共查询到20条相似文献,搜索用时 0 毫秒
1.
The bisecting GlcNAc is transferred to complex or hybrid N-glycans by the action of N-acetylglucosaminyltransferase III (GlcNAc-TIII) encoded by the Mgat3 gene. CHO cells expressing mouse GlcNAc-TIII were shown by matrix-assisted laser desorption ionization (MALDI) mass spectrometry to produce mainly complex N-glycans with the predicted extra (bisecting) GlcNAc. In order to probe biological functions of the bisecting GlcNAc, antibodies that recognize this residue in the context of complex cell surface glycoconjugates were sought. The LEC10 gain-of-function Chinese hamster ovary (CHO) cell mutant that expresses GlcNAc-TIII and complex N-glycans with the bisecting GlcNAc was used to immunize Mgat3
+/+ and Mgat3
–/– mice. ELISA of whole sera showed that polyclonal antibodies that bound specifically to LEC10 cells were obtained solely from Mgat3
–/– mice. Fluorescence-activated cell cytometry of different CHO glycosylation mutants and western blotting after glycosidase treatments were used to show that anti-LEC10 cell antisera from Mgat3
–/– mice recognize cellular glycoproteins with complex N-glycans containing both a bisecting GlcNAc and Gal residues. The polyclonal antibody specificity was similar to that of the lectin E-PHA. IgM-depleted serum containing IgG and IgA antibodies retained full binding activity. Therefore Mgat3
–/– mice but not wild type mice can be used effectively to produce polyclonal antibodies that specifically recognize glycoproteins bearing complex N-glycans with a bisecting GlcNAc. Published in 2003. 相似文献
2.
Le Bivic A 《Trends in cell biology》2005,15(5):237-240
Formation of a polarized epithelial layer is a fundamental step during the development of multicellular animals. This process involves the coordinated action of adhesion molecules, actin remodeling and spatial organization of membrane traffic. A recent article describes a new hierarchy for the development of epithelial polarity in the early Drosophila embryo. Bazooka, a Par-3 homolog, is properly localized in the absence of adherens junctions, indicating that the formation of epithelial junctions is not the founding event of epithelial polarization. 相似文献
3.
Paweł Link-Lenczowski Monika Bubka Crina I. A. Balog Carolien A. M. Koeleman Terry D. Butters Manfred Wuhrer Anna Lityńska 《Glycoconjugate journal》2018,35(2):217-231
N-acetylglucosaminyltransferase III (GnT-III) is known to catalyze N-glycan “bisection” and thereby modulate the formation of highly branched complex structures within the Golgi apparatus. While active, it inhibits the action of other GlcNAc transferases such as GnT-IV and GnT-V. Moreover, GnT-III is considered as an inhibitor of the metastatic potential of cancer cells both in vitro and in vivo. However, the effects of GnT-III may be more diverse and depend on the cellular context. We describe the detailed glycomic analysis of the effect of GnT-III overexpression in WM266–4-GnT-III metastatic melanoma cells. We used MALDI-TOF and ESI-ion-trap-MS/MS together with HILIC-HPLC of 2-AA labeled N-glycans to study the N-glycome of membrane-attached and secreted proteins. We found that the overexpression of GnT-III in melanoma leads to the modification of a broad range of N-glycan types by the introduction of the “bisecting” GlcNAc residue with highly branched complex structures among them. The presence of these unusual complex N-glycans resulted in stronger interactions of cellular glycoproteins with the PHA-L. Based on the data presented here we conclude that elevated activity of GnT-III in cancer cells does not necessarily lead to a total abrogation of the formation of highly branched glycans. In addition, the modification of pre-existing N-glycans by the introduction of “bisecting” GlcNAc can modulate their capacity to interact with carbohydrate-binding proteins such as plant lectins. Our results suggest further studies on the biological function of “bisected” oligosaccharides in cancer cell biology and their interactions with carbohydrate-binding proteins. 相似文献
4.
5.
Cell-cell adhesion is critical to the development and maintenance of multicellular organisms. The stability of many adhesions is regulated by protein tyrosine phosphorylation of cell adhesion molecules and their associated components, with high levels of phosphorylation promoting disassembly. The level of tyrosine phosphorylation reflects the balance between protein-tyrosine kinase and protein-tyrosine phosphatase activity. Many protein-tyrosine phosphatases associate with the cadherin-catenin complex, directly regulating the phosphorylation of these proteins, thereby affecting their interactions and the integrity of cell-cell junctions. Tyrosine phosphatases can also affect cell-cell adhesions indirectly by regulating the signaling pathways that control the activities of Rho family G proteins. In addition, receptor-type tyrosine phosphatases can mediate outside-in signaling through both ligand binding and dimerization of their extracellular domains. This review will discuss the role of protein-tyrosine phosphatases in cell-cell interactions, with an emphasis on cadherin-mediated adhesions. 相似文献
6.
