首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This study measured total osmolarity and concentrations of NH(4)(+), NO(3)(-), K(+), soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH(4)(+) and NO(3)(-) in xylem sap for plants receiving NH(4)(+) or NO(3)(-) as a sole N-source, NH(4)(+) plus NO(3)(-), or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH(4)(+) indicated that growing cells imported NH(4)(+) from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH(4)(+) absorbed. Net root NO(3)(-) influx under Ca(NO(3))(2) nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO(3)(-) influx under NH(4)NO(3) was less than the local deposition rate in the growth zone, indicating that additional NO(3)(-) was imported or metabolically produced. The profile of NO(3)(-) deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO(3))(2) or NH(4)NO(3). These results suggest that NO(3)(-) may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues.  相似文献   

2.
An experiment was conducted to evaluate the effects of air ion treatment on tomato plants (Lycopersicon esculentum P. Miller) in terms of: (1) growth and health; (2) fruit yield and quality; and (3) economic factors. The plants were grown by a commercial greenhouse (G.H.) grower employing soilless culture techniques. An air ion generator and emitters were installed in such fashion that 864 plants were exposed to a high negative air ion density flux, while 576 plants grew in an area which received relatively few ions. Normal operational procedures, with certain modifications, were employed for plant culture, feed/irrigation, and environmental control. Plants responded vigouously to air ion stimulation, which equated to shortening of the seeding-to-harvest time period by two weeks as measured by vine growth, main stem height, time to blossoming, fruit set, and fruit yield. Throughout the first four-month growth period plant growth was good and no serious physiological disorders nor insect damage were observed. During the sixth harvest week a virus infection appeared in both control and ion-treated plants, but was not of sufficient severity to ruin the experimnent. Foliage and fruit samples were subjected to laboratory analyses. In general, the stimulated plants contained higher percentages of mineral elements than those of the controls. Fruit from ion-treated plants has more ascorbic and citric acid than that from control plants. Although there were no wide differences in fruit texture or flavor, a taste panel verdict indicated that fruit from the stimulated plants tasted better. An unexpected benefit was marked decrease in white fly infestation. All these factors combined with the low cost of air-ion treatment suggest that this modality offers potential for greenhouse cultivation of garden crops.  相似文献   

3.
The regulation of ammonium translocation in plants   总被引:9,自引:0,他引:9  
Much controversy exists about whether or not NH(+)(4) is translocated in the xylem from roots to shoots. In this paper it is shown that such translocation can indeed take place, but that interference from other metabolites such as amino acids and amines may give rise to large uncertainties about the magnitude of xylem NH(+)(4) concentrations. Elimination of interference requires sample stabilization by, for instance, formic acid or methanol. Subsequent quantification of NH(+)(4) should be done by the OPA-fluorometric method at neutral pH with 2-mercaptoethanol as the reducing agent since this method is sensitive and reliable. Colorimetric methods based on the Berthelot reaction should never be used, as they are prone to give erroneous results. Significant concentrations of NH(+)(4), exceeding 1 mM, were measured in both xylem sap and leaf apoplastic solution of oilseed rape and tomato plants growing with NO(-)(3) as the sole N source. When NO(-)(3) was replaced by NH(+)(4), xylem sap NH(+)(4) concentrations increased with increasing external concentrations and with time of exposure to NH(+)(4). Up to 11% of the translocated N was constituted by NH(+)(4). Glutamine synthetase (GS) incorporates NH(+)(4) into glutamine, but root GS activity and expression were repressed when high levels of NH(+)(4) were supplied. Ammonium concentrations measured in xylem sap sampled just above the stem base were highly correlated with NH(+)(4) concentrations in apoplastic solution from the leaves. Young leaves tended to have higher apoplastic NH(+)(4) concentrations than older non-senescing leaves. The flux of NH(+)(4) (concentration multiplied by transpirational water flow) increased with temperature despite a decline in xylem NH(+)(4) concentration. Retrieval of leaf apoplastic NH(+)(4) involves both high and low affinity transporters in the plasma membrane of mesophyll cells. Current knowledge about these transporters and their regulation is discussed.  相似文献   

