首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. In addition to poly(ribitol phosphate) the walls of a bacteriophage-resistant mutant of Staphylococcus aureus H contain glycerol phosphate residues that are not removed on digestion with trypsin or extraction with phenol. 2. The glycerol phosphate is present in a chain, containing three or four glycerol phosphate residues, which is covalently attached to the peptidoglycan through a phosphodiester linkage to muramic acid; this linkage is readily hydrolysed by dilute alkali. 3. The degradative studies described suggest that the poly(ribitol phosphate) chains of the wall teichoic acid may be attached to the wall by linkage to this glycerol phosphate oligomer.  相似文献   

2.
The stepwise formation and characterization of linkage unit intermediates and their functions in ribitol teichoic acid biosynthesis were studied with membranes obtained from Staphylococcus aureus H and Bacillus subtilis W23. The formation of labeled polymer from CDP-[14C]ribitol and CDP-glycerol in each membrane system was markedly stimulated by the addition of N-acetylmannosaminyl(beta 1----4)N-acetylglucosamine (ManNAc-GlcNAc) linked to pyrophosphorylyisoprenol. Whereas incubation of S. aureus membranes with CDP-glycerol and ManNAc-[14C]GlcNAc-PP-prenol led to synthesis of (glycerol phosphate) 1-3-ManNAc-[14C]GlcNAc-PP-prenol, incubation of B. subtilis membranes with the same substrates yielded (glycerol phosphate)1-2-ManNAc-[14C]GlcNAc-PP-prenol. In S. aureus membranes, (glycerol phosphate)2-ManNAc-[14C]GlcNAc-PP-prenol as well as (glycerol phosphate)3-ManNAc-[14C]GlcNAc-PP-prenol served as an acceptor for ribitol phosphate units, but (glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol did not. In B. subtilis W23 membranes, (glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol served as a better acceptor for ribitol phosphate units than (glycerol phosphate)2-ManNAc-[14C]GlcNAc-PP-prenol. In this membrane system (ribitol phosphate)-(glycerol phosphate)-ManNAc-[14C]GlcNAc-PP-prenol was formed from ManNAc-[14C]GlcNAc-PP-prenol, CDP-glycerol and CDP-ribitol. The results indicate that (glycerol phosphate)1-3-ManNAc-GlcNAc-PP-prenol and (glycerol phosphate)1-2-ManNac-GlcNAc-PP-prenol are involved in the pathway for the synthesis of wall ribitol teichoic acids in S. aureus H and B. subtilis W23 respectively.  相似文献   

3.
N Kojima  Y Araki    E Ito 《Journal of bacteriology》1985,161(1):299-306
The structure of the linkage regions between ribitol teichoic acids and peptidoglycan in the cell walls of Staphylococcus aureus H and 209P and Bacillus subtilis W23 and AHU 1390 was studied. Teichoic acid-linked saccharide preparations obtained from the cell walls by heating at pH 2.5 contained mannosamine and glycerol in small amounts. On mild alkali treatment, each teichoic acid-linked saccharide preparation was split into a disaccharide identified as N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and the ribitol teichoic acid moiety that contained glycerol residues. The Smith degradation of reduced samples of the teichoic acid-linked saccharide preparations from S. aureus and B. subtilis gave fragments characterized as 1,2-ethylenediol phosphate-(glycerolphosphate)3-N-acetylmannosaminyl beta(1----4)N- -acetylxylosaminitol and 1,2-ethylenediolphosphate-(glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylxylosaminitol, respectively. The binding of the disaccharide unit to peptidoglycan was confirmed by the analysis of linkage-unit-bound glycopeptides obtained from NaIO4 oxidation of teichoic acid-glycopeptide complexes. Mild alkali treatment of the linkage-unit-bound glycopeptides yielded disaccharide-linked glycopeptides, which gave the disaccharide and phosphorylated glycopeptides on mild acid treatment. Thus, it is concluded that the ribitol teichoic acid chains in the cell walls of the strains of S. aureus and B. subtilis are linked to peptidoglycan through linkage units, (glycerol phosphate)3-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine and (glycerol phosphate)2-N-acetylmannosaminyl beta(1----4)N-acetylglucosamine, respectively.  相似文献   

