首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Molecules that regulate encephalitogenic T cells are of interest for multiple sclerosis. In this study we show that protein kinase Ctheta (PKCtheta) is critical for the development of Ag-specific Th1 cells in experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis. PKCtheta-deficient mice immunized with myelin oligodendrocyte glycoprotein failed to develop cell infiltrates and Th1 cytokines in the CNS and were resistant to the development of clinical EAE. CD4 T cells became primed and accumulated in secondary lymphoid organs in the absence of PKCtheta, but had severely diminished IFN-gamma, TNF, and IL-17 production. Increasing Ag exposure and inflammatory conditions failed to induce EAE in PKCtheta-deficient mice, showing a profound defect in the myelin oligodendrocyte glycoprotein-reactive T cell population. These data provide evidence of a pivotal role for PKCtheta in the generation and effector function of autoimmune Th1 cells.  相似文献   

2.
3.
Lately, IL-17-secreting Th cells have received an overwhelming amount of attention and are now widely held to be the major pathogenic population in autoimmune diseases. In particular, IL-22-secreting Th17 cells were shown to specifically mark the highly pathogenic population of self-reactive T cells in experimental autoimmune encephalomyelitis (EAE). As IL-17A itself was found to only play a minor role during the development of EAE, IL-22 is now postulated to contribute to the pathogenic function of Th17 cells. The goal of this study was to determine the role and function of IL-22 during the development of CNS autoimmunity in vivo. We found that CNS-invading encephalitogenic Th17 cells coexpress IL-22 and that IL-22 is specifically induced by IL-23 in autoimmune-pathogenic CD4+ T cells in a time- and dose-dependent manner. We next generated IL-22-/- mice, which--in contrast to the prediction that expression of inflammatory cytokines by CNS-invading T cells inevitably confers pathogenic function--turned out to be fully susceptible to EAE. Taken together, we show that self-reactive Th cells coexpress IL-17 and IL-22, but that the latter also does not appear to be directly involved in autoimmune pathogenesis of the CNS.  相似文献   

4.
In experimental autoimmune encephalomyelitis (EAE), the production of proinflammatory cytokines by neuroantigen-specific T cells is thought to initiate and maintain the inflammatory autoimmune pathology. Because gene knockout strategies have shown that IFN-gamma and TNF are not essential for EAE development, there is increasing interest in establishing the role of other proinflammatory cytokines, primarily IL-17 in EAE. We used an IL-17 ELISPOT assay to track the neuroantigen-specific IL-17-producing T cells at single-cell resolution in various organs of SJL mice undergoing PLP 139-151-induced EAE. Overall, the migration patterns and population kinetics of the PLP 139-151-specific IL-17-producing CD4 cells were reminiscent of the IFN-gamma-producing cells, with the exception of IL-17 producers far outnumbering the IFN-gamma and IL-2 producers in the inflamed CNS. The selective enrichment of IL-17-producing CD4 cells in the CNS is suggestive of the pathogenic role of an independent (non-Th1) IL-17-producing proinflammatory effector T cell class in EAE.  相似文献   

5.
Petermann F  Korn T 《FEBS letters》2011,585(23):3747-3757
Although experimental autoimmune encephalomyelitis (EAE) is limited in its potency to reproduce the entirety of clinical and histopathologic features of multiple sclerosis (MS), this model has been successfully used to prove that MS like autoimmunity in the CNS is orchestrated by autoantigen specific T cells. EAE was also very useful to refute the idea that IFN-γ producing T helper type 1 (Th1) cells were the sole players within the pathogenic T cell response. Rather, "new" T cell lineages such as IL-17 producing Th17 cells or IL-9 producing Th9 cells have been first discovered in the context of EAE. Here, we will summarize new concepts of early and late T cell plasticity and the cytokine network that shapes T helper cell responses and lesion development in CNS specific autoimmunity.  相似文献   