4.
Potted plants of Ceratonia siliqua L., growing in a greenhouse,were used to detect xylem cavitation (in terms of ultrasoundacoustic emissions AE) in internodes and node-to-petiole (N-P)junctions, after different periods of drought (9, 16 and 23d). Diurnal AE were only 100 in internodes of watered (W) plantsbut 320, 1250 and 2460 in 9-, 16- and 23-d stressed ones. InN-P junctions, AE were only 15 to 20% with respect to internodes. Stem perfusion with dye allowed measurement of the percentageof xylem conduit transverse area blocked by cavitation. Thiswas 2% in internodes of W-plants and 5.2, 13.8 and 40.4% inthose of 9-, 16- and 23-d stressed ones. In N-P junctions, 18.5%of the xylem conduit transverse area was blocked in the 23-dstressed plants only. The major resistance to cavitation exhibitedby the N-P junctions is interpreted in terms of their greaternumber of narrow xylem conduits. The percentage of blocked xylemconduits within a range of diameters showed that the narrowera xylem conduit, the less likely it was that cavitation wouldoccur. After rewatering, the release of the xylem blockage causedby cavitation occurred within 2 h. Our data suggest that C.siliqua can be considered to be a cavitation avoider, especiallyin its stem-to-leaf transition zones. Ceratonia siliqua L., Carob tree, cavitation avoidance, xylem architecture, ultrasonic acoustic emissions  相似文献   

5.
Interactions between NO(3)(-) and NO(2)(-) were studied at the level of root uptake, ion translocation (NO(3)(-), NO(2)(-), K(+)), ion xylem exudates composition and inorganic cation contents (K(+), Ca(2+), Mg(2+)) using tomato seedling (Solanum lycopersicum Mill cv. Ibiza F1). Nitrite was supplied in the medium as KNO(2) (0, 0.25, 2.5, 5 and 10?mM). Plants cultivated on the same doses of KNO(3) served as control. The experimental system allowed direct measurements of net NO(3)(-) and NO(2)(-) uptake. Our results showed that NO(3)(-) uptake and translocation were stimulated by external supply of K(+), while they were hardly decreased by NO(2)(-) supply. Contents of K(+) and Mg(2+) were negatively affected in all tomato tissues by increasing nitrite concentration in the medium. Highest dose of NO(2)(-) decreased Ca(2+) accumulation in shoots and conversely increased that in the roots. Histological study at the stem level revealed that nitrite (10?mM) induced a restriction of the tissue territories as well as less developed regions and some conductor tissues disorganization in this organ structure. The overall results suggest that nitrite exposure delayed growth and injured cell structure and overall nutrient uptake.  相似文献   

6.
Inducible plant defense is a beneficial strategy for plants, which imply that plants should allocate resources from growth and reproduction to defense when herbivores attack. Plant ecologist has often studied defense responses in wild populations by biomass clipping experiments, whereas laboratory and greenhouse experiments in addition apply chemical elicitors to induce defense responses. To investigate whether field ecologists could benefit from methods used in laboratory and greenhouse studies, we established a randomized block‐design in a pine‐bilberry forest in Western Norway. We tested whether we could activate defense responses in bilberry (Vaccinium myrtillus) by nine different treatments using clipping (leaf tissue or branch removal) with or without chemical treatment by methyljasmonate (MeJA). We subsequently measured consequences of induced defenses through vegetative growth and insect herbivory during one growing season. Our results showed that only MeJA‐treated plants showed consistent defense responses through suppressed vegetative growth and reduced herbivory by leaf‐chewing insects, suggesting an allocation of resources from growth to defense. Leaf tissue removal reduced insect herbivory equal to the effect of the MeJa treatments, but had no negative impact on growth. Branch removal did not reduce insect herbivory or vegetative growth. MeJa treatment and clipping combined did not give an additional defense response. In this study, we investigated how to induce defense responses in wild plant populations under natural field conditions. Our results show that using the chemical elicitor MeJA, with or without biomass clipping, may be a better method to induce defense response in field experiments than clipping of leaves or branches that often has been used in ecological field studies.  相似文献   

