首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human pancreatic duct cells secrete HCO3- ions mediated by a Cl-/HCO3- exchanger and a HCO3- channel that may be a carbonic anhydrase IV (CA IV) in a channel-like conformation. This secretion is regulated by CFTR (Cystic Fibrosis Transmembrane conductance Regulator). In CF cells homozygous for the deltaF508 mutation, the defect in targeting of CFTR to plasma membranes leads to a disruption in the secretion of Cl- and HCO3 ions along with a defective targeting of other proteins. In this study, we analyzed the targeting of membrane CA IV in the human pancreatic duct cell line CFPAC-1, which expresses a deltaF508 CFTR, and in the same cells transfected with the wild-type CFTR (CFPAC-PLJ-CFTR6) or with the vector alone (CFPAC-PLJ6). The experiments were conducted on cells in the stationary phase the polarized state of which was checked by the distribution of occludin and actin. We show that both cell lines express a 35-kDa CA IV at comparable levels. Analysis of fractions of plasma membranes purified on a Percoll gradient evidenced lower levels of CA IV (8-fold) in the CFPAC-1 than in the CFPAC-PLJ-CFTR6 cells. Quantitative analyses showed that 6- to 10-fold fewer cells in the CFPAC-1 cell line exhibited membrane CA IV-immunoreactivity than in the CFPAC-PLJ-CFTR6 cell line. Taken together, these results suggest that the targeting of CA IV to apical plasma membranes is impaired in CFPAC-1 cells. CA IV/gamma-adaptin double labeling demonstrated the presence of CA IV in the trans-Golgi network (TGN) of numerous CFPAC-1 cells, indicating that trafficking was disrupted on the exit face of the TGN. The retargeting of CA IV observed in CFPAC-PLJ-CFTR6 cells points to a relationship between the traffic of CFTR and CA IV. On the basis of these observations, we propose that the absence of CA IV in apical plasma membranes due to the impairment in targeting in cells expressing a deltaAF508 CFTR largely contributes to the disruption in HCO3- secretion in CF epithelia.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR) is transported to the plasma membrane from endoplasmic reticulum (ER) through the Golgi. Crucial to these trafficking events is the role of not only the proteinous factors but also the membrane lipids. However, the involvement of lipids, such as phospholipids, on the regulation of CFTR trafficking has been largely unexplored. Here, we show that the inhibition of phospholipase D (PLD)-mediated phosphatidic acid (PA) formation by 1-butanol inhibited the maturation and export of CFTR from the ER. Exogenously added PA reversed these effects. Moreover, knock down of PLD1 by small interfering RNA decreased the expression of mature CFTR. Interestingly, sustaining the level of PA, by the addition of excess PA in the presence of PA phosphatase inhibitor, attenuated the transport of CFTR from the Golgi to plasma membrane and the retrograde transport of DeltaF508 CFTR to the cytoplasm, a necessary step for the ER-associated degradation of DeltaF508 CFTR. These results indicated that the metabolism of PA modulated the intracellular dynamics and trafficking of CFTR.  相似文献   