4.
Lipoteichoic Acids from Streptococcus sanguis   总被引:12,自引:5,他引:7       下载免费PDF全文
Two lipoteichoic acids, membrane (MLTA) and wall (WLTA), have been purified from Streptococcus sanguis by Sepharose and Ecteola-cellulose column chromatographies and concanavalin A-conjugated Sepharose affinity column chromatography. The teichoic acids were homogenous as judged by disc gel electrophoresis, column chromatography, and double diffusion tests. Both MLTA and WLTA consisted of glycerol, phosphate, glucose, and fatty acids in the ratios of 0.95:1:0.71:0.046 and 0.99:1:0.79:0.023, respectively. alpha-Glycerol-phosphate was obtained by the partial acid hydrolysis of the lipoteichoic acids suggesting that their backbone structure consists of the glycerol moieties linked by 1, 3-phosphodiester bonds. Both WLTA and MLTA form aggregates, perhaps due to micelle formation, in concentrated solution. The aggregate form of MLTA dissociates to a much greater extent than that of WLTA under similar conditions.  相似文献   

5.
The binding of Mg2+ to the ribitol teichoic acid of Staphylococcus aureus H walls was examined by equilibrium dialysis in solution and in the intact wall; the influence of alanyl ester groups on binding was determined. In solution the ribitol polymer had a lower affinity than did a glycerol teichoic acid and bound Mg2+ in the ratio Mg2+/P of 1:1. The presence of alanyl ester residues caused a decrease in the amount of cations bound in stoicheiometric proportion to the ratio Ala/P, but the affinity constant was unaltered. It is concluded that in solution the ribitol teichoic acid binds Mg2+ univalently to phosphate groups and univalently to a counter-ion. In the intact wall the binding of Mg2+ was different. The affinity constant was higher and resembled that of a glycerol teichoic acid. It is concluded that Mg2+ forms bridges across phosphate groups in teichoic acid chains lying adjacent to each other in the wall. The effect of alanyl esters was similar to that in solution, but Scatchard plots were not linear at low concentrations of Mg2+ where it was shown that the difference in affinities between walls with and without alanyl ester residues was much greater than it was at higher concentrations of Mg2+. Thus at very low concentrations of Mg2+ effective binding to the wall is markedly improved by loss of alanyl ester residues.  相似文献   

6.
A glucosyltransferase, extracted from the membranes of Bacillus cereus AHU 1030 with Tris-HCl buffer containing 0.1% Triton X-100 at pH 9.5, was separated from an endogenous glucosyl acceptor by chromatography on DEAE-Sepharose CL-6B subsequent to chromatography on Sepharose 6B. Structural analysis data showed that the glucosyl acceptor was a glycerol phosphate polymer linked to beta-gentiobiosyl diglyceride. The enzyme catalyzed the transfer of glucosyl residues from UDP-glucose to C-2 of the glycerol residues of repeating units of the acceptor. On the other hand, a lipoteichoic acid which contained 0.3 D-alanine residue per phosphorus was isolated from the cells by phenol treatment at pH 4.6. Except for the presence of D-alanine, this lipoteichoic acid had the same structure as the glucosyl acceptor. The rate of glucosylation observed with the D-alanine-containing lipoteichoic acid as the substrate was less than 40% of that observed with the D-alanine-free lipoteichoic acid, indicating that the ester-linked D-alanine in the lipoteichoic acid interferes with the action of the glucosyltransferase. The enzyme also catalyzed glucosylation of poly(glycerol phosphate) which was synthesized in the reaction of a separate enzyme fraction with CDP-glycerol. Thus, it is likely that the glucosyltransferase functions in the synthesis of cell wall teichoic acid.  相似文献   

7.
Extracellular teichoic acid, an essential constituent of the biofilm produced by Staphylococcus epidermidis strain RP62A, is also an important constituent of the extracellular matrix of another biofilm producing strain, Staphylococcus aureus MN8m. The structure of the extracellular and cell wall teichoic acids of the latter strain was studied by NMR spectroscopy and capillary electrophoresis-mass spectrometry. Both teichoic acids were found to be a mixture of two polymers, a (1-->5)-linked poly(ribitol phosphate), substituted at the 4-position of ribitol residues with beta-GlcNAc, and a (1-->3)-linked poly(glycerol phosphate), partially substituted with the D-Ala at 2-position of glycerol residue. Such mixture is unusual for S. aureus.  相似文献   