6.
Experimental autoimmune encephalomyelitis (EAE), a T cell-mediated inflammatory disease of the CNS, is a rodent model of human multiple sclerosis. IL-23 is one of the critical cytokines in EAE development and is currently believed to be involved in the maintenance of encephalitogenic responses during the tissue damage effector phase of the disease. In this study, we show that encephalitogenic T cells from myelin oligodendrocyte glycopeptide (MOG)-immunized wild-type (WT) mice caused indistinguishable disease when adoptively transferred to WT or IL-23-deficient (p19 knockout (KO)) recipient mice, demonstrating that once encephalitogenic cells have been generated, EAE can develop in the complete absence of IL-23. Furthermore, IL-12/23 double-deficient (p35/p19 double KO) recipient mice developed EAE that was indistinguishable from WT recipients, indicating that IL-12 did not compensate for IL-23 deficiency during the effector phase of EAE. In contrast, MOG-specific T cells from p19KO mice induced EAE with delayed onset and much lower severity when transferred to WT recipient mice as compared with the EAE that was induced by cells from WT controls. MOG-specific T cells from p19KO mice were highly deficient in the production of IFN-gamma, IL-17A, and TNF, indicating that IL-23 plays a critical role in development of encephalitogenic T cells and facilitates the development of T cells toward both Th1 and Th17 pathways.  相似文献   

7.
Multiple sclerosis and an animal model resembling multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), are inflammatory demyelinating diseases of the CNS that are suppressed by systemic mycobacterial infection in mice and BCG vaccination in humans. Host defense responses against Mycobacterium in mice are influenced by T lymphocytes and their cytokine products, particularly IFN-gamma, which plays a protective regulatory role in EAE. To analyze the counter-regulatory role of mycobacterial infection-induced IFN-gamma in the CNS on the function of the pathological Th17 cells and the clinical outcome of EAE, we induced EAE in mice that were intracerebrally infected with Mycobacterium bovis bacille Calmette-Guerin (BCG). In this study, we demonstrate that intracerebral (i.c.) BCG infection prevented inflammatory cell recruitment to the spinal cord and suppressed the development of EAE. Concomitantly, there was a significant decrease in the frequency of myelin oligodendrocyte glycoprotein-specific IFN-gamma-producing CD4(+) T cells in the CNS. IL-17(+)CD4(+) T cell responses were significantly suppressed in i.c. BCG-infected mice following EAE induction regardless of T cell specificity. The frequency of Foxp3(+)CD4(+) T cells in these mice was equivalent to that of control mice. Intracerebral BCG infection-induced protection of EAE and suppression of myelin oligodendrocyte glycoprotein-specific IL-17(+)CD4(+) T cell responses were similar in both wild-type and IFN-gamma-deficient mice. These data show that live BCG infection in the brain suppresses CNS autoimmunity. These findings also reveal that the regulation of Th17-mediated autoimmunity in the CNS can be independent of IFN-gamma-mediated mechanisms.  相似文献   

8.
9.
Targeting pathogenic immune cell trafficking poses an attractive opportunity to attenuate autoimmune disorders such as multiple sclerosis (MS). MS and its animal model, experimental autoimmune encephalomyelitis (EAE), are characterized by the immune cells-mediated demyelination and neurodegeneration of the central nervous system (CNS). Our previous study has proven that dietary naringenin ameliorates EAE clinical symptoms via reducing the CNS cell infiltration. The present study examined the beneficial effects of naringenin on maintaining the blood-brain barrier in EAE mice via dietary naringenin intervention. The results showed that naringenin-treated EAE mice had an intact blood-CNS barrier by increasing tight junction-associated factors and decreasing Evans Blue dye in the CNS. Naringenin decreased the accumulation and maturation of conventional dendritic cells (cDCs), CCL19, and CCR7 in the CNS. Also, naringenin blocked the chemotaxis and antigen-presenting function of cDCs that resulted in reducing T-cell secreting cytokines (IFN-γ, IL-17, and IL-6) in the spleen. Importantly, naringenin blocked pathogenic T cells infiltrated into the CNS and attenuates passive EAE. Therefore, by blocking chemokine-mediated migration of DCs and pathogenic T cells into the CNS, naringenin attenuates EAE pathogenesis and might be a potential candidate for the treatment of autoimmune diseases, such as MS and other chronic T-cell mediated autoimmune diseases.  相似文献   

10.
11.
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, has long been thought to be mediated by Th1 CD4(+) T cells. Using adoptive transfer techniques, transfer of CNS specific Th1 T cells was sufficient to induce EAE in naive mice. However, recent studies found a vital role for IL-17 in induction of EAE. These studies suggested that a fraction of IL-17-producing T cells that contaminate Th1 polarized cell lines are largely responsible for initiation of EAE. In this study, we tracked the appearance and cytokine production capacity of adoptively transferred cells within the CNS of mice throughout EAE disease. IL-17-producing, adoptively transferred cells were not enriched over the low percentages present in vitro. Thus, there was no selective recruitment and/or preferential proliferation of adoptively transferred IL-17-producing cells during the induction of EAE. Instead a large number of CNS infiltrating host T cells in mice with EAE were capable of producing IL-17 following ex vivo stimulation. The IL-17-producing T cells contained both alphabeta and gammadelta TCR(+) T cells with a CD4(+)CD8(-) or CD4(-)CD8(-) phenotype. These cells concentrated within the CNS within 3 days of adoptive transfer, and appeared to play a role in EAE induction as adoptive transfer of Th1 lines derived from wild-type mice into IL-17-deficient mice induced reduced EAE clinical outcomes. This study demonstrates that an encephalitogenic Th1 cell line induces recruitment of host IL-17-producing T cells to the CNS during the initiation of EAE and that these cells contribute to the incidence and severity of disease.  相似文献   