3.
BACKGROUND INFORMATION: CF (cystic fibrosis) is a disease caused by mutations within the CFTR (CF transmembrane conductance regulator) gene. The most common mutation, DeltaF508 (deletion of Phe-508), results in a protein that is defective in folding and trafficking to the cell surface but is functional if properly localized in the plasma membrane. We have recently demonstrated that overexpression of the PDZ protein NHERF1 (Na(+)/H(+)-exchanger regulatory factor 1) in CF airway cells induced both a redistribution of DeltaF508CFTR from the cytoplasm to the apical membrane and the PKA (protein kinase A)-dependent activation of DeltaF508CFTR-dependent chloride secretion. In view of the potential importance of the targeted up-regulation of NHERF1 in a therapeutic context, and since it has been demonstrated that oestrogen treatment increases endogenous NHERF1 expression, we tested the hypothesis that oestrogen treatment can increase NHERF1 expression in a human bronchiolar epithelial CF cell line, CFBE41o(-), with subsequent rescue of apical DeltaF508CFTR chloride transport activity. RESULTS: We found that CFBE41o(-) cells do express ERs (oestrogen receptors) in the nuclear fraction and that beta-oestradiol treatment was able to significantly rescue DeltaF508CFTR-dependent chloride secretion in CFBE41o(-) cell monolayers with a peak between 6 and 12 h of treatment, demonstrating that the DeltaF508CFTR translocated to the apical membrane can function as a cAMP-responsive channel, with a significant increase in chloride secretion noted at 1 nM beta-oestradiol and a maximal effect observed at 10 nM. Importantly, knock-down of NHERF1 expression by transfection with siRNA (small interfering RNA) for NHERF1 inhibited the beta-oestradiol-dependent increase in DeltaF508CFTR protein expression levels and completely prevented the beta-oestradiol-dependent rescue of DeltaF508CFTR transport activity. CONCLUSIONS: These results demonstrate that beta-oestradiol-dependent up-regulation of NHERF1 significantly increases DeltaF508CFTR functional expression in CFBE41o(-) cells.  相似文献   

4.
Proteasome degradation of endoplasmic reticulum (ER)-misfolded proteins requires retrograde transport from ER to the cytosol. To date, it is not clear whether this event constitutes the exclusive ER degradation process for non-native membrane proteins. Here we describe the role of GTP in the degradation of DeltaF508-CFTR and the alpha subunit of the T-cell receptor (TCRalpha), representative misfolded ER membrane proteins. Selective intracellular GTP depletion extended the DeltaF508-CFTR half-life sixfold, whereas ATP depletion accelerated its turnover and inhibited only 80% of the proteasome activity that was not affected by GTP depletion. AlF(4)(-), a well-known inhibitor of heterotrimeric G proteins, but not of AlF(3), delayed the mutant CFTR turnover in vivo, in semi-intact cells and in ER-enriched microsomes, without affecting ER to Golgi cargo transport. DeltaF508-CFTR degradation was also inhibited by alkaline stripping of ER-associated membrane proteins. We propose that at the ER, GTP may participate in the disposal of misfolded membrane proteins through activation of heterotrimeric G proteins.  相似文献   

5.
Intracellular trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) is a focus of attention because it is defective in most patients with cystic fibrosis. DeltaF508 CFTR, which does not mature conformationally, normally does not exit the endoplasmic reticulum, but if induced to do so at reduced temperature is short-lived at the surface. We used external epitope-tagged constructs to elucidate the itinerary and kinetics of wild type and DeltaF508 CFTR in the endocytic pathway and visualized movement of CFTR from the surface to intracellular compartments. Modulation of different endocytic steps with low temperature (16 degrees C) block, protease inhibitors, and overexpression of wild type and mutant Rab GTPases revealed that surface CFTR enters several different routes, including a Rab5-dependent initial step to early endosomes, then either Rab11-dependent recycling back to the surface or Rab7-regulated movement to late endosomes or alternatively Rab9-mediated transit to the trans-Golgi network. Without any of these modulations DeltaF508 CFTR rapidly disappears from and does not return to the cell surface, confirming that its altered structure is detected in the distal as well as proximal secretory pathway. Importantly, however, the mutant protein can be rescued at the plasma membrane by Rab11 overexpression, proteasome inhibitors, or inhibition of Rab5-dependent endocytosis.  相似文献   