8.
The lipoteichoic acids from Bifidobacterium bifidum spp. pennsylvanicum were extracted from cytoplasmic membranes or from disintegrated bacteria with aqueous phenol and purified by gel chromatography. The lipoteichoic acid preparations contained phosphate, glycerol, galactose, glucose and fatty acids in a molar ratio of 1.0:1.0:1.3:1.2:0.3. Chemical analysis and NMR studies of the native preparations and of products from various acid and alkaline hydrolysis procedures gave evidence for the structure of two lipoteichoic acids. The lipid anchor appeared to be 3-O-(6'-(sn-glycero-1-phosphoryl)diacyl-beta-D-galactofuranosyl)-sn-1, 2-diacylglycerol. The polar part showed two structural features not previously described for lipoteichoic acids. A 1,2-(instead of the usual 1,3-) phosphodiester-linked sn-glycerol phosphate chain is only used substituted at the terminal glycerol unit with a linear polysaccharide, containing either beta(1----5)-linked D-galactofuranosyl groups or beta(1----6)-linked D-glucopyranosyl groups.  相似文献   

9.
Serological classification of bacteria requires the presence of an antigen unique to the organism of interest. Streptococci are serologically differentiated by group antigens, many of which are carbohydrates, although some are amphiphiles. This report describes the chemical characterization of the Streptococcus adjacens group antigen structure. Previous studies demonstrated that the amphiphile contained phosphorus, ribitol, galactose, galactosamine, alanine, and fatty acids. Phosphodiester bonds present in the purified group antigen were identified as part of a poly(ribitol phosphate), since ribitol phosphate was the only organic phosphate detected after acid hydrolysis. Hydrofluoric acid cleavage of the phosphodiester bonds generated oligosaccharide repeating units. Gas chromatography-mass spectrometric analysis of the methylated, acetylated oligosaccharide suggested that the repeating unit is a trisaccharide of Galp beta 1-3Galp beta 1-4GalNac with N-acetylgalactosamine attached in beta-linkage to either the number two or the number four carbon of ribitol. The lipid- and carbohydrate-substituted poly(ribitol phosphate) of the S. adjacens group antigen therefore is a unique amphiphile structure, differing in its repeating-unit structure from the polyglycerophosphate structure of the more common gram-positive amphiphile lipoteichoic acid.  相似文献   

10.
The structure of the linkage unit between ribitol teichoic acid and peptidoglycan in the cell walls of Listeria monocytogenes EGD was studied. A teichoic-acid--glycopeptide preparation isolated from lysozyme digests of the cell walls of this strain contained mannosamine, glycerol, glucose and muramic acid 6-phosphate in an approximate molar ratio of 1:1:2:1, together with large amounts of glucosamine and other components of teichoic acid and glycopeptides. A teichoic-acid-linked sugar preparation, obtained by heating the cell walls at pH 2.5, also contained glucosamine, mannosamine, glycerol and glucose in an approximate molar ratio of 25:1:1:2. Part of the glucosamine residues were shown to be involved in the linkage unit. Thus, on mild alkaline hydrolysis, the teichoic-acid-linked sugar preparation gave a disaccharide characterized as N-acetylmannosaminyl(beta 1----4)-N-acetylglucosamine [ManNAc(beta 1----4)GlcNAc] in addition to the ribitol teichoic acid moiety, whereas the teichoic-acid - glycopeptide was separated into disaccharide-linked glycopeptide and the ribitol teichoic acid moiety by the same procedure. Furthermore, Smith degradation of the cell walls gave a characteristic fragment, EtO2-P-Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-ManNAc(beta 1----4)GlcNAc (where EtO2 = 1,2-ethylenediol and Gro = glycerol). The results lead to the conclusion that in the cell walls of this organism, the ribitol teichoic acid chain is linked to peptidoglycan through a novel linkage unit, Glc(beta 1----3)Glc(beta 1----1/3)Gro-P-(3/4)ManNAc-(beta 1----4)GlcNAc.  相似文献   