7.
A survey of xylem fluid-feeding insects (Hemiptera) exhibiting potential for transmission of Xylella fastidiosa, the bacterium causing Pierce's disease of grapevine, was conducted from 2004 to 2006 in the Hill Country grape growing region of central Texas. Nineteen insect species were collected from yellow sticky traps. Among these, two leafhoppers and one spittlebug comprised 94.57% of the xylem specialists caught in this region. Homalodisca vitripennis (Germar), Graphocephala versuta (Say), and Clastoptera xanthocephala Germar trap catches varied significantly over time, with greatest counts usually recorded between May or June and August and among localities. A comparison of insect counts from traps placed inside and outside vineyards indicated that G. versuta is always more likely captured on the vegetation adjacent to the vineyard. C. xanthocephala was caught inside the vineyard during the summer. Between October and December, the natural habitat offers more suitable host plants, and insects were absent from the vineyards after the first freezes. H. vitripennis was caught in higher numbers inside the vineyards throughout the grape vegetative season. However, insects were also caught in the habitat near the affected crop throughout the year, and residual populations overwintering near vineyards were also recorded. This study shed new light on the fauna of xylem fluid-feeding insects of Texas. These results also provide critical information to vineyard managers for timely applications of insecticides before insect feeding and vectoring to susceptible grapevines.  相似文献   

8.
Plant-atmosphere NH(3) exchange was studied in white clover (Trifolium repens L. cv. Seminole) growing in nutrient solution containing 0 (N(2) based), 0.5 (low N) or 4.5 (high N) mM NO(3)(-). The aim was to show whether the NH(3) exchange potential is influenced by the proportion of N(2) fixation relative to NO(3)(-) supply. During the treatment, inhibition of N(2) fixation by NO(3)(-) was followed by in situ determination of total nitrogenase activity (TNA), and stomatal NH(3) compensation points (chi(NH(3))) were calculated on the basis of apoplastic NH4(+) concentration ([NH4(+)]) and pH. Whole-plant NH(3) exchange, transpiration and net CO(2) exchange were continuously recorded with a controlled cuvette system. Although shoot total N concentration increased with the level of mineral N application, tissue and apoplastic [NH4(+)] as well as chi(NH(3)) were equal in the three treatments. In NH(3)-free air, net NH(3) emission rates of <1 nmol m(-2) s(-1) were observed in both high-N and N(2)-based plants. When plants were supplied with air containing 40 nmol mol(-1) NH(3), the resulting net NH(3) uptake was higher in plants which acquired N exclusively from symbiotic N(2) fixation, compared to NO(3)(-) grown plants. The results indicate that symbiotic N(2) fixation and mineral N acquisition in white clover are balanced with respect to the NH4(+) pool leading to equal chi(NH(3)) in plants growing with or without NO(3)(-). At atmospheric NH(3) concentrations exceeding chi(NH(3)), the NH(3) uptake rate is controlled by the N demand of the plants.  相似文献   

