首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The development of a transductional method for complementation tests between transfer-deficient mutants of the narrow-host-range R plasmic R91-5 of Pseudomonas aeruginosa has allowed the indentification of cistrons involved in the conjugal transfer of this plasmid. Complementation tests performed between transfer-deficient mutants characterized phenotypically with respect to sensitivity to donor-specific phage, ability to inhibit the replication of phage G101, and expression of entry-exclusion has identified a minimum of 10 transfer cistrons. Although most mutagen-induced mutants were relatively heterogeneous and appeared to be affected in a single cistron only, a high proportion of mutants isolated after selection for donor-specific phage resistance had deletions but always included tra Y. Mutants selected directly on the basis of transfer deficiency which also became donor-specific phage resistant fell into all 10 cistrons, suggesting that many R91-5 transfer cistrons are concerned with the synthesis of sex pili and other surface structures necessary for conjugal transfer. Conversely, most retaining donor-specific phage sensitivity belonged to one cistron, whereas transfer-deficient mutants which had also lost the ability to inhibit the replication of phage G101 comprised four cistrons.  相似文献   

2.
The effect on phage morphogenesis of sus mutations in the cistrons coding for nonstructural proteins has been studied. Mutants in three cistrons analyzed that are involved in phage DNA synthesis, as well as in cistron 16 which codes for a late nonstructural protein, produce prolate capsids which are more rounded at the corners than complete phage heads and have an internal core; they contain the head proteins, the upper collar protein and protein p7, not present in mature phage particles. Mutants in cistron 7 do not produce capsids nor other phage-related structures; this result and the presence of p7 in phage capsids suggest an essential role in capsid assembly for this protein. The protein product of cistron 13 is probably needed for a stable DNA encapsulation since mutants in this cistron produce mainly DNA-free complete phage particles and only about 10% of uninfective DNA-containing complete phage. Cistron 15 codes for a late, partially dispensable, nonstructural protein which is present in the DNA-free capsids produced after infection with the delayed-lysis mutant sus14(1242), used as the wild-type control, or with mutants in cistrons 9, 11,12 and 13. Proteins p15 and p16 are probably involved in the encapsulation of viral DNA in a prohead.  相似文献   

3.
We have studied the replication of φX174 DNA in Escherichia coli infected with various amber mutants (cistrons I to VII) of φX. Previous research showing that some of these mutants are able to form replicative form (RF) DNA but are unable to produce net amounts of viral progeny single-stranded DNA has been confirmed and extended. Evidence is presented that a defect in any one of four viral cistrons prevents the asymmetric replication of the RF to produce progeny viral DNA. At least four virus-coded proteins, three of which are part of the mature virion, must be present before single-stranded DNA synthesis can even be initiated; the possibility that single-stranded DNA is made and then degraded or converted to RF is eliminated. Mutants in one cistron (II) do permit the asymmetric replication of RF at late times, but the displaced viral strand is incorporated into a defective particle and subsequently may be partially degraded. Both RFI (superhelix) and RFII are present in roughly comparable amounts throughout the normal latent period in infections with wild-type phage or any of the phage mutants.  相似文献   

4.
Summary The genome structure of the temperateRhizobium meliloti phage and the attachment site of this phage on the host chromosome were examined by genetic means. The heat-sensitive mutants used in 2 and 3 point crosses gave a linear chromosome map. There was no evidence for map circularity. The immunity region has a distal position on the phage chromosome. The functional grouping of the used 23 phage mutants was made byin vivo andin vitro complementation tests and 20 cistrons were obtained. The cistrons, near to the immunity region, were identified as early genes, the remaining ones as morphogenetic cistrons. The latter inin vitro complementation tests gave two complementing groups, presumably as head and tail donors. The attachment site of the prophage on the host chromosome was localized by pulse mutagen treatments in synchronously replicating cultures. The sequence of markers are O-str — hs — att 16−3 — T.  相似文献   

5.
Summary Specific labelling of replicating bacteriophage SPP1 DNA can be achieved by infection at nonpermissive temperature of a B. subtilis strain carrying the initation mutation dnaB ts134. Under these conditions host DNA synthesis is reduced by 90 to 95%. This technique was used to identify cistrons of SPP1 involved in phage DNA synthesis and to define intermediates in SPP1 replication.Experiments reported were part of the Doctoral Thesis submitted by K. Burger to the Freie Universität Berlin  相似文献   

6.
Fifty-four suppressible mutants of bacteriophage phi29 have been isolated with a variety of mutagens and assigned to eight complementation groups. Viral-specific protein synthesis in UV light-irradiated, nonsuppressing Bacillus subtilis 60084 was analyzed with exponential acrylamide gels. Four additional phi29 proteins which were undetected on ordinary acrylamide gels are reported in this paper. Five phage phi29 proteins have been unambiguously assigned to specific cistrons. Two cistrons had pleiotropic effects on viral protein synthesis. Mutants in cistrons I or II were unable to synthesize DNA in nonsuppressing bacteria. Mutants in cistron I were unable to attach viral chromosomes to the host cell membrane, and the protein responsible for this function has been identified. The other viral protein playing a role in phage phi29 DNA synthesis is also identified and assigned to cistron II. Mutants in cistron II can attach viral chromosomes to membrane, but cannot synthesize DNA in nonsuppressing bacteria.  相似文献   