11.
Mesosomal vesicles and plasma membranes of Staphylococcus aureus ATCC 6538P have been prepared and examined for the presence of lipoteichoic acid. Lipids were first removed by treatment with pyridine-acetic acid-butanol (22:31:100, vol/vol/vol) and chloroform-methanol (2:1, vol/vol). Subsequently, lipoteichoic acid was removed with 40% phenol in water. The lipoteichoic acid from mesosomal vesicles was characterized by (i) equimolar glycerol and phosphate, (ii) alanine upon hydrolysis (2 N NH4OH, 18 h, 22 C), and (iii) fatty acids, diglycerol triphosphate, glycerol monophosphate, and glycerol diphosphate upon alkaline hydrolysis (1 N NaOH, 3h, 100 C). The plasma membranes contained no lipoteichoic acid. The presence in mesosomal vesicles of 18% of the dry weight as lipoteichoic acid and its absence from plasma membranes provide the first major chemical differences between these organelles. A study of the lipoteichoic acid content in various fractions of the cell showed that the mesosomal vesicles were the major and probably the sole site for the localization of the lipoteichoic acid in these organisms. A new method for the preparation of mesosomes in increased yields is reported. A theory for the control of cell division involving lipoteichoic acid and the mesosome is proposed.  相似文献   

12.
The presence of teichoic acids in a number of streptomycetes led to the conclusion that these biopolymers were widely spread in genus Streptomyces. The nature of the teichoic acid present in the mycelium was determined by extracting it with 10% trichloroacetic acid, precipitating it with ethanol and identifying the precipitated polymer by partial acid and alkali hydrolysis to alditol, alditol phosphates and glycosylalditol phosphates. Most strains examined in this survey contained glycerol or ribitol teichoic acids; in some cases neither type was detected.Structurally teichoic acids closely resemble those of other genera of gram-positive bacteria and in many cases represent poly(glycerol phosphate) and poly(ribitol phosphate) chains. The proportion of alditol residues bearing sugar substituents varied widely.Three species of genus Streptoverticillium contained glycerol teichoic acids. It is belived that some of the data presented in this paper might be used with some success in taxonomic studies of streptomycetes.  相似文献   

13.
A new teichoic acid was identified in the cell walls of Streptomyces griseoviridis VKM Ac-622T, Streptomyces sp. VKM Ac-2091, and Actinoplanes campanulata VKM Ac-1319T. The polymer is poly(glycosylglycerol phosphate). The repeating units of the polymer, alpha-galactopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-galactopyran+ ++ osyl-(1-->1)-glycerols, are in phosphodiester linkage at C-3 of glycerol and C-6 of galactose. The structures of cell wall teichoic acids in the strains Streptomyces chryseus VKM Ac-200T and "Streptomyces subflavus" VKM Ac-484 similar in morphology and growth characteristics are also identical: 1,5-poly(ribitol phosphate) substituted at C-4(2) by 2-acetamido-2-deoxy-beta-glucopyranosyl residues and 1,3-poly(glycerol phosphate). The taxonomic aspects of these results are discussed.  相似文献   

14.
In order to understand the phosphatidylglycerol turnover mechanism, especially the differential turnover of diacylated and unacylated glycerol moieties of the lipid, products of phosphatidylglycerol metabolism were surveyed in vivo in Bacillus subtilis W23 and an alkalophile, Bacillus sp. strain A007. When cells of B. subtilis W23 labeled with radioactive glycerol were chased, lipoteichoic acid accumulated 90% of the radioactivity lost from the unacylated glycerol moiety of phosphatidylglycerol. Also, lipids other that phosphatidylglycerol, except diacylglycerol, and glycerol and glycerophosphate incorporated much less radioactivity. The [32P]phosphoryl group was also transferred from phosphatidylglycerol to lipoteichoic acid almost quantitatively in B. subtilis W23. A unique metabolism of phosphatidylglycerol was found in Bacillus sp. strain A007 which lacked phosphoglycolipid and lipoteichoic acid, that is, the turnover of phosphatidylglycerol of this organism was less extensive compared with that of B. subtilis W23, and both glycerol moieties of the lipid were metabolized at an identical rate. These results suggested that the major reaction involved in the turnover of phosphatidylglycerol was the transfer of glycerophosphate residue to lipoteichoic acid in a bacterium which possessed lipoteichoic acid and that several minor reactions also were involved in phosphatidylglycerol turnover.  相似文献   