9.
The regulation of anion loading to the maize root xylem   总被引:2,自引:0,他引:2       下载免费PDF全文
The regulation of anion loading to the shoot in maize (Zea mays) was investigated via an electrophysiological characterization of ion conductances in protoplasts isolated from the root stele. Two distinct anion conductances were identified. In protoplasts from well-watered plants, Z. mays xylem-parenchyma quickly-activating anion conductance (Zm-X-QUAC) was the most prevalent conductance and is likely to load the majority of NO(3)(-) and Cl(-) ions to the xylem in nonstressed conditions. Z. mays xylem-parenchyma inwardly-rectifying anion conductance was found at a lower frequency in protoplasts from well-watered plants than Zm-X-QUAC, was much smaller in magnitude in all observed conditions, and is unlikely to be such a major pathway for anion loading into the xylem. Activity of Z. mays xylem-parenchyma inwardly-rectifying anion conductance increased following a water stress prior to protoplast isolation, but the activity of the putative major anion-loading pathway, Zm-X-QUAC, decreased. Addition of abscisic acid (ABA) to protoplasts from well-watered plants also inhibited Zm-X-QUAC activity within minutes, as did a high free Ca(2+)concentration in the pipette. ABA was also seen to activate a Ca(2+)-permeable conductance (Z. mays xylem-parenchyma hyperpolarization activated cation conductance) in protoplasts from well-watered plants. It is postulated that the inhibition of anion loading into the xylem (an important response to a water stress) due to down-regulation of Zm-X-QUAC activity is mediated by an ABA-mediated rise in free cytosolic Ca(2+).  相似文献   

10.
This study involved both greenhouse and laboratory experiments evaluating the effect of an essential oil product (QRD 400) derived from Chenopodium ambrosioides variety nr. Ambrosioides L. (Chenopodiaceae) on greenhouse insect pests that feed on different plant parts: citrus mealybug, Planococcus citri (Risso); longtailed mealybug, Pseudococcus longispinus (Targioni Tozzetti); western flower thrips, Frankliniella occidentalis (Pergande), and fungus gnats (Bradysia spp.). Treatments were applied to coleus, Solenostemon scutellarioides plants; transvaal daisy, Gerbera jamesonii flowers; or growing medium, depending on the insect pest. The essential oil was most effective, based on adult emergence, on both the second and third instars of the fungus gnat Bradysia sp. nr. coprophila when applied as a drench to growing medium. In addition, there was a significant rate response for QRD 400 on fungus gnats. The QRD 400 treatment had the highest percentage of mortality on longtailed mealybug (55%) compared with the other treatments. However, the essential oil was less effective against citrus mealybug (3% mortality) and western flower thrips adults (18-34% mortality) compared with standard insecticides, such as acetamiprid (TriStar) and spinosad (Conserve), which are typically used by greenhouse producers. This lack of efficacy may be associated with volatility and short residual properties of the essential oil or with the essential oil taking longer to kill insect pests. Other insecticides and miticides evaluated, including sesame oil, garlic, paraffinic oil, and Bacillus thuringiensis subsp. israelensis, provided minimal control of the designated insect pests. In addition, adult rove beetle Atheta coriaria Kraatz adults were not effective in controlling the larval instars of fungus gnats when applied at a rate of five adults per container.  相似文献   

11.
The xylem-feeding insect Philaenus spumarius was used to analyse sodium and potassium fluxes in the xylem of intact, transpiring wheat plants. Two cultivars were compared: the salt-excluding (Chinese Spring) and the non-excluding (Langdon). Chinese Spring accumulated much less sodium in its leaves than the salt-sensitive Langdon. After 7 d in 150 mol m(-3) NaCl, the sodium concentration in the leaf sap of Langdon reached over 600 mol m(-3). This was some three-fold greater than that in Chinese Spring. Similar findings have previously been reported from these cultivars. The reduced ion accumulation was specific to sodium; accumulation of K(+) was unaffected by NaCl in Chinese Spring, such that it developed a much lower leaf Na(+)/K(+) ratio than Langdon. The spittlebug, P. spumarius was used to sample xylem sap from both cultivars. This approach showed that the leaf xylem sap of Chinese Spring had much lower levels of sodium than that of Langdon. In the 150 mol m(-3) NaCl treatment, sodium levels in the leaf xylem reached only 2-3 mol m(-3) in Chinese Spring, compared with 8-10 mol m(-3) in Langdon. Transpiration rates were found to be similar in the two varieties. The lower leaf xylem content alone was thus sufficient to account for the reduced accumulation of sodium in leaves of Chinese Spring. The mechanisms by which xylem sodium might be lowered are discussed and it is concluded that sodium is probably excluded from the xylem in the root of Chinese Spring.  相似文献   