Roberto Rivabene Marina Viora Paola Matarrese Gabriella Rainaldi Antonella D'Ambrosio Walter Malorni 《Cell biology international》1995,19(8):681-686
In this paper, we show that the antioxidant N-acetyl-cysteine (NAC) is capable of enhancing the adhesion properties of the epithelial cell line A431 and of the lymphocytic cells with cytotoxic activitv from human peripheral blood: the natural killer (NK) cells. This effect leads to an increased efficiency of A431 cells to form a monolayer and of NK cells to kill their targets. In both cases a specific effect of NAC was found in the distribution of those molecules of the cytoskeleton which are generally involved in cell substrate and cell-to-cell contact region formation, e.g., the actin microfilaments. NAC could thus behave as a drug influencing certain cytoskeleton-dependent cell processes in a non-histotype dependent manner. 相似文献
7.
Rouwendal GJ Wuhrer M Florack DE Koeleman CA Deelder AM Bakker H Stoopen GM van Die I Helsper JP Hokke CH Bosch D 《Glycobiology》2007,17(3):334-344
In this study, we show that introduction of human N-acetylglucosaminyltransferase (GnT)-III gene into tobacco plants leads to highly efficient synthesis of bisected N-glycans. Enzymatically released N-glycans from leaf glycoproteins of wild-type and transgenic GnT-III plants were profiled by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in native form. After labeling with 2-aminobenzamide, profiling was performed using normal-phase high-performance liquid chromatography with fluorescence detection, and glycans were structurally characterized by MALDI-TOF/TOF-MS and reverse-phase nano-liquid chromatography-MS/MS. These analyses revealed that most of the complex-type N-glycans in the plants expressing GnT-III were bisected and carried at least two terminal N-acetylglucosamine (GlcNAc) residues in contrast to wild-type plants, where a considerable proportion of N-glycans did not contain GlcNAc residues at the nonreducing end. Moreover, we have shown that the majority of N-glycans of an antibody produced in a plant expressing GnT-III is also bisected. This might improve the efficacy of therapeutic antibodies produced in this type of transgenic plant. 相似文献
8.
Differential regulation of vascular cell adhesion molecule 1 gene expression by specific NF-kappa B subunits in endothelial and epithelial cells. 总被引:16,自引:5,他引:16
下载免费PDF全文

H B Shu A B Agranoff E G Nabel K Leung C S Duckett A S Neish T Collins G J Nabel 《Molecular and cellular biology》1993,13(10):6283-6289
9.
Zhao Y Nakagawa T Itoh S Inamori K Isaji T Kariya Y Kondo A Miyoshi E Miyazaki K Kawasaki N Taniguchi N Gu J 《The Journal of biological chemistry》2006,281(43):32122-32130
N-acetylglucosaminyltransferase V (GnT-V) catalyzes the addition of beta1,6-GlcNAc branching of N-glycans, which contributes to metastasis. N-acetylglucosaminyltransferase III (GnT-III) catalyzes the formation of a bisecting GlcNAc structure in N-glycans, resulting in the suppression of metastasis. It has long been hypothesized that the suppression of GnT-V product formation by the action of GnT-III would also exist in vivo, which will consequently lead to the inhibition of biological functions of GnT-V. To test this, we draw a comparison among MKN45 cells, which were transfected with GnT-III, GnT-V, or both, respectively. We found that alpha3beta1 integrin-mediated cell migration on laminin 5 was greatly enhanced in the case of GnT-V transfectant. This enhanced cell migration was significantly blocked after the introduction of GnT-III. Consistently, an increase in bisected GlcNAc but a decrease in beta1,6-GlcNAc-branched N-glycans on integrin alpha3 subunit was observed in the double transfectants of GnT-III and GnT-V. Conversely, GnT-III knockdown resulted in increased migration on laminin 5, concomitant with an increase in beta1,6-GlcNAc-branched N-glycans on the alpha3 subunit in CHP134 cells, a human neuroblastoma cell line. Therefore, in this study, the priority of GnT-III for the modification of the alpha3 subunit may be an explanation for why GnT-III inhibits GnT-V-induced cell migration. Taken together, our results demonstrate for the first time that GnT-III and GnT-V can competitively modify the same target glycoprotein and furthermore positively or negatively regulate its biological functions. 相似文献
10.
