首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract The metabolism of d -alanyl substituents of lipoteichoic acid (LTA) and teichoic acid was studied in Staphylococcus aureus . Double labelling with [3H]glycerol and d -[14C]alanine revealed that during the chase LTA was stable whereas its 14C label rapidly decreased. Half-time comparison indicated an enzyme- rather than a base-catalyzed process. Correlated with the loss of [14C]alanine from LTA was an increase of the radioactivity in wall-linked alanine ester which, after hydrolysis with HF, proved to be linked to teichoic acid. These results suggest that LTA-alanine is the donor for alanine esterification of teichoic acid. In connection with previous data we hypothesize that the loss of alanine from LTA is compensated by de novo incorporation.  相似文献   

3.
Lipoteichoic acid (LTA) is a crucial cell envelope component in Gram-positive bacteria. In Staphylococcus aureus, the polyglycerolphosphate LTA molecule is synthesized by LtaS, a membrane-embedded enzyme with five N-terminal transmembrane helices (5TM domain) that are connected via a linker region to the C-terminal extracellular enzymatic domain (eLtaS). The LtaS enzyme is processed during bacterial growth, and the eLtaS domain is released from the bacterial membrane. Here we provide experimental evidence that the proteolytic cleavage following residues 215Ala-Leu-Ala217 is performed by the essential S. aureus signal peptidase SpsB, as depletion of spsB results in reduced LtaS processing. In addition, the introduction of a proline residue at the +1 position with respect to the cleavage site, a substitution known to inhibit signal peptidase-dependent cleavage, abolished LtaS processing at this site. It was further shown that the 5TM domain is crucial for enzyme function. The observation that the construction of hybrid proteins between two functional LtaS-type enzymes resulted in the production of proteins unable to synthesize LTA suggests that specific interactions between the 5TM and eLtaS domains are required for function. No enzyme activity was detected upon expression of the 5TM and eLtaS domains as separate fragments, indicating that the two domains cannot assemble postsynthesis to form a functional enzyme. Taken together, our data suggest that only the full-length LtaS enzyme is active in the LTA synthesis pathway and that the proteolytic cleavage step is used as a mechanism to irreversibly inactivate the enzyme.  相似文献   

4.
5.
Staphylococcus aureus lipoteichoic acid (LTA) is composed of a linear 1,3-linked polyglycerolphosphate chain and is tethered to the bacterial membrane by a glycolipid (diglucosyl-diacylglycerol [Glc2-DAG]). Glc2-DAG is synthesized in the bacterial cytoplasm by YpfP, a processive enzyme that transfers glucose to diacylglycerol (DAG), using UDP-glucose as its substrate. Here we present evidence that the S. aureus alpha-phosphoglucomutase (PgcA) and UTP:alpha-glucose 1-phosphate uridyltransferase (GtaB) homologs are required for the synthesis of Glc2-DAG. LtaA (lipoteichoic acid protein A), a predicted membrane permease whose structural gene is located in an operon with ypfP, is not involved in Glc2-DAG synthesis but is required for synthesis of glycolipid-anchored LTA. Our data suggest a model in which LtaA facilitates the transport of Glc2-DAG from the inner (cytoplasmic) leaflet to the outer leaflet of the plasma membrane, delivering Glc2-DAG as a substrate for LTA synthesis, thereby generating glycolipid-anchored LTA. Glycolipid anchoring of LTA appears to play an important role during infection, as S. aureus variants lacking ltaA display defects in the pathogenesis of animal infections.  相似文献   

6.
H U Koch  R Dker    W Fischer 《Journal of bacteriology》1985,164(3):1211-1217
Toluene-treated Staphylococcus aureus cells did not synthesize teichoic acid and lipoteichoic acid under the conditions used. The organism displayed, however, a high capacity of incorporating D-[14C]alanine into previously formed polymers. The reaction was dependent on ATP and enhanced by magnesium ions. The incorporation rate into lipoteichoic acid correlated with the rate of loss of alanine ester which occurred through transfer to teichoic acid and base-catalyzed hydrolysis. At pH 6.5 the loss (20% within 4 h) was completely compensated for by reesterification. At pH 7.5 the loss was 60%, but by accelerated incorporation it was reduced to 10%. Incorporation was also enhanced when the original substitution of lipoteichoic acid was lowered by previous growth of S. aureus at high salt concentration. The newly added alanine was randomly distributed along the poly(glycerophosphate) chain. The decreased alanine substitution of lipoteichoic acid after growth at high salt concentration was shown to result from a direct inhibition of alanine incorporation.  相似文献   