6.
The pathway of transport of the cystic fibrosis transmembrane regulator (CFTR) through the early exocytic pathway has not been examined. In contrast to most membrane proteins that are concentrated during export from the ER and therefore readily detectable at elevated levels in pre-Golgi intermediates and Golgi compartments, wild-type CFTR could not be detected in these compartments using deconvolution immunofluorescence microscopy. To determine the basis for this unusual feature, we analyzed CFTR localization using quantitative immunoelectron microscopy (IEM). We found that wild-type CFTR is present in pre-Golgi compartments and peripheral tubular elements associated with the cis and trans faces of the Golgi stack, albeit at a concentration 2-fold lower than that found in the endoplasmic reticulum (ER). delta F508 CFTR, a mutant form that is not efficiently delivered to the cell surface and the most common mutation in cystic fibrosis, could also be detected at a reduced concentration in pre-Golgi intermediates and peripheral cis Golgi elements, but not in post-Golgi compartments. Our results suggest that the low level of wild-type CFTR in the Golgi region reflects a limiting step in selective recruitment by the ER export machinery, an event that is largely deficient in delta F508. We raise the possibility that novel modes of selective anterograde and retrograde traffic between the ER and the Golgi may serve to regulate CFTR function in the early secretory compartments.  相似文献   

7.
Mutations in the cystic fibrosis transmembrane conductance regulator protein (CFTR) cause cystic fibrosis. The most common disease-causing mutation, DeltaF508, is retained in the endoplasmic reticulum (ER) and is unable to function as a plasma membrane chloride channel. To investigate whether the ER retention of DeltaF508-CFTR is caused by immobilization and/or aggregation, we have measured the diffusional mobility of green fluorescent protein (GFP) chimeras of wild type (wt)-CFTR and DeltaF508-CFTR by fluorescence recovery after photobleaching. GFP-labeled DeltaF508-CFTR was localized in the ER and wt-CFTR in the plasma membrane and intracellular membranes in transfected COS7 and Chinese hamster ovary K1 cells. Both chimeras localized to the ER after brefeldin A treatment. Spot photobleaching showed that CFTR diffusion (diffusion coefficient approximately 10(-9) cm(2)/s) was not significantly slowed by the DeltaF508 mutation and that nearly all wt-CFTR and DeltaF508-CFTR diffused throughout the ER without restriction. Stabilization of molecular chaperone interactions by ATP depletion produced remarkable DeltaF508-CFTR immobilization ( approximately 50%) and slowed diffusion (6.5 x 10(-10) cm(2)/s) but had little effect on wt-CFTR. Fluorescence depletion experiments revealed that the immobilized DeltaF508-CFTR in ATP-depleted cells remained in an ER pattern. The mobility of wt-CFTR and DeltaF508-CFTR was reduced by maneuvers that alter CFTR processing or interactions with molecular chaperones, including tunicamycin, geldanamycin, and lactacystin. Photobleaching of the fluorescent ER lipid diOC(4)(3) showed that neither ER restructuring nor fragmentation during these maneuvers was responsible for the slowing and immobilization of CFTR. These results suggest that (a) the ER retention of DeltaF508-CFTR is not due to restricted ER mobility, (b) the majority of DeltaF508-CFTR is not aggregated or bound to slowly moving membrane proteins, and (c) DeltaF508-CFTR may interact to a greater extent with molecular chaperones than does wt-CFTR.  相似文献   

8.
DeltaF508 CFTR can be functionally restored in the plasma membrane by exposure of the cell to lower temperature. However, restored DeltaF508 CFTR has a much shorter half-life than normal. We studied whether NHERF1, which binds to the PDZ motif of CFTR, might be a critical mediator in the turnover of DeltaF508 CFTR from the cell surface. We used RNAi to reduce the expression of NHERF1 in human airway epithelial cells. Knockdown of NHERF1 reversibly reduces surface expression of WT-CFTR without altering its total expression. As expected, temperature correction increased mature C band DeltaF508 CFTR (rDeltaF508) but unexpectedly allowed immature B band of rDeltaF508 to traffic to the cell surface. Both surface and total expression of rDeltaF508 in NHERF1 knockdown cells were reduced and degradation of surface localized rDeltaF508 was even faster in NHERF1 knockdown cells. Proteasomal and lysosomal inhibitor treatments led to a significant decrease in the accelerated degradation of surface rDeltaF508 in NHERF1 knockdown cells. These results indicate that NHERF1 plays a role in the turnover of CFTR at the cell surface, and that rDeltaF508 CFTR at the cell surface remains highly susceptible to degradation.  相似文献   

