首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to study the suitability of olive mill wastewater (OMW) for composting, thisliquid waste was added to two different mixtures of agroindustrial and urban wastesand the composting process was compared with two other piles of similar composition,but without OMW. These four piles were studied in a pilot plant using the Rutgers staticpile system. The addition of OMW produced a greater proportion of degradable organic matter or a higher degradation rate, higher electrical conductivity values, greater losses of total N and lower nitrification than in piles without OMW. Its addition also restricted the increase of the cation exchange capacity and provoked the appearance of phytotoxicity or a longer persistence of phytotoxicity. However, in general, all the composts showed increases in the cation exchange capacity, the percentage of humic acid-like carbon, the polymerisation ratio of these humic substances (which revealed that the organic matter had been humified during composting) and the germination index, the latter indicating the reduction of phytotoxicity during the process.  相似文献   

2.
Vast amounts of olive mill wastewaters (OMW) are produced in Mediterranean countries, where their treatment and disposal are becoming a serious environmental problem. Increasing attention has been paid to discovering a use for OMW and a wide range of technological treatments are available nowadays for reducing their pollutant effects and for their transformation into valuable products, the most suitable procedures being found to involve recycling rather than the detoxication of these wastes. Direct application of OMW to soil has been considered as an inexpensive method of disposal and recovery of their mineral and organic components but, because of their organic acid and phenol contents, OMW are also a source of pollution. By using composting technologies, it is possible to transform either fresh OMW or sludge from pond-stored OMW mixed with appropriate plant waste waterials (carriers) into organic fertilizers (composts) with no phytotoxicity to improve soil fertility and plant production, the process involving the microbial degradation of the polluting load of the wastes. Results of field and pot experiments using OMW-composts to cultivate horticultural and other crops have shown that yields obtained with organic fertilization are similar, and sometimes higher, to those obtained with a balanced mineral fertilizer. A comparison between the macro and micronutrient contents of plants cultivated with organic or mineral fertilizers did not generally reveal important differences. However, the cases of iron and manganese are worth mentioning as their bio-availability may be linked to the soil humic complexes originated by the OMW organic fertilizers.  相似文献   

3.
Anaerobic co-digestion is a well established process for treating many types of organic wastes, both solid and liquid. In this study we have investigated, on a laboratory scale, the anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW) using semi-continuous, feeding, tubular digesters operated at mesophilic temperatures. Each digester was fed with an influent, composed of OMW and OMSW, at an organic loading rate (OLR) varying between 0.67 and 6.67 g COD/l/d. The hydraulic retention times (HRT) were 12, 24 and 36 days. The TCOD concentrations of OMW used as the main substrate were 24, 56 and 80 g COD/l; the amount of the dry OMSW used as a co-substrate was fixed to approximately 56 g/l of OMW. The results indicated that the best methane production was about 0.95 l/l/day obtained at an OLR = 4.67 g COD/l/d, corresponding to influent TCOD = 56 g COD/l at an HRT = 12d. In contrast, the maximum TCOD removal efficiency (89%) was achieved at an OLR = 0.67 g COD/l/d, corresponding to influent TCOD = 24 g COD/l at an HRT = 36 d. Moreover, the inhibition of biogas production was observed at the highest OLR studied.  相似文献   

4.
Detoxification of olive mill wastewaters by Moroccan yeast isolates   总被引:1,自引:0,他引:1  
A total of 105 yeast strains were isolated from Moroccan olive oil production plants and evaluated for their ability to grow in olive oil mill wastewaters (OMW). The 9 isolates that grew best on OMW were selected for further study to evaluate their effect on removal of organic pollutants and OMW phytotoxicity (barley seed germination test). The results showed that at least four yeast isolates effectively lowered the toxicity of this effluent in addition to providing very useful materials in terms of both yeast biomass (6 g/l DW) and an irrigation fluid. This group of yeast isolates significantly reduced the concentration of total phenols (44% removal) and Chemical Oxygen Demand, COD (63% removal). The best germination rate of 80% for undiluted OMW was obtained for strain Candida holstii that also increased the pH from 4.76 to 6.75. Principal component analysis of the results obtained for the best yeast strains confirmed the importance of COD and total phenol reduction along with increase of organic nitrogen and final pH for the improvement of germination rates and phytotoxic reduction. This study has highlighted the potential of indigenous yeasts in detoxification of olive mill wastewaters.  相似文献   