7.
Pulse-chase experiments with [2-3H]glycerol and [14C]acetate revealed that in Staphylococcus aureus lipoteichoic acid biosynthesis plays a dominant role in membrane lipid metabolism. In the chase, 90% of the glycerophosphate moiety of phosphatidylglycerol was incorporated into the polymer: 25 phosphatidylglycerol + diglucosyldiacylglycerol leads to (glycerophospho)25-diglucosyldiacylglycerol + 25 diacylglycerol. Glycerophosphodiglucosyldiacylglycerol was shown to be an intermediate, confirming that the hydrophilic chain is polymerized on the final lipid anchor. Total phosphatidylglycerol served as the precursor pool and was estimated to turn over more than twice for lipoteichoic acid synthesis in one bacterial doubling. Of the resulting diacylglycerol approximately 10% was used for the synthesis of glycolipids and the lipid anchor of lipoteichoic acid. The majority of diacylglycerol recycled via phosphatidic acid to phosphatidylglycerol. Synthesis of bisphosphatidylglycerol was negligible and only a minor fraction of phosphatidylglycerol passed through the metabolically labile lysyl derivative. In contrast to normal growth, energy deprivation caused an immediate switch-over from the synthesis of lipoteichoic acid to the synthesis of bisphosphatidylglycerol.  相似文献   

8.
Lipoteichoic acids were isolated from eleven species of the genus Staphylococcus using phenol-water partition and hydrophobic chromatography on octyl-Sepharose CL-4B. The lipoteichoic acids purified could be visualized by SDS-PAGE. They were shown to be composed of a hydrophilic poly(glycerophosphate) chain covalently linked to gentiobiosyldiacylglycerol, the common lipid anchor of these molecules. Glycerophosphate units of the hydrophilic chain were found to be partly substituted with ester-linked d-alanine, except in the case of S. cohnii. The lipoteichoic acids isolated from S. cohnii, S. hominis, S. saprophyticus and S. simulans contain (1–2)-linked N-acetylglucosamine as an additional substituent of the poly(glycerophosphate) backbone.Abbreviations GLC gas-liquid chromatography - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TLC thin-layer chromatography  相似文献   

9.
Lipoteichoic acid (LTA) is one of two anionic polymers on the surface of the gram-positive bacterium Staphylococcus aureus. LTA is critical for the bacterium-host cell interaction and has recently been shown to be required for cell growth and division. To determine additional biological roles of LTA, we found it necessary to identify permissive conditions for the growth of an LTA-deficient mutant. We found that an LTA-deficient S. aureus ΔltaS mutant could grow at 30°C but not at 37°C. Even at the permissive temperature, ΔltaS mutant cells had aberrant cell division and separation, decreased autolysis, and reduced levels of peptidoglycan hydrolases. Upshift of ΔltaS mutant cells to a nonpermissive temperature caused an inability to exclude Sytox green dye. A high-osmolarity growth medium remarkably rescued the colony-forming ability of the ΔltaS mutant at 37°C, indicating that LTA synthesis is required for growth under low-osmolarity conditions. In addition, the ΔltaS mutation was found to be synthetically lethal with the ΔtagO mutation, which disrupts the synthesis of the other anionic polymer, wall teichoic acid (WTA), at 30°C, suggesting that LTA and WTA compensate for one another in an essential function.  相似文献   

10.
11.
Resistin is an adipokine whose physiologic role in obesity, type II diabetes mellitus, and inflammatory diseases has been a subject of debate because while it is expressed in adipocytes and adipose tissue in mouse, it is expressed in leukocytes, such as macrophages, in human. In the present study, we attempt to define the effect of resistin on human dendritic cells (DCs) derived from CD14+ monocytes. When DCs were stimulated with lipoteichoic acid (LTA) and treated with various concentrations of resistin, antigen-uptake process and the endocytic capacity of DCs were decreased. It is intriguing that resistin attenuated cytokine production in LTA-primed DCs. Consequently, T cell activity was reduced when lymphocytes were mixed with Staphylococcus aureus-primed autologous DCs treated with resistin compared to S. aureus-primed DCs without resistin. Our results suggest that resistin interferes with the efficacy of immune responses activated by Gram-positive bacterial infection in human DCs.  相似文献   