9.
The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, DeltaF508, causes retention of DeltaF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl(-) channels in the apical plasma membrane. Rescue of DeltaF508-CFTR by reduced temperature or chemical means reveals that the DeltaF508 mutation reduces the half-life of DeltaF508-CFTR in the apical plasma membrane. Because DeltaF508-CFTR retains some Cl(-) channel activity, increased expression of DeltaF508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued DeltaF508-CFTR that lead to the decreased apical membrane half-life of DeltaF508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o-) the DeltaF508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.  相似文献   

10.
Deletion of phenylalanine at position 508 (DeltaF508) is the most common cystic fibrosis (CF)-associated mutation in the CF transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel. The consensus notion is that DeltaF508 imposes a temperature-sensitive folding defect and targets newly synthesized CFTR for degradation at endoplasmic reticulum (ER). A limited amount of CFTR activity, however, appears at the cell surface in the epithelia of homozygous DeltaF508 CFTR mice and patients, suggesting that the ER retention is not absolute in native tissues. To further elucidate the reasons behind the inability of DeltaF508 CFTR to accumulate at the plasma membrane, its stability was determined subsequent to escape from the ER, induced by reduced temperature and glycerol. Biochemical and functional measurements show that rescued DeltaF508 CFTR has a temperature-sensitive stability defect in post-ER compartments, including the cell surface. The more than 4-20-fold accelerated degradation rate between 37 and 40 degrees C is, most likely, due to decreased conformational stability of the rescued DeltaF508 CFTR, demonstrated by in situ protease susceptibility and SDS-resistant thermoaggregation assays. We propose that the decreased stability of the spontaneously or pharmacologically rescued mutant may contribute to its inability to accumulate at the cell surface. Thus, therapeutic efforts to correct the folding defect should be combined with stabilization of the native DeltaF508 CFTR.  相似文献   

11.
The pancreatic duct expresses cystic fibrosis transmembrane conductance regulator (CFTR) and HCO3- secretory and salvage mechanisms in the luminal membrane. Although CFTR plays a prominent role in HCO3- secretion, the role of CFTR in HCO3- salvage is not known. In the present work, we used molecular, biochemical, and functional approaches to study the regulatory interaction between CFTR and the HCO3- salvage mechanism Na+/H+ exchanger isoform 3 (NHE3) in heterologous expression systems and in the native pancreatic duct. We found that CFTR regulates NHE3 activity by both acute and chronic mechanisms. In the pancreatic duct, CFTR increases expression of NHE3 in the luminal membrane. Thus, luminal expression of NHE3 was reduced by 53% in ducts of homozygote DeltaF508 mice. Accordingly, luminal Na+-dependent and HOE694- sensitive recovery from an acid load was reduced by 60% in ducts of DeltaF508 mice. CFTR and NHE3 were co-immunoprecipitated from PS120 cells expressing both proteins and the pancreatic duct of wild type mice but not from PS120 cells lacking CFTR or the pancreas of DeltaF508 mice. The interaction between CFTR and NHE3 required the COOH-terminal PDZ binding motif of CFTR, and mutant CFTR proteins lacking the C terminus were not co-immunoprecipitated with NHE3. Furthermore, when expressed in PS120 cells, wild type CFTR, but not CFTR mutants lacking the C-terminal PDZ binding motif, augmented cAMP-dependent inhibition of NHE3 activity by 31%. These findings reveal that CFTR controls overall HCO3- homeostasis by regulating both pancreatic ductal HCO3- secretory and salvage mechanisms.  相似文献   