15.
Hydrophobic interaction chromatography fractionated the lipoteichoic acid of Enterococcus faecalis into species of decreasing poly(glycerophosphate) chain length and decreasing extent of substitution with alpha-kojibiosyl residues (Glcp alpha 1----2Glcp alpha 1----). The chain length varied between 14 and 33 glycerophosphate residues per lipid anchor, the extent of glycosylation between 0.18 and 0.44 mol of alpha-kojibiosyl residues per mole of phosphorus, and, accordingly, the number of alpha-kojibiosyl substituents per chain between 3 and 15. Almost identical values were obtained when the same lipoteichoic acid was chromatographed on DEAE-Sephadex and concanavalin A, which separate molecular species according to increasing number of phosphate groups and alpha-kojibiosyl residues, respectively. Species from all three columns, which were identical in chain length and glycosylation, also had similar fatty acid patterns. These results prove the suitability of all three procedures for species analysis. One advantage of hydrophobic interaction chromatography over the other two procedures lies in its broader applicability since it is not dependent on negative charges or specifically binding oligosaccharide structures. Another advantage is the capacity of hydrophobic interaction chromatography to separate molecular species differing in the number of fatty acids [W. Fischer, H.U. Koch, and R. Haas (1983) Eur. J. Biochem. 133, 523-530] and render them accessible to molecular analyses.  相似文献   

16.
Preparations of membrane plus wall derived from Bacillus subtilis W23 were used to study the in vitro synthesis of peptidoglycan and teichoic acid and their linkage to the preexisting cell wall. The teichoic acid synthesis showed an ordered requirement for the incorporation of N-acetylglucosamine from uridine 5'-diphosphate (UDP)-N-acetylglucosamine followed by addition of glycerol phosphate from cytidine 5'-diphosphate (CDP)-glycerol and finally by addition of ribitol phosphate from CDP-ribitol. UDP-N-acetylglucosamine was not only required for the synthesis of the teichoic acid, but N-acetylglucosamine residues formed an integral part of the linkage unit attaching polyribitol phosphate to the cell wall. Synthesis of the teichoic acid was exquisitely sensitive to the antibiotic tunicamycin, and this was shown to be due to the inhibition of incorporation of N-acetylglucosamine units from UDP-N-acetylglucosamine.  相似文献   

17.
Specific degradation of membrane lipoteichoic acid of Streptococcus faecium ATCC 9790 by a phosphodiesterase from Aspergillus niger and by periodate oxidation has demonstrated that the enzymatic synthesis of the glycerol phosphate polymer of the molecule occurs by an external elongation system. Evidence of this type of mechanism was obtained with lipoteichoic acid synthesized in vivo or in vitro by differential radioisotope labeling techniques. The glycerol phosphate repeating units were transferred from phosphatidylglycerol and became linked through a phosphodiester bond to the glycerol phosphate unit of the chain farthest from or most external to the lipid end of the polymer.  相似文献   

18.
Structural studies were carried out on lipoteichoic acids obtained from defatted cells of 10 Bacillus strains by phenol-water partition followed by chromatography on DEAE-Sephacel and Octyl-Sepharose columns. A group of the tested bacteria (group A), Bacillus subtilis, Bacillus licheniformis, and Bacillus pumilus, was shown to have a diacyl form of lipoteichoic acids which contained D-alanine, D-glucose, D-glucosamine, fatty acids, and glycerol in molar ratios to phosphorus of 0.35 to 0.69, 0.07 to 0.15 to 0.43, 0.06 to 0.11, and 0.95 to 1.18, respectively, whereas the other group (group B), Bacillus coagulans and Bacillus megaterium, had diacyl lipoteichoic acids which contained D-galactose, fatty acids, and glycerol in molar ratios to phosphorus of 0.05 to 0.42, 0.06 to 0.12, and 0.96 to 1.07, respectively. After treatment with 47% hydrogen fluoride, the lipoteichoic acids obtained from group A strains commonly gave a hydrophobic fragment, gentiobiosyl-beta (1----1 or 3)diacylglycerol, in addition to dephosphorylated repeating units, glycerol, 2-D-alanylglycerol, N-acetyl-D-glucosaminyl-alpha (1----2)glycerol, and D-alanyl-N-acetyl-D-glucosaminyl-alpha (1----2)glycerol, whereas the lipoteichoic acids from group B strains yielded diacylglycerol in addition to glycerol and D-galactosyl-alpha (1----2)glycerol. The results together with data from Smith degradations indicate that in the lipoteichoic acids of group A strains the polymer chains, made up of partially alanylated glycerol phosphate and glycosylglycerol phosphate units, are joined to the acylglycerol anchors through gentiobiose. However, in the lipoteichoic acids of group B strains, the partially galactosylated poly(glycerolphosphate) chains are believed to be directly linked to the acylglycerol anchors.  相似文献   