5.
The aim of this work was to study the natural biodegradation of the stored olive mill wastewater (OMW) in ponds and the infiltration as well as the impact on soil of the effluent in the evaporation pond used for the storage over the past eight years. For this, two approaches were considered. First, a laboratory-scale column was used for the infiltration of OMW through soil (clay and sand) to predict the effect of the clayey soil in reducing OMW pollution. Second, the ponds including the effluent annually stored and having this clayey structure were investigated. At the laboratory-scale, a modification of OMW contents was noticed, with the elimination of 95% of total suspended solids (TSS), 60% of chemical oxygen demand (COD), 40% of total organic carbon (TOC), 50% of total P, 50% of phenols and 40% of minerals (K+, Mg++ and Na+). The experimented soil was able to restrain the considerable effects of OMW pollution. In the ponds, the granulometric characteristics, the physico-chemical and the biological parameters of the soil profile from the contaminated pond were compared to those of a control soil, located near the contaminated pond. Property modifications of the contaminated soil were noted, especially pH, electrical conductivity, COD and microflora. These changes can be explained by the infiltration of OMW constituents, which were noticed in the soil layers, especially phenolic compounds that have a negative effect on the ground water.  相似文献   

6.
This study was focused on several physico-chemical and biological treatment methods that may affect the reduction of the organic load in olive mill wastewater (OMW). In this study, removal of 95% of the phenolic compounds present in OMW was achieved using sand filtration and subsequent treatment with powdered activated carbon in a batch system. This pretreatment for OMW was found to enhance the anaerobic activity of the sludge in the batch system significantly. The efficiency of organic load removal achieved by the anaerobic treatment of untreated OMW in batch reactors with tap water dilution factors below 1:10, reached approximately 65% chemical oxygen demand (COD) removal. However, in the up-flow sludge anaerobic blanket (UASB) reactor, COD removal efficiency of 80–85% was reached at a hydraulic retention time (HRT) of 5 days with an influent COD concentration of 40 g l−1 and organic loading rate (OLR)=8 g−1 COD l−1 per day.  相似文献   

7.
AIMS: Xanthan production by Xanthomonas campestris from several olive mill wastewaters (OMW) was investigated. METHODS AND RESULTS: Maximum xanthan production of 4 g l(-1) was obtained in media with 50% OMW as sole source of nutrients. OMW storage decreased effluent quality for xanthan production. The range of effluent concentration for X. campestris growth and xanthan production varied depending on OMW extraction METHOD: Wastewaters from press and two-phase extraction methods required higher dilution rates (< 10%) than those from the three-phase extraction method (50%). Nitrogen supplementation improved xanthan production in press and two-phase OMW. CONCLUSION: Factors affecting wastewaters composition, namely, waste storage, time of olive harvesting, and method for oil extraction, were found to influence xanthan production in shake-flask cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: Conditions for xanthan production from OMW should be optimized in accordance with the nature of the waste material.  相似文献   

8.
A total of 10 bacterial strains were isolated from a compost of corn treated with olive mill wastewaters (OMW) and selected by their capacity to synthesize exopolysaccharides (EPS). Morphological, physiological, biochemical and nutritional tests were used for a phenotypic study. A numerical analysis showed that all strains were 90% similar to each other. A DNA–DNA hybridization assay confirmed that all the strains belonged to Paenibacillus jamilae species. All the characterized strains were able to produce EPS growing on OMW batch cultures. The strain which was able to produce the highest EPS yield was chosen to perform an assay for testing its putative detoxifying activity, and it showed to reduce more than half the toxic capacity of the OMW. The results presented in this study, indicated the possible perspectives for using these bacterial strains to produce EPS and contribute to the bioremediation of the waste waters that are produced in the olive oil elaboration process.  相似文献   