12.
13.
IL-27 has been shown to play a suppressive role in experimental autoimmune encephalomyelitis (EAE) as demonstrated by more severe disease in IL-27R-deficient (WSX-1(-/-)) mice. However, whether IL-27 influences the induction or effector phase of EAE is unknown. This is an important question as therapies for autoimmune diseases are generally started after autoreactive T cells have been primed. In this study, we demonstrate maximal gene expression of IL-27 subunits and its receptor in the CNS at the effector phases of relapsing-remitting EAE including disease peak and onset of relapse. We also show that activated astrocyte cultures secrete IL-27p28 protein which is augmented by the endogenous factor, IFN-gamma. To investigate functional significance of a correlation between gene expression and disease activity, we examined the effect of IL-27 at the effector phase of disease using adoptive transfer EAE. Exogenous IL-27 potently suppressed the ability of encephalitogenic lymph node and spleen cells to transfer EAE. IL-27 significantly inhibited both nonpolarized and IL-23-driven IL-17 production by myelin-reactive T cells thereby suppressing their encephalitogenicity in adoptive transfer EAE. Furthermore, we demonstrate a strong suppressive effect of IL-27 on active EAE in vivo when delivered by s.c. osmotic pump. IL-27-treated mice had reduced CNS inflammatory infiltration and, notably, a lower proportion of Th17 cells. Together, these data demonstrate the suppressive effect of IL-27 on primed, autoreactive T cells, particularly, cells of the Th17 lineage. IL-27 can potently suppress the effector phase of EAE in vivo and, thus, may have therapeutic potential in autoimmune diseases such as multiple sclerosis.  相似文献   

14.
15.
16.
The cytokine IL-21 is closely related to IL-2 and IL-15, a cytokine family that uses the common gamma-chain for signaling. IL-21 is expressed by activated CD4(+) T cells. We examined the role of IL-21 in the autoimmune disease experimental autoimmune encephalomyelitis (EAE), an animal model for human multiple sclerosis. IL-21 administration before induction of EAE with a neuroantigen, myelin oligodendrocyte glycoprotein peptide 35-55, and adjuvant enhanced the inflammatory influx into the CNS, as well as the severity of EAE. Autoreactive T cells purified from IL-21-treated mice transferred more severe EAE than did the control encephalitogenic T cells. No such effects were observed when IL-21 was administered after EAE progressed. Additional studies demonstrated that IL-21 given before the induction of EAE boosted NK cell function, including secretion of IFN-gamma. Depletion of NK cells abrogated the effect of IL-21. Therefore, IL-21, by affecting NK cells, has differential effects during the initiation and progression of autoimmune responses against neuroantigens.  相似文献   

17.
Laquinimod is a novel oral drug that is currently being evaluated for the treatment of relapsing-remitting (RR) multiple sclerosis (MS). Using the animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), we examined how laquinimod promotes immune modulation. Oral laquinimod treatment reversed established RR-EAE and was associated with reduced central nervous system (CNS) inflammation, decreased Th1 and Th17 responses, and an increase in regulatory T cells (Treg). In vivo laquinimod treatment inhibited donor myelin-specific T cells from transferring EAE to naive recipient mice. In vivo laquinimod treatment altered subpopulations of myeloid antigen presenting cells (APC) that included a decrease in CD11c(+)CD11b(+)CD4(+) dendritic cells (DC) and an elevation of CD11b(hi)Gr1(hi) monocytes. CD11b(+) cells from these mice exhibited an anti-inflammatory type II phenotype characterized by reduced STAT1 phosphorylation, decreased production of IL-6, IL-12/23 and TNF, and increased IL-10. In adoptive transfer, donor type II monocytes from laquinimod-treated mice suppressed clinical and histologic disease in recipients with established EAE. As effects were observed in both APC and T cell compartments, we examined whether T cell immune modulation occurred as a direct effect of laquinimod on T cells, or as a consequence of altered APC function. Inhibition of Th1 and Th17 differentiation was observed only when type II monocytes or DC from laquinimod-treated mice were used as APC, regardless of whether myelin-specific T cells were obtained from laquinimod-treated or untreated mice. Thus, laquinimod modulates adaptive T cell immune responses via its effects on cells of the innate immune system, and may not influence T cells directly.  相似文献   