12.
Comparison of elemental concentrations in growth-arrested airway smooth muscle cells with those in their proliferating counterpart showed that potassium (K(+)) was significantly reduced, whereas concentrations of other elements sodium (Na(+)), magnesium (Mg(2+)), phosphorus (P), and chlorine (Cl(-)) remained unchanged. Reduced K(+)concentration was associated with a change in the cells from a spindle shape to a flattened form.  相似文献   

13.
Bacterial soft rot of tomato in plastic greenhouses in Crete   总被引:1,自引:0,他引:1  
During recent years a new disease has been noticed on tomatoes grown in Polythene greenhouses in Crete. Early symptoms are yellowing of the lower leaves, and a yellow brown discoloration of the pith and stem xylem. As leaves wilt and die there is progressive yellowing towards the top of the plants. A progressive disintegration of the cortical tissues follows which results in a soft rot and a longitudinal splitting of the stem running mainly upwards. Soft rot of the fruits rarely appears. Severely infected plants may wilt and die, but other less affected plants often survive and yield normally. Very vigorous plants grown under humid conditions are more susceptible. Often more than 20% of the plants are infected. Isolations were made from stem (xylem, cortex and pith), from leaf xylem and from fruits of infected tomato plants collected throughout the island from 1979 to 1985. Bacteria of the genus Erwinia and Pseudomonas were consistently isolated. On the basis of physiological and biochemical characters of 49 representative pathogenic isolates, 22 were identified as Erwinia carotovora subsp. carotovora, 10 as Erwinia carotovora subsp. atroseptica, four as Pseudomonas viridiflava and 13 as Pseudomonas fluorescens biotype I. All disease symptoms were reproduced when artificial inoculations were made with the above isolates in the laboratory (20°C and 100% r.h.) on 3–4 week tomato plants and in a commercial greenhouse on 4–5 months tomato plants. Bacteria used for inoculations were reisolated. Results indicated that the disease symptoms as described may be caused by four different bacteria species.  相似文献   

14.
We report here that NO(3)(-) in the xylem exerts positive feedback on its loading into the xylem through a change in the voltage dependence of the Quickly Activating Anion Conductance, X-QUAC. Properties of this conductance were investigated on xylem-parenchyma protoplasts prepared from roots of Hordeum vulgare by applying the patch-clamp technique. Chord conductances were minimal around -40 mV and increased with plasma membrane depolarisation as well as with hyperpolarisation. Two gates with opposite voltage dependences were postulated. When 30 mM Cl- in the bath was replaced by NO(3)(-), a shift in the midpoint potential of the depolarisation-activated gate by about -60 mV from 43 to -16 mV occurred (K(m) = 3.4 mM). No such effect was seen when chloride was replaced by malate. Addition of 10 mM NO(3)(-)to the pipette solution and reduction of [Cl-] from 124 to 4 mM (to simulate cytoplasmic concentrations) did not interfere with the voltage dependence of X-QUAC activation, nor was it affected by changes in external [K+]. If only the NO(3)(-) effect on gating was considered, an increase of the NO(3)(-) concentration in the xylem sap to 5 mM would result in an enhancement of NO(3)(-) efflux by about 30%. Although the driving force for NO(3)(-) efflux would be reduced simultaneously, NO(3)(-) efflux into the xylem through X-QUAC would be maintained with high NO(3)(-) concentrations in the xylem sap; a situation which occurs for instance during the night.  相似文献   