19.
Pneumococcal lipoteichoic acid was extracted and purified by a novel, quick and effective procedure. Structural analysis included methylation, periodate oxidation, Smith degradation, oxidation with CrO3, and fast-atom-bombardment mass spectrometry. Hydrolysis with 48% (by mass) HF and subsequent phase partition yielded the lipid anchor (I), the dephosphorylated repeating unit of the chain (II) and a cleavage product of the latter (III). The proposed structures are: (I) Glc(beta 1----3)AATGal(beta 1----3)Glc(alpha 1----3)acyl2Gro, (II) Glc(beta 1----3)AATGal(alpha 1----4)GalNAc(alpha 1----3)GalNAc(beta 1----1)ribitol and (III) Glc(beta 1----3)AATGal(alpha 1----4)GalNAc(alpha 1----3)GalNAc, where AATGal is 2-acetamido-4-amino-2,4,6-trideoxygalactose, and all sugars are in the pyranose form and belong to the D-series. Alkaline phosphodiester cleavage of lipoteichoic acid, followed by treatment with phosphomonoesterase, resulted in the formation of II and IV, with IV as the prevailing species: [sequence: see text] The linkage between the repeating units was established as phosphodiester bond between ribitol 5-phosphate and position 6 of the glucosyl residue of adjacent units. The chain was shown to be linked to the lipid anchor by a phosphodiester between its ribitol 5-phosphate terminus and position 6 of the non-reducing glucosyl terminus of I. The lipoteichoic acid is polydisperse: the chain length may vary between 2 and 8 repeating units and variations were also observed for the fatty acid composition of the diacylglycerol moiety. Preliminary results suggest that repeating units II and IV are enriched in separate molecular species. All species were associated with Forssman antigenicity, albeit to a various extent when related to the non-phosphocholine phosphorus. Owing to its unique structure, the described macroamphiphile may be classified as atypical lipoteichoic acid.  相似文献   

20.
This study shows for the first time microheterogeneity of 1,3-linked poly(glycerophosphate) lipoteichoic acids. The lipoteichoic acids investigated were those of Enterococcus faecalis Kiel 27738 (I), Enterococcus hirae (Streptococcus faecium) ATCC 9790 (II), and Leuconostoc mesenteroides DMS 20343 (III). Lipoteichoic acids II and III are partially substituted by mono-, di-, tri-, and tetra-alpha-D-glucopyranosyl residues with (1----2) interglycosidic linkages. Lipoteichoic acid I is substituted with alpha-kojibiosyl residues only. Lipoteichoic acids I and III additionally carry D-alanine ester. Lipoteichoic acids were separated on columns of concanavalin-A-Sepharose according to their increasing number of glycosyl substituents per chain. It was evident that all molecular species are usually glycosylated and that alanine ester and glycosyl residues occur on the same chains. The chain lengths of lipoteichoic acid I and II vary between 9-40 glycerophosphate residues, whereas those of lipoteichoic acid III appear to be uniform (33 +/- 2 residues). Molecular species differ in the extent of glycosylation but their content of alanyl residues is fairly constant. All lipoteichoic acids contain a small fraction (5-15%) different in composition from the bulk and most likely reflecting an early stage of biosynthesis. Two procedures for chain length determination of poly(glycerophosphate) lipoteichoic acids are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号