18.
Suppression of CD4+ Th1 cell-mediated autoimmune disease via immune deviation is an attractive potential therapeutic approach. CD4+ Th2 T cells specific for myelin basic protein, induced by immunization of young adult male SJL mice, suppress or modify the progression of CNS autoimmune disease. This report demonstrates that activation of non-neuroantigen-specific Th2 cells is sufficient to suppress both clinical and histological experimental allergic encephalomyelitis (EAE). Th2 cells were obtained following immunization of male SJL mice with keyhole limpet hemocyanin. Transfer of these cells did not modify EAE, a model of human multiple sclerosis, in the absence of cognate Ag. Disease suppression was obtained following adoptive transfer and subcutaneous immunization. Suppression was not due to the deletion of myelin basic protein-specific T cells, but resulted from the presence of IL-10 as demonstrated by the inhibition of Th2-mediated EAE suppression via passive transfer with either anti-IL-10 or anti-IL-10R mAb. These data demonstrate that peripheral activation of a CD4+ Th2 population specific for an Ag not expressed in the CNS modifies CNS autoimmune disease via IL-10. These data suggest that either peripheral activation or direct administration of IL-10 may be of benefit in treating Th1-mediated autoimmune diseases.  相似文献   

19.
Chronic inflammation contributes to numerous diseases, and regulation of inflammation is crucial for disease control and resolution. Sex hormones have potent immunoregulatory abilities. Specifically, estrogen influences immune cells and inflammation, which contributes to the sexual dimorphism of autoimmunity and protection against disease seen during pregnancy in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although long thought to act primarily on T cells, recent evidence demonstrated that myeloid cells, such as dendritic cells (DCs), are essential in mediating estrogen's protective effects. Estriol (E3), a pregnancy-specific estrogen, has therapeutic efficacy in MS and EAE, and we evaluated whether E3 could act exclusively through DCs to protect against the inflammatory autoimmune disease EAE. Levels of activation markers (CD80 and CD86) and inhibitory costimulatory markers (PD-L1, PD-L2, B7-H3, and B7-H4) were increased in E3 DCs. E3 DCs had decreased proinflammatory IL-12, IL-23, and IL-6 mRNA expression, increased immunoregulatory IL-10 and TGF-β mRNA expression, and a decreased ratio of IL-12/IL-10 protein production. Importantly, transfer of E3 DCs to mice prior to active induction of EAE protected them from developing EAE through immune deviation to a Th2 response. This protection was apparent, even in the face of in vitro and in vivo inflammatory challenge. In summary, our results showed that E3 generates tolerogenic DCs, which protect against the inflammatory autoimmune disease EAE. Targeted generation of tolerogenic DCs with immunomodulatory therapeutics, such as E3, has potential applications in the treatment of numerous autoimmune and chronic inflammatory diseases.  相似文献   

20.
Experimental autoimmune encephalomyelitis (EAE) is widely regarded as an animal model of the human disease multiple sclerosis. A multitude of studies has investigated the neuroantigen-specific T-cell mediated cytokine pattern present in animals with EAE. In particular, the role of the so-called Th1- and Th2-cytokines has been addressed. In a recent study, it has been demonstrated that IL-23 rather than IL-12 is critical for modulating the character of the developing immune response towards a proinflammatory response and leading to EAE. IL-17 is a crucial effector cytokine, whose production is specifically triggered by IL-23, and it has been shown to be an essential inflammatory mediator in other autoimmune diseases and inflammatory conditions. This led us to investigate the role of IL-17 in EAE. Strong antigen-specific production of IL-17 was demonstrated both in peripheral immune organs and in the CNS in acute and chronic EAE, as demonstrated by ELISPOT and RT-PCR analysis. Therapeutic neutralization of IL-17 with IL-17-receptor-Fc-protein in acute EAE ameliorated clinical symptoms. Neutralization of IL-17 with a monoclonal antibody also ameliorated the disease course. We conclude that IL-17 is crucially involved in the cytokine network as an effector cytokine in EAE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号