12.
This study addresses the mechanisms by which a defect in CFTR impairs pancreatic duct bicarbonate secretion in cystic fibrosis. We used control (PANC-1) and CFTR-deficient (CFPAC-1; DeltaF508 mutation) cell lines and measured HCO3- extrusion by the rate of recovery of intracellular pH after an alkaline load and recorded whole cell membrane currents using patch clamp techniques. 1) In PANC-1 cells, cAMP causes parallel activation of Cl- channels and of HCO3- extrusion by DIDS-sensitive and Na+-independent Cl-/HCO3- exchange, both effects being inhibited by Cl- channel blockers NPPB and glibenclamide. 2) In CFPAC-1 cells, cAMP fails to stimulate Cl-/HCO3- exchange and Cl- channels, except after promoting surface expression of DeltaF508-CFTR by glycerol treatment. Instead, raising intracellular Ca2+ concentration to 1 micromol/l or stimulating purinergic receptors with ATP (10 and 100 micromol/l) leads to parallel activation of Cl- channels and HCO3- extrusion. 3) K+ channel function is required for coupling cAMP- and Ca2+-dependent Cl- channel activation to effective stimulation of Cl-/HCO3- exchange in control and CF cells, respectively. It is concluded that stimulation of pancreatic duct bicarbonate secretion via Cl-/HCO3- exchange is directly correlated to activation of apical membrane Cl- channels. Reduced bicarbonate secretion in cystic fibrosis results from defective cAMP-activated Cl- channels. This defect is partially compensated for by an increased sensitivity of CF cells to purinergic stimulation and by alternative activation of Ca2+-dependent Cl- channels, mechanisms of interest with respect to possible treatment of cystic fibrosis and of related chronic pancreatic diseases.  相似文献   

13.
In cystic fibrosis (CF), the DeltaF508-CFTR anterograde trafficking from the endoplasmic reticulum to the plasma membrane is inefficient. New strategies for increasing the delivery of DeltaF508-CFTR to the apical membranes are thus pathophysiologically relevant targets to study for CF treatment. Recent studies have demonstrated that PDZ-containing proteins play an essential role in determining polarized plasma membrane expression of ionic transporters. In the present study we have hypothesized that the PDZ-containing protein NHE-RF1, which binds to the carboxy terminus of CFTR, rescues DeltaF508-CFTR expression in the apical membrane of epithelial cells. The plasmids encoding DeltaF508-CFTR and NHE-RF1 were intranuclearly injected in A549 or Madin-Darby canine kidney (MDCK) cells, and DeltaF508-CFTR channel activity was functionally assayed using SPQ fluorescent probe. Cells injected with DeltaF508-CFTR alone presented a low chloride channel activity, whereas its coexpression with NHE-RF1 significantly increased both the basal and forskolin-activated chloride conductances. This last effect was lost with DeltaF508-CFTR deleted of its 13 last amino acids or by injection of a specific NHE-RF1 antisense oligonucleotide, but not by NHE-RF1 sense oligonucleotide. Immunocytochemical analysis performed in MDCK cells transiently transfected with DeltaF508-CFTR further revealed that NHE-RF1 specifically determined the apical plasma membrane expression of DeltaF508-CFTR but not that of a trafficking defective mutant potassium channel (KCNQ1). These data demonstrate that the modulation of the expression level of CFTR protein partners, like NHE-RF1, can rescue DeltaF508-CFTR activity.  相似文献   