CDK5 and its activator, p35, are expressed in mouse corneal epithelium and can be coimmunoprecipited from corneal epithelial cell lysates. Immunostaining shows CDK5 and p35 in all layers of the corneal epithelium, especially along the basal side of the basal cells. Stable transfection of corneal epithelial cells with CDK5, which increases CDK5 kinase activity by approximately 33%, also increases the number of cells adhering to fibronectin and the strength of adhesion. CDK5 kinase activity seems to be required for this effect, because the kinase inactive mutation, CDK5-T33, either reduces adhesion or has no significant effect, depending on the level of expression. Using an in vitro scrape wound in confluent cultures of stably transfected cells to examine the effect of CDK5 on cell migration, we show that reoccupation of the wound area is significantly decreased by CDK5 and increased by CDK5-T33. These findings indicate that CDK5 may be an important regulator of adhesion and migration of corneal epithelial cells. 相似文献
11.
S Koyota Y Ikeda S Miyagawa H Ihara M Koma K Honke R Shirakura N Taniguchi 《The Journal of biological chemistry》2001,276(35):32867-32874
The down-regulation of the alpha-Gal epitope (Galalpha1,3Galbeta-R) in swine tissues would be highly desirable, in terms of preventing hyperacute rejection in pig-to-human xenotransplantation. In an earlier study, we reported that the introduction of the beta1,4-N-acetylglucosaminyltransferase (GnT) III gene into swine endothelial cells resulted in a substantial reduction in the expression of the alpha-Gal epitope. In this study, we report on the mechanism for this down-regulation of the alpha-Gal epitope by means of structural and kinetic analyses. The structural analyses revealed that the amount of N-linked oligosaccharides bearing the alpha-Gal epitopes in the GnT-III-transfected cells was less than 10% that in parental cells, due to the alteration of the terminal structures as well as a decrease in branch formation. In addition, it appeared that the addition of a bisecting GlcNAc, which is catalyzed by GnT-III, leads to a more efficient sialylation rather than alpha-galactosylation. In vitro kinetic analyses showed that the bisecting GlcNAc has an inhibitory effect on alpha-galactosylation, but does not significantly affect the sialylation. These results suggest that the bisecting GlcNAc in the core is capable of modifying the biosynthesis of the terminal structures via its differential effects on the capping glycosyltransferase reactions. The findings may contribute to the development of a novel strategy to eliminate carbohydrate xenoantigens. 相似文献
12.
13.
14.
Involvement of the junctional adhesion molecule-1 (JAM1) homodimer interface in regulation of epithelial barrier function 总被引:12,自引:0,他引:12
Junctional adhesion molecule-1 (JAM1) is a tight junction-associated immunoglobulin superfamily protein implicated in the regulation of tight junctions and leukocyte transmigration. The structural basis for the function of JAM1 has yet to be determined. Here we provide evidence that JAM1 homodimer formation is important for its function in epithelial cells. Experiments were conducted to determine the effects of a panel of JAM1 monoclonal antibodies on epithelial barrier recovery after transient disruption by calcium switch. Two monoclonal antibodies were observed to inhibit barrier recovery in contrast to another monoclonal antibody that had no effect. Epitope mapping by phage display revealed that both inhibitory antibodies bind to a region of JAM1 located within the N-terminal Ig-like loop (residues 111-123). Competition experiments with synthetic peptides and site-directed mutagenesis confirmed the location of this epitope. Analysis of the crystal structure of JAM1 revealed that this epitope includes residues within the putative homodimer interface, and one of the two inhibitory antibodies was then shown to block JAM1 homodimer formation in vitro. Finally, mutations within the homodimer interface were shown to prevent enrichment of JAM1 at points of cell contact, presumably by interference with homophilic interactions. These findings suggest that homodimer formation may be important for localization of JAM1 at tight junctions and for regulation of epithelial barrier function. 相似文献
15.
