and successfully growing Chinese hamster ovary (CHO) cells on the labeled media. Thus, using the procedures described, isotopically labeled proteins that have been expressed in mammalian cells can be prepared, allowing them to be studied by heteronuclear multidimensional NMR techniques.  相似文献   

17.
Alkylation of cysteine residues has been used extensively for characterization of proteins and their mode of action in biological systems, research endeavors that are at the core of proteomics. Treatment with a simple alkylating agent such as [2-(13)C] bromoethylamine would result in labeled thialysine at the ε-position. This chemical modification of proteins would allow investigations via both (13)C NMR spectroscopy and mass spectrometry. However [2-(13)C] labeled bromoethylamine is not available commercially. We investigated its synthesis at acid pH with the goal of obtaining singly labeled bromoethylamine and understanding the mechanistic details of the reaction. Based on our experimental and theoretical results, bromination of [2-(13)C] labeled ethanolamine in acidic conditions takes place via exclusive attack of the nucleophile (HBr) at the hydroxyl bearing C. Moreover, hydrogen bonding guides the nucleophilic attack, resulting in no label scrambling of the bromoethylamine product. Protein alkylation at cysteine residue with the synthesized Br(13)CH(2)CH(2)NH(2)-HBr is successful. Ab initio calculations in which CH(3)SH serves as a model for the cysteine residue suggest that in gas phase intermolecular attack by the sulfur bearing nucleophile is favored over the intramolecular substitution by the amino group by 15.4?kJ?mol(-1). Solution modeling shows that the trend is preserved at basic pH, which is the experimental one, but is reversed at neutral pH.  相似文献   

18.
Natural terpenoids have elaborate structures and various bioactivities, making difficult their synthesis and labeling with isotopes. We report here the enzymatic total synthesis of plant hormone gibberellins (GAs) with recombinant biosynthetic enzymes from stable isotope-labeled acetate. Mevalonate (MVA) is a key intermediate for the terpenoid biosynthetic pathway. 13C-MVA was synthesized from 13C-acetate via acetyl-CoA, using four enzymes or fermentation with a MVA-secreted yeast. The diterpene hydrocarbon, ent-kaurene, was synthesized from 13C-acetate and 13C-MVA with ten and six recombinant enzymes in one test tube, respectively. Four recombinant enzymes, P450 monooxygenases and soluble dioxygenases involved in the GA? biosynthesis from ent-kaurene via GA?? were prepared in yeast and Escherichia coli. All intermediates and the final product GA? were uniformly labeled with 13C without dilution by natural abundance when [U-13C?] acetate was used. The 13C-NMR and MS data for [U-13C??] ent-kaurene confirmed 13C-13C coupling, and no dilution with the 12C atom was observed.  相似文献   

19.
Isolated photosystem I (PSI) reaction center/core antenna complexes (PSI-40) were platinized by reduction of [PtCl6]2- at 20 degrees C and neutral pH. PSI particles were visualized directly on a gold surface by scanning tunneling microscopy (STM) before and after platinization. STM results showed that PSI particles were monomeric and roughly ellipsoidal with major and minor axes of 6 and 5 nm, respectively. Platinization deposited approximately 1000 platinum atoms on each PSI particle and made the average size significantly larger (9 x 7 nm). In addition to direct STM visualization, the presence of metallic platinum on the PSI complexes was detected by its effect of actinic shading and electrostatic shielding on P700 photooxidation and P700+ reduction. The reaction centers (P700) in both platinized and nonplatinized PSI-40 were photooxidized by light and reduced by ascorbate repeatedly, although at somewhat slower rates in platinized PSI because of the presence of platinum. The effect of platinization on excitation transfer and trapping dynamics was examined by measuring picosecond fluorescence decay kinetics in PSI-40. The fluorescence decay kinetics in both platinized and control samples can be described as a sum of three exponential components. The dominant (amplitude 0.98) and photochemically limited excitation lifetime remained the same (16 ps) before and after platinization. The excitation transfer and trapping in platinized PSI-40 was essentially as efficient as that in the control (without platinization) PSI. The platinization also did not affect the intermediate-lifetime (400-600 ps) and long-lifetime (> 2500 ps) components, which likely are related to intrinsic electron transport and to functionally uncoupled chlorophylls, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Tryptophan synthetase α subunit in which the histidine C2 (ring) positions are enriched in 13C and labeled with deuterium was prepared by incorporation of labeled histidine into protein of Escherichia coli. 13C nuclear magnetic resonance studies of the specifically labeled enzyme demonstrate that all four histidine residues of α subunit are highly immobilized within the protein matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号