14.
The mechanism(s) of cystic fibrosis transmembrane conductance regulator (CFTR) trafficking from the endoplasmic reticulum (ER) through the Golgi apparatus, the step impaired in individuals afflicted with the prevalent CFTR-DeltaF508 mutation leading to cystic fibrosis, is largely unknown. Recent morphological observations suggested that CFTR is largely absent from the Golgi in situ (Bannykh, S. I., Bannykh, G. I., Fish, K. N., Moyer, B. D., Riordan, J. R., and Balch, W. E. (2000) Traffic 1, 852-870), raising the possibility of a novel trafficking pathway through the early secretory pathway. We now report that export of CFTR from the ER is regulated by the conventional coat protein complex II (COPII) in all cell types tested. Remarkably, in a cell type-specific manner, processing of CFTR from the core-glycosylated (band B) ER form to the complex-glycosylated (band C) isoform followed a non-conventional pathway that was insensitive to dominant negative Arf1, Rab1a/Rab2 GTPases, or the SNAp REceptor (SNARE) component syntaxin 5, all of which block the conventional trafficking pathway from the ER to the Golgi. Moreover, CFTR transport through the non-conventional pathway was potently blocked by overexpression of the late endosomal target-SNARE syntaxin 13, suggesting that recycling through a late Golgi/endosomal system was a prerequisite for CFTR maturation. We conclude that CFTR transport in the early secretory pathway can involve a novel pathway between the ER and late Golgi/endosomal compartments that may influence developmental expression of CFTR on the cell surface in polarized epithelial cells.  相似文献   

15.
Cystic fibrosis (CF) is caused by the mutation in CF transmembrane conductance regulator (CFTR), a cAMP-dependent Cl(-) channel at the plasma membrane of epithelium. The most common mutant, DeltaF508 CFTR, has competent Cl(-) channel function, but fails to express at the plasma membrane since it is retained in the endoplasmic reticulum (ER) by the ER quality control system. Here, we show that calnexin (CNX) is not necessary for the ER retention of DeltaF508 CFTR. Our data show that CNX knockout (KO) does not affect the biosynthetic processing, cellular localization or the Cl(-) channel function of DeltaF508 CFTR. Importantly, cAMP-induced Cl(-) current in colonic epithelium from CNX KO/DeltaF508 CFTR mice was comparable with that of DeltaF508 CFTR mice, indicating that CNX KO failed to rescue the ER retention of DeltaF508 CFTR in vivo. Moreover, we show that CNX assures the efficient expression of WT CFTR, but not DeltaF508 CFTR, by inhibiting the proteasomal degradation, indicating that CNX might stimulate the productive folding of WT CFTR, but not DeltaF508 CFTR, which has folding defects.  相似文献   

16.
The most common mutation of the cystic fibrosis (CF) gene, the deletion of Phe508, encodes a protein (DeltaF508-CFTR) that fails to fold properly, thus mutated DeltaF508-cystic fibrosis transmembrane conductance regulator (CFTR) is recognized and degraded via the ubiquitin-proteasome endoplasmic reticulum-associated degradation pathway. Chemical and pharmacological chaperones and ligand-induced transport open options for designing specific drugs to control protein (mis)folding or transport. A class of compounds that has been proposed as having potential utility in DeltaF508-CFTR is that which targets the molecular chaperone and proteasome systems. In this study, we have selected deoxyspergualin (DSG) as a reference molecule for this class of compounds and for ease of cross-linking to human serum albumin (HSA) as a protein transporter. Chemical cross-linking of DSG to HSA via a disulfide-based cross-linker and its administration to cells carrying DeltaF508-CFTR resulted in a greater enhancement of DeltaF508-CFTR function than when free DSG was used. Function of the selenium-dependent oxidoreductase system was required to allow intracellular activation of HSA-DSG conjugates. The principle that carrier proteins can deliver pharmacological chaperones to cells leading to correction of defective CFTR functions is therefore proven and warrants further investigations.  相似文献   

17.
Aggresomes are pericentrosomal cytoplasmic structures into which aggregated, ubiquitinated, misfolded proteins are sequestered. Misfolded proteins accumulate in aggresomes when the capacity of the intracellular protein degradation machinery is exceeded. Previously, we demonstrated that an intact microtubule cytoskeleton is required for the aggresome formation [Johnston et al., 1998: J. Cell Biol. 143:1883-1898]. In this study, we have investigated the involvement of microtubules (MT) and MT motors in this process. Induction of aggresomes containing misfolded DeltaF508 CFTR is accompanied by a redistribution of the retrograde motor cytoplasmic dynein that colocalizes with aggresomal markers. Coexpression of the p50 (dynamitin) subunit of the dynein/dynactin complex prevents the formation of aggresomes, even in the presence of proteasome inhibitors. Using in vitro microtubule binding assays in conjunction with immunogold electron microscopy, our data demonstrate that misfolded DeltaF508 CFTR associate with microtubules. We conclude that cytoplasmic dynein/dynactin is responsible for the directed transport of misfolded protein into aggresomes. The implications of these findings with respect to the pathogenesis of neurodegenerative disease are discussed.  相似文献   