12.
The cell wall of Gram-positive bacteria contains lipoteichoic acid (LTA) and peptidoglycan (PepG), which synergise to cause shock and organ failure in animals, and to activate human blood to release proinflammatory cytokines. The structural elements within LTA and PepG that are essential for the observed synergism are discussed.  相似文献   

13.
14.
The lipoteichoic acid in Staphylococcus aureus growing at high pH values contained very little alanine ester, showing that high overall levels of substitution were not essential for growth. The low alanine content could have resulted from a progressive loss due to base-catalyzed hydrolysis of the labile ester linkages.  相似文献   

15.
We previously reported that Triton X-100 (TRX) reduced methicillin resistance in Staphylococcus aureus, although the degree of reduction varied among strains. One of the biological effects of TRX on S. aureus cells was enhancement of lipoteichoic acid (LTA) release. We investigated the correlation between the amount of LTA released and the degree of reduction in methicillin resistance induced by TRX. The strains showing the greatest reduction of methicillin resistance released the largest amount of LTA, compared to those showing slight or moderate reduction. A mutant whose resistance was not affected by TRX did not increase its release of LTA. These findings suggest that LTA release is associated with a reduction in methicillin resistance in the presence of TRX.  相似文献   

16.
Lipoteichoic acid (LTA) derived from Staphylococcus aureus is reported to be a ligand of TLR2. However, we previously demonstrated that LTA fraction prepared from bacterial cells contains lipoproteins, which activate cells via TLR2. In this study, we investigated the immunobiological activity of LTA fraction obtained from S. aureus wild-type strain, lipoprotein diacylglycerol transferase deletion (delta lgt) mutant, which lacks palmitate-labeled lipoproteins, and its complemented strain and evaluated the activity of LTA molecule. LTA fraction was prepared by butanol extraction of the bacteria followed by hydrophobic interaction chromatography. Although all LTA fractions activated cells through TLR2, the LTA from delta lgt mutant was 100-fold less potent than those of wild-type and complemented strains. However, no significant structural difference in LTA was observed in NMR spectra. Further, alanylation of LTA molecule showed no effect in immunobiological activity. These results showed that not LTA molecule but lipoproteins are dominant immunobiologically active TLR2 ligand in S. aureus.  相似文献   

17.
Based on 1,2-O-isopropylidene-sn-glycerol five chiral building blocks containing differently modified glycerol residues were required for the synthesis of the target molecule 2. One of these building blocks is diacylglyceryl beta-gentiobioside carrying a phosphite residue at 6b-O position. Ligation of these five building blocks led to the desired glycerol phosphate backbone to which d-alanyl residues were attached, thus generating after O-deprotection the target molecule 2, a bisamphiphilic structural variant of Staphylococcus aureus LTA. This compound displayed higher potency in terms of cytokine release by human blood leukocytes than the monoamphiphilic variant LTA.  相似文献   

18.
Inducible vascular nitric oxide synthase accounts for the contractile impairment observed in endotoxemia. We provide evidence that lipoteichoic acid (LTA) from Staphylococcus aureus, a micro-organism without endotoxin, also induces nitric oxide synthase. Our study demonstrates that on endothelium-free rings of rat aorta. LTA-like lipopolysaccharide induces a loss of contractility restored by Methylene blue and NG-nitro-L-arginine-methyl ester (LNAME). Moreover in cultured vascular smooth muscle cells, LTA produces a dose-dependent increase in intracellular cyclic GMP which is antagonized by LNAME and prevented by dexamethasone.  相似文献   

19.
For the investigation of the minimal structural requirements for cytokine induction, Staphylococcus aureus lipoteichoic acid derivatives with two, three, four, and five glycerophosphate backbone moieties, carrying each a d-alanyl residue, were needed. Based on two different glycerophosphate building blocks and 6b-O-phosphitylated gentiobiosyl diacylglycerol the desired target molecules (compounds 1-4) could be readily obtained and provided for biological studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号