15.
Xylem pressure and its relative response to the imposition ofan external osmotic stress (the so-called radial reflectioncoefficient) were recorded in roots of intact maize plants usingthe xylem pressure probe technique. Consecutive insertion oftwo probes into the same xylem vessel or into adjacent vesselsof intact roots of plants exposed to high light intensity andsalt stress under laboratory conditions showed that the xylemtension was not changed by vessel probing. It was also shownby using the double probe approach that the plants were capableof overcoming artificially induced leakages. This and otherevidence reported in the literature convincingly demonstratedthat the probe accurately reads xylem pressure and xylem pressureresponses to osmotic stress. Additional experiments were performedon plants grown in a greenhouse at a subtropical latitude. Underthese conditions the plants were exposed to strong diurnal fluctuationsin light intensity, relative humidity and temperature. The resultsshowed that the absolute xylem pressure in the roots of untreatedplants decreased with increasing transpiration rate from positivevalues in the early morning to negative values around noon (averagevalue –0.15 MPa; maximum negative value –0.57 MPa).As the day progressed and the transpiration rate decreased,xylem pressure increased again to positive values. Correspondingly,the radial reflection coefficient for NaCI increased from aboutzero in the early morning to about unity at noon when transpirationreached its highest value and decreased again to very low valuestowards the evening. The data raise questions concerning conclusionsabout the mechanism of water transport in intact roots drawnfrom the low radial reflection coefficients measured on excisedroots using the root pressure probe. Key words: Xylem pressure probe, osmotic stress, reflection coefficient, transpiration, diurnal changes  相似文献   

16.
"Cavitation fatigue" is the increased susceptibility of a xylem conduit to cavitation as a result of its prior cavitation. It was investigated whether cavitation fatigue induced in vivo could be repaired in intact plants. Sunflowers (Helianthus annuus L.) were subjected to soil drought in the greenhouse. Native embolism and vulnerability to cavitation was measured in well-watered controls and after 5 d and 10 d of controlled drought. A dramatic cavitation fatigue was observed where droughted xylem that was refilled in the laboratory developed up to 60 PLC (percentage loss of hydraulic conductivity) at -1 MPa versus only 5.2 PLC in non-droughted controls. Rewatered plants showed the complete reversal of cavitation fatigue over 4 d. Reversal of fatigue was correlated with the refilling of embolized vessels in the intact plants (r(2)=0.91, P<0.01), suggesting that xylem transport to fatigued vessels was required for their repair. The in vivo reversal of fatigue was partially duplicated in excised stem segments by perfusing them with root exudates from droughted (DR) and well-watered (WW) plants. The DR exudate had a greater effect, and this was associated with a greater pH in the DR versus WW saps, but there was no difference in total cation concentration. Perfusions with 2 mM CaCl(2) and KCl solutions also partially reversed cavitation fatigue as opposed to no effect with deionized water, suggesting a role of ions in addition to a pH effect. It is suspected that fatigue is caused by stretching and partial disruption of linkages between cellulose microfibrils in inter-conduit pit membranes during air seeding, and that the reversal of fatigue involves restoring these linkages by ingredients in xylem sap.  相似文献   

17.
Calcium ions (Ca(2+)), protons (H(+)), and borate (B(OH)(4)(-)) are essential ions in the control of tip growth of pollen tubes. All three ions may interact with pectins, a major component of the expanding pollen tube cell wall. Ca(2+ )is thought to bind acidic residues, and cross-link adjacent pectin chains, thereby strengthening the cell wall. Protons are loosening agents; in pollen tube walls they may act through the enzyme pectin methylesterase (PME), and either reduce demethylation or stimulate hydrolysis of pectin. Finally, borate cross-links monomers of rhamnogalacturonan II (RG-II), and thus stiffens the cell wall. It is demonstrated here that changing the extracellular concentrations of Ca(2+), H(+) and borate affect not only the average growth rate of lily pollen tubes, but also influence the period of growth rate oscillations. The most dramatic effects are observed with increasing concentrations of Ca(2+) and borate, both of which markedly reduce the rate of growth of oscillating pollen tubes. Protons are less active, except at pH 7.0 where growth is inhibited. It is noteworthy, especially with borate, that the faster growing tubes exhibit the shorter periods of oscillation. The results are consistent with the idea that binding of Ca(2+) and borate to the cell wall may act at a similar level to alter the mechanical properties of the apical cell wall, with optimal concentrations being high enough to impart sufficient rigidity to the wall so as to prevent bursting in the face of cell turgor, but low enough to allow the wall to stretch quickly during periods of accelerating growth.  相似文献   