9.
Free cells of Aspergillus niger were grown on olive mill wastewater (OMW) supplemented with rock phosphate (RP) in an air-lift bioreactor in batch and repeated-batch processes. The fungus grew well and reduced the chemical oxygen demand of the waste by 35% and 64% in the batch and repeated-batch (fourth batch) processes, respectively. Total sugar content was consistently reduced (ca. 60%) in both processes while reduction of total phenols was minimal. RP was solubilised and maximum soluble P was 0.63 and 0.75 gl(-1) in the batch and repeated-batch (third batch), respectively. Several types of OMW+/-RP, microbially-treated or not, were tested in a greenhouse for their fertilising ability on a soil-wheat (Triticum durum Desf.) model system. Beneficial effects were highest using OMW treated by the repeated-batch process. The treated plants showed an increase in seed biomass, spike number, and kernel weight. Harvest index was highest (0.49+/-0.04) after treatment with OMW from the repeated-batch process.  相似文献   

10.
During olive oil production, large quantities of olive mill wastewater (OMW) are produced. This wastewater material, containing a high level of phenolic compounds, poses a serious environmental problem in almost all Mediterranean countries. Candida tropicalis YMEC14 was used as an extremophile strain to design an aerobic biotreatment process to detoxify OMW and reduce its polluting organic load. The process was enhanced by directing yeast metabolism towards biodegradation pathways using hexadecane as co-metabolite and by immobilizing yeast cells in calcium alginate beads. Under immobilization conditions, C. tropicalis YMEC14 grown at 40 degrees C in OMW supplemented with hexadecane resulted in 69.7%, 69.2% and 55.3% reduction of chemical oxygen demand, monophenols and polyphenols, respectively, after a 24-h fermentation cycle.  相似文献   

11.
The use of maize straw (MS) or cotton waste (CW) as bulking agents in the composting of olive mill wastewater (OMW) sludge was compared by studying the organic matter (OM) mineralisation and humification processes during composting and the characteristics of the end products. Both composts were prepared in a pilot-plant using the Rutgers static-pile system. The use of CW instead of MS to compost OMW sludge extended both the thermophilic and bio-oxidative phases of the process, with higher degradation of polymers (mainly lignin and cellulose), a greater formation of nitrates, higher total nitrogen losses and a lower biological nitrogen fixation. The CW produced a compost with a more stabilised OM and more highly polymerised humic-like substances. In the pile with CW and OMW sludge, OM losses followed a first-order kinetic equation, due to OM degradation being greater at the beginning of the composting and remaining almost constant until the end of the process. However, in the pile with MS and OMW sludge this parameter followed a zero-order kinetic equation, since OM degraded throughout the process. The germination index indicated the reduction of phytotoxicity during composting.  相似文献   

12.
The microbiological and physicochemical characterization of samples from the different wastewaters generated during oil extraction in a continuous olive mill was performed. The main aim was to determine which of the physicochemical parameters were the best fitted to correctly characterize these residual waters. High correlations were obtained for COD, DOC, K, P and N contents with the sampling points, allowing the distinction of olive washing waters (OWW) from olive centrifuge waters (OCW) and olive mill wastewaters (OMW). These parameters were sufficient for a rapid and less costly chemical characterization of these waters. Phenols and oil and grease contents, together with low pH and dissolved oxygen contents, and high organic loads, were the most toxic for microbial populations. Microbial characterization showed that fungi were well adapted to these stressing environmental characteristics and the reuse of OMW after aerobic treatment with microbial species isolated from the effluent is considered.  相似文献   

13.
We investigated the effect of untreated and biologically treated olive mill wastewater (OMW) spreading on the soil characteristics and the microbial communities. The water holding capacity, the salinity and the content of total organic carbon, humus, total nitrogen, phosphate and potassium increased when the spread amounts of the treated or untreated OMW increased. The OMW treated soil exhibited significantly higher respiration compared to the control soil. However, the C-CO2/C(tot) ratio decreased from 1.7 in the control soil to 0.5 in the soil amended with 100 m3 ha(-1) of untreated OMW. However, it slightly decreased to 1.15 in the soil amended with 400 m3 ha(-1) of treated OMW. The treated OMW increased the total mesophylic number while the number of fungi and nitrifiers decreased. Actinomycetes and spore-forming bacteria were neither sensitive to treated nor to untreated OMW. The total coliforms increased with higher doses of treated and untreated OMW. A toxic effect of the untreated OMW appeared from 100 m3 ha(-1). This toxicity was more significant with 200 m3 ha(-1), where microflora of total mesophilic, yeasts and moulds, actinomycetes, and nitrifiers were seriously inhibited except for total coliforms and spore-forming bacteria.  相似文献   