N H Brown 《Matrix biology》2000,19(3):191-201
Integrins are essential for the development of the two genetically tractable invertebrate model organisms, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Just two integrins are present in C. elegans: one putative RGD binding integrin alphapat-2betapat-3, corresponding to Drosophila alphaPS2betaPS and vertebrate alpha5beta1, alphaVbeta1 and alpha8beta1, and one putative laminin binding integrin alphaina-1betapat-3, corresponding to Drosophila alphaPS1betaPS and vertebrate alpha3beta1, alpha6beta1 and alpha7beta1. In this review, the function of this minimal set of integrins during the development of these two invertebrates is compared. Despite the differences in bodyplan and developmental strategy, integrin adhesion to the extracellular matrix is required for similar processes: the formation of the link that translates muscle contraction into movement of the exoskeleton, cell migration, and morphogenetic interactions between epithelia. Other integrin functions, such as regulation of gene expression, have not yet been experimentally demonstrated in both organisms. Additional proteins have been characterised in each organism that are essential for integrin function, including extracellular matrix ligands and intracellular interacting proteins, but so far different proteins have been found in the two organisms. This in part represents the fact that the characterisation of the full set of interacting proteins is not complete in either system. However, in other cases different proteins appear to be used for similar functions in the two animals. The continued use of genetic approaches to identify proteins required for integrin function in these two model organisms should lead to the identification of the minimal set of conserved components that form integrin adhesive structures. 相似文献
16.
Carroll DK Carroll JS Leong CO Cheng F Brown M Mills AA Brugge JS Ellisen LW 《Nature cell biology》2006,8(6):551-561
17.
18.
19.
Yun-Bo Shi 《Cell biochemistry and biophysics》1997,27(3):179-202
Amphibian intestinal remodeling during metamorphosis is a developmental system that is entirely controlled by thyroid hormone.
It transforms a simple tubular organ into a complex multiply folded frog intestine similar to that in higher vertebrates.
This process involves the degeneration of the larval epithelium through programmed cell death (apoptosis) and concurrent proliferation
and differentiation of adult cell types. Earlier morphological and cellular studies have provided strong evidence implicating
the importance of cell-cell and cell-ECM (extracellular matrix) interactions in this process. The recent molecular characterization
of the genes that are regulated by thyroid hormone has begun to reveal some molecular clues underlying such interactions.
In particular, theXenopus putative morphogen hedgehog appears to be involved in regulating/mediating cell-cell interactions during adult epithelial
proliferation, differentiation, and/or intestinal morphogenesis. On the other hand, several matrix metalloproteinases (MMPs)
may be involved in remodeling the ECM. Of special interest is stromelysin-3, whose spatial and temporal expression profile
during intestinal metamorphosis implicates a role in ECM remodeling, which in turn facilitates cell fate determination, i.e.,
apoptosis vs proliferation and differentiation. Understanding the mechanisms of action for those extracellular molecules will
present a future challenge in developmental research. 相似文献
20.
Role of oligomannosidic N-glycans in the proliferation,adhesion and signalling of C6 glioblastoma cells 总被引:2,自引:0,他引:2
The potential role of glycoprotein N-glycans in the proliferation and adhesion of C6 glioblastoma cells was investigated using a set of N-glycosylation inhibitors (tunicamycin, deoxynojirimycin, castanospermine, deoxymannojirimycin, swainsonine), and traffic (monensin). It was observed that both the proliferative and adhesive properties of C6 cells were dependent upon the expression at the cell surface of glycoproteins with oligomannosidic and hybrid type N-glycans, whereas the absence of N-glycans (tunicamycin) or the presence of glucosyl-oligomannosides (deoxynojirimycin and castanospermine) and the absence of glycoproteins at the cell surface (monensin) reduced both the proliferative and adhesive properties of C6 cells. Studies of the classical elements of signalling pathways indicated that the different inhibitors have a low impact on tyrosine phosphorylations and oncogene product expression (except the ras oncogene product), except on phosphorylations on other residues. An endogenous soluble lectin (CSL; J. Neurochem. 49 (1987) 1250), specific for oligomannosidic and hybrid type N-glycans, was present and externalised by the cells through a pinching-off of large intracellular vesicles, a mechanism that was not blocked by monensine; in contrast with the externalisation of its glycoprotein ligands. The inhibitory effect of anti-CSL Fab fragments on adhesion indicates that the polyvalent CSL acts as a bridging molecule for a family of surface glycoproteins expressed at the surface of C6 cells. The inhibitory effect of the same Fab fragments on the proliferation indicates that CSL is a mitogen for these cells, possibly involved in clustering its surface glycoprotein ligands. A mechanism for the loss of contact inhibition is discussed based on the over-expression of CSL ligands in C6 glioblastoma cells relative to normal cells. 相似文献