18.
Nickel speciation was studied in the xylem sap of Alyssum serpyllifolium ssp. lusitanicum, a Ni-hyperaccumulator endemic to the serpentine soils of northeast Portugal. The xylem sap was collected from plants growing in its native habitat and characterized in terms of carboxylic and amino acids content. The speciation of nickel was studied in model and real solutions of xylem sap by voltammetric titrations using Square Wave Voltammetry (SWV). The results showed that Ni transport in the xylem sap occurs mainly as a free hydrated cation (about 70%) and complexed with carboxylic acids, mainly citric acid (18%). Altogether, oxalic acid, malic acid, malonic acid and aspartic acid complexed less than 13% of total Ni. A negligible amount bounded to the amino acids, like glutamic acid and glutamine (<1%). Histidine did not play a role in Ni translocation in the xylem sap of A. serpyllifolium under field conditions. Amino acids are one of the main forms of N transport in the xylem sap, and under field conditions, N is usually a limited nutrient. We hypothesize that the translocation of Ni in the xylem sap as a free ion or chelated with carboxylic acids is ‘cheaper’ in terms of N resources.  相似文献   

19.
Leaf growth of many plant species shows rapid changes in response to alterations of the form and the level of N supply. In hydroponically-grown tomato (Lycopersicon esculentum L.), leaf growth was rapidly stimulated by NO(3)(-) application to NH(4)(+) precultured plants, while NH(4)(+) supply or complete N deprivation to NO(3)(-) precultured plants resulted in a rapid inhibition of leaf growth. Just 10 microM NO(3)(-) supply was sufficient to stimulate leaf growth to the same extent as 2 mM. Furthermore, continuous NO(3)(-) supply induced an oscillation of leaf growth rate with a 48 h interval. Since changes in NO(3)(-) levels in the xylem exudate and leaves did not correlate with NO(3)(-)-induced alterations of leaf growth rate, additional signals such as phytohormones may be involved. Levels of a known inhibitor of leaf growth, abscisic acid (ABA), did not consistently correspond to leaf growth rates in wild-type plants. Moreover, leaf growth of the ABA-deficient tomato mutant flacca was inhibited by NH(4)(+) without an increase in ABA concentration and was stimulated by NO(3)(-) despite its excessive ethylene production. These findings suggest that neither ABA nor ethylene are directly involved in the effects of N form on leaf growth. However, under all experimental conditions, stimulation of leaf growth by NO(3)(-) was consistently associated with increased concentration of the physiologically active forms of cytokinins, zeatin and zeatin riboside, in the xylem exudate. This indicates a major role for cytokinins as long-distance signals mediating the shoot response to NO(3)(-) perception in roots.  相似文献   

20.
To explore possible pathways for anions to enter the xylem in the root during the transport of salts to the shoot, we used the patch-clamp method on protoplasts prepared from the xylem parenchyma of barley (Hordeum vulgare L.) plants. K(+) currents were suppressed by tetraethylammonium or N-methylglucamine in the solutions in the pipette and the bath, and the permeating anions were Cl(-) or NO(3)(-). We recorded the activities of three distinct anion conductances: (a) an inwardly rectifying anion channel (X-IRAC), characterized by activation at hyperpolarization and open times of up to several seconds; (b) a quickly activating anion conductance (X-QUAC), important for anion efflux at voltages between -50 mV and the equilibrium potential of the prevailing anion; and (c) a slowly activating anion conductance (X-SLAC), activating above -100 mV. Both X-IRAC and X-QUAC were permeable for Cl(-) and NO(3)(-); X-QUAC was also permeable for malate. The occurrence of X-IRAC became more frequent with an increase in cytoplasmic Ca(2+), while the occurrence of X-QUAC decreased. Anion currents through X-SLAC, and particularly through X-QUAC, were estimated to be large enough to account for reported rates of xylem loading, which is in accordance with the notion that xylem loading is a passive process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号