7.
Heterozygous replicative form molecules of bacteriophage X174 deoxyribonucleic acid (DNA) have been constructed in vitro. These are composed of viral strands extracted from purified preparations of phage bearing ts mutations and complementary strands of either half length or full length synthesized with purified DNA polymerase, in vitro, on DNA from am3 phage. In infections with such heterozygous DNA, involving mutations in each of four different cistrons, phage with the genotype of the complementary strand comprised 1 to 20% of the total phage produced by a spheroplast population. From single-burst analysis of the progeny from DNA heterozygous in one cistron (B), it appears that those phage with the genotype of the complementary strand arise as major components in a small proportion of the infected cells rather than comprising a minor component in most cells. The implications of such a pattern of expression are discussed with respect to mechanisms of phage DNA synthesis.  相似文献   

8.
P. Kourilsky   《Biochimie》1975,56(11-12)
We previously showed that, under conditions of rapid exponential growth, lysogenization of E. coli cells by phage λ requires that the cell is infected by at least 2 phages able to replicate their DNA, or 3 or 4 phages unable to replicate their DNA [ref. 4]. Since genes dealing with prophage integration appear not to be involved in these multiplicity dependent processes, a determination was made as to whether more than one copy of the genes involved in repressor synthesis or its activation are needed for lysogenization. The complementation patterns which we obtained indicate multiplicity effects involving gene cII (and, perhaps, cIII) in lysogenization by both phage able or unable to replicate. In the former case, we propose that cII protein (and, perhaps, cIII) both induces repressor synthesis and inhibits phage DNA replication. In lysogenization by phage unable to replicate, the data suggest that the expression of early phage genes and repressor synthesis in the course of lysogenization are mutually exclusive processes which do not take place on the same phage chromosome.  相似文献   

9.
P1 transduction has been used to perform a complementation analysis of a series of transfer-deficient mutants of Flac. The results define ten cistrons and are consistent with the results of a conjugational analysis presented in an accompanying report. Both sets of results are summarized here. Between them, they define eleven cistrons, traA through traK, necessary for conjugational deoxyribonucleic acid (DNA) transfer. Mutants in traI and traD and some in traG still make F-pili, although traD mutants are resistant to f2 phage; their products may be involved in conjugational DNA metabolism. Other mutants in traG and all mutants in the remaining eight cistrons do not make F-pili. One of these, traJ, may be a control cistron, and the others may specify a biosynthetic pathway responsible for synthesis and modification of the F-pilin subunit protein and its assembly into the F-pilus.  相似文献   

10.
Summary Hybrid plasmids obtained by cloning individual EcoRI and HindIII fragments of the conjugative plasmid, R6-5, were analyzed for their ability to complement transfer-deficient point mutations of Flac. As a result, the locations of 10 tra cistrons were defined on the physical map of R6-5. Two cistrons, traE and traG, are interrupted by EcoRI restriction sites and one cistron, traC, probably contains a HindIII restriction site. The origin of DNA transfer, oriT, was also localized. Surprisingly the hybrid plasmid carrying oriT is mobilized by the F factor as well as by R6-5. The surface exclusion cistrons, traS and traT, were mapped and their biological expression analyzed. A total of 18 proteins encoded by cistrons within the tra region were detected by SDS polyacrylamide gel electrophoresis of proteins synthesized in minicells; they represent about 53% of the coding capacity of the cloned DNA. R6-5 DNA fragments containing the cistrons traC, traE, and traT directed the synthesis of proteins which comigrated during SDS gel electrophoresis with the F-coded proteins previously characterized as TraCp, TraEp, and TraTp. A further two proteins encoded by R6-5 comigrated with F-encoded (but genetically unidentified) proteins whose cistrons map in the corresponding part of the tra region. In contrast, no R6-5 proteins corresponding to F proteins TraAp, TraDp, TraJp, TraMp, 6a or 6c were detected. These results are discussed in relation to known DNA sequence homologies between the F and R6-5 plasmids. A preliminary physical map of the tra region of R6-5 is presented and compared with that of F.  相似文献   

11.
The products of phiX cistrons II, III, and VII are demonstrated to affect the attachment of the phage to its host Escherichia coli C; therefore, by inference, these cistrons influence, directly or indirectly, the structure of proteins in the virus particle. Two of the mutations which alter attachment kinetics, ts79 in cistron III and h in cistron VII, also affect the electrophoretic mobility of the virus and emphasize the role of charge in the attachment interaction with the host. The kinetics for attached phage to go into "eclipse" are first-order and biphasic; about 85% of the phage eclipse at one rate (k(e) = 0.86 min(-1)) and the remainder do so at a distinctly lower rate (k(e) = 0.21 min(-1)). No phiX cistrons yet identified affect the eclipse process. The lowest temperature at which eclipse is detected is 19 C. The Arrhenius activation energy for phage eclipse has the high value of 36.6 kcal/mole, indicating the cooperative nature of the event.  相似文献   