18.
The pathways that distinguish transport of folded and misfolded cargo through the exocytic (secretory) pathway of eukaryotic cells remain unknown. Using proteomics to assess global cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein interactions (the CFTR interactome), we show that Hsp90 cochaperones modulate Hsp90-dependent stability of CFTR protein folding in the endoplasmic reticulum (ER). Cell-surface rescue of the most common disease variant that is restricted to the ER, DeltaF508, can be initiated by partial siRNA silencing of the Hsp90 cochaperone ATPase regulator Aha1. We propose that failure of DeltaF508 to achieve an energetically favorable fold in response to the steady-state dynamics of the chaperone folding environment (the "chaperome") is responsible for the pathophysiology of CF. The activity of cargo-associated chaperome components may be a common mechanism regulating folding for ER exit, providing a general framework for correction of misfolding disease.  相似文献   

19.
The DeltaF508 gene mutation prevents delivery of the cystic fibrosis transmembrane conductance regulator (CFTR) to the plasma membrane. The current study examines the biochemical basis for the upregulation of DeltaF508 CFTR expression by sodium butyrate and low temperature. Surface CFTR protein expression was determined by quantitative immunoblot following surface biotinylation and streptavidin extraction. CF gene expression was measured by Northern analysis and CFTR function by forskolin-stimulated (125)I efflux. Butyrate increased DeltaF508 mRNA levels and protein expression but did not increase the biochemical or functional expression of DeltaF508 CFTR at the cell surface. Low temperature increased the biochemical and functional expression of DeltaF508 CFTR at the cell surface but did not increase CFTR mRNA levels. Combining treatments led to a synergistic increase in both DeltaF508 mRNA and surface protein levels that results from the stabilization of CFTR mRNA and protein by low temperature. These findings indicate that surface expression of DeltaF508 CFTR can be markedly enhanced by carefully selected combination agents.  相似文献   

20.
There is evidence that cystic fibrosis transmembrane conductance regulator (CFTR) interacting proteins play critical roles in the proper expression and function of CFTR. The Na(+)/H(+) exchanger regulatory factor isoform 1 (NHERF1) was the first identified CFTR-binding protein. Here we further clarify the role of NHERF1 in the regulation of CFTR activity in two human bronchial epithelial cell lines: the normal, 16HBE14o-, and the homozygous DeltaF508 CFTR, CFBE41o-. Confocal analysis in polarized cell monolayers demonstrated that NHERF1 distribution was associated with the apical membrane in 16HBE14o- cells while being primarily cytoplasmic in CFBE41o- cells. Transfection of 16HBE14o- monolayers with vectors encoding for wild-type (wt) NHERF1 increased both apical CFTR expression and apical protein kinase A (PKA)-dependent CFTR-mediated chloride efflux, whereas transfection with NHERF1 mutated in the binding groove of the PDZ domains or truncated for the ERM domain inhibited both the apical CFTR expression and the CFTR-dependent chloride efflux. These data led us to hypothesize an important role for NHERF1 in regulating CFTR localization and stability on the apical membrane of 16HBE14o- cell monolayers. Importantly, wt NHERF1 overexpression in confluent DeltaF508 CFBE41o- and DeltaF508 CFT1-C2 cell monolayers induced both a significant redistribution of CFTR from the cytoplasm to the apical membrane and a PKA-dependent activation of CFTR-dependent chloride secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号