12.
Phage mutants of T4 have been isolated which can multiply only on Escherichia coli strains which contain a missense suppressor which is known to cause the substitution of glycine for arginine in response to the AGA codon. Mutations producing the suppressible phenotype were mapped and shown to occur in six different phage cistrons. Two of the cistrons were concerned with deoxyribonucleic acid synthesis, two were concerned with phage structural components, and two were concerned with functions required for growth in E. coli K-12 but not in E. coli B. The burst size of the different phage mutants grown on strains carrying the same suppressor was dependent upon the efficiency of suppression, which in turn is known to be dependent upon the glycyl-transfer ribonucleic acid synthetase activity.  相似文献   

13.
Temperature shift-up experiments with conditional lethal mutants of Bacillus phage phi29 have allowed placement of early, middle, and late functions on the linear phi29 genetic map Most of the phi29 cistrons are late and are found at the ends of the map.  相似文献   

14.
15.
Mutation in several different cistrons of bacteriophage phi chi 174 blocks net progeny single-stranded DNA synthesis at the late period of infection (15). For the study of the functions of these cistrons in single-stranded DNA synthesis, asymmetric replication of replicative form DNA was examined at the late period of infection with amber mutants of these cistrons. While the normal, rapid process of asymmetric single-stranded viral DNA synthesis is blocked at the late period of these mutant infections, an asymmetric synthesis of the viral strand of replicative-form DNA is observed in this period, though at a reduced level, together with degradation of prelabeled viral strand. Some intermediate replicative-form molecules were also detected. Asymmetric synthesis of the viral strand of replicative-form DNA at the late period of phi chi infection is completely inhibited in the presence of a low concentration (35mug/ml) of chloramphenicol (which also blocks net single-stranded viral DNA synthesis). These results are discussed in terms of the possible role of the specific viral proteins for normal single-stranded DNA synthesis.  相似文献   

16.
17.
Neither bacteriophage ?X174 single-stranded DNA synthesis nor phage growth was affected by rifampicin (200 μg/ml) once it started, whereas a low concentration of chloramphenicol (30 μg/ml) inhibited the phage growth when added in a late phase of infection. When rifampicin was added at a stage where double-stranded duplex (RF) DNA replication proceeded preferentially in the presence of chloramphenicol, or even after chloramphenicol was removed before the addition of rifampicin, both single-stranded DNA synthesis and phage growth were inhibited. These results suggest that RNA synthesis sensitive to rifampicin was necessary to initiate single-stranded DNA synthesis, but no longer needed once ?X174 DNA synthesis started.  相似文献   

18.
19.
Summary The effect of multiplicity of infection was studied in Escherichia coli with phage, using phage endolysin as an example of a late gene product. A very sensitive endolysin assay method was used so that the initiation time of endolysin synthesis could be more accurately determined. It was observed that high multiplicity of infection (1) increases the rate of lysogenization, (2) progressively delays lysis time, and (3) significantly delays and reduces the synthesis of endolysin in cIII+-infected cells. The extent of delay and reduction in endolysin synthesis increases with increasing multiplicity. In contrast, cIII67cII68-infected cells show no delay in endolysin synthesis at high multiplicity of infection when compared with the cIII+ cII+-infected cells. The results suggest that (1) the expression of cIII and cII genes is multiplicity dependent, (2) high multiplicity of infection enhances the expression of the cIII and cII genes, and (3) the expression of the cIII and cII genes interferes with the expression of the late genes. A model to explain how the expression of the cIII and cII genes interferes with the expression of the late genes is proposed.  相似文献   

20.
By selecting survivors of λ phage infection, mutants of Escherichia coli K12 that block reproduction cycle of the phage have been isolated. Fourteen of these phage-tolerant mutants (lam mutants) were chosen and characterized biochemically and genetically. It was shown that these mutants were tolerant to infection by all the lambdoid phages, except for few cases, but they were susceptible to infection by a non-lambdoid temperate phage (φ299), P1 or T phages. The mutants can be divided into at least three groups: (1) A mutant (lam 16) strain that seems to block normal penetration of phage DNA: (2) Three mutant (lam 64, lam 67 and lam 71) strains that block an “early” step(s) of phage growth, including phage DNA synthesis: (3) Six mutant (lam 24, lam 25, lam 26, lam 27, lam 646 and lam 6) strains that block normal functioning of the gene E products and produce unusual head structures. Some lambdoid phages and λ mutants that overcome the interference by the lam mutations have been obtained, and were used as tools for characterizing the host mutations. Two (lam 12 and lam 13) mutant strains and one (lam 1) mutant were inferred as affecting the expression of “late” genes, and early gene, respectively, by this test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号