14.
Olive mill wastewaters (OMW) are a by-product from olive oil manufacture that cause environmental pollution. These wastes have been used as substrate for the production of the extracellular polysaccharide xanthan by Xanthomonas campestris NRRL B1459-S4L41. Growth and xanthan production on dilute OMW as a sole source of nutrients were obtained at OMW concentrations below 60%, yielding a maximal xanthan production of 4.4gl−1 at 30–40% OMW concentration. Addition of nitrogen and/or salts led to significantly increased xanthan yields with a maximum of 7.7gl−1. The N/salts supplements also allowed an increase in the optimal OMW concentration. Inocula pre-grown on OMW can be used. Results suggest that an improved xanthan yield could be obtained with adequate balance between waste concentration and nitrogen or salt supplementation. OMW is proposed as a low-cost substrate for xanthan production with the additional environmental benefit of this use.  相似文献   

15.
A Phanerochaete chrysosporium strain was isolated from Moroccan olive mill waste water (OMW) and its ability to degrade OMW in different culture conditions was investigated and compared to that of Pleurotus ostreatus. The results indicated that Ph. chrysosporium isolate is more efficient than Pl. ostreatus in decolorising and detoxifying OMW in the presence of added nutrients. Ph. chrysosporium is able to remove more than 50% of the colour and phenols from OMW within 6 days of incubation, whereas Pl. ostreatus needs more than 12 days to reach similar results in the same conditions. Many factors affecting the treatment of diluted OMW (20%) by Ph. chrysosporium were studied, including the effects of added nutrients, initial pH, temperature and inoculated biomass. Once the optimisation of 20% OMW biodegradation process had been set up, higher OMW concentrations (50%) were tested. The results show that the fungus is capable of reducing all parameters analysed (colour A395, phenol content and chemical oxygen demand) by at least 60%, after only 9 days of growth.  相似文献   

16.
The feasibility of using olive mill waste (OMW) as an ingredient in the substrate used for cultivation of Agaricus bisporus (Lange) Sing. was studied in a large-scale cultivation trial, concerning 2500 m2 of mushroom growing area, at a specialized mushroom farm. Standard commercial cultivation technique involving compost preparation, spawning, casing and harvesting was used. The performance indicators such as mushroom yield, biological efficiency, market quality as well as horticultural value of the spent compost showed that the compost prepared with OMW was superior to the control compost in all the categories. The OMW-amended substrate supported higher populations of beneficial microorganisms especially, actinomycetes which enabled the breakdown of the compost ingredients. It is suggested that OMW is a suitable ingredient for the preparation of mushroom substrate. We have demonstrated that conversion of OMW (a liability) into value-added mushroom substrate (an asset) is an effective waste management tool in oleaculture.  相似文献   

17.
Olive oil mill wastewater (OMW) is produced as waste in olive oil extraction. With the purpose of treating this highly polluting waste, a number of experiments were conducted in a laboratory-scale bioreactor with the white rot fungus Phanerochaete flavido-alba (P. flavido-alba). It is known that this fungus is capable of decolorizing OMW in static or semistatic cultures at Erlenmeyer scale and at 30 degrees C. The objective of this work was to prove that P. flavido-alba could decolorize OMW in submerged cultures and that it is capable of reducing OMW toxicity at room temperature (25 degrees C) and in a laboratory-scale bioreactor. In the experiments conducted, manganese peroxidase (MnP) and laccase enzymes were detected; however, unlike other studies, lignin peroxidase was not found to be present. Decoloration obtained after treatment was 70%. The reduction of aromatic compounds obtained was 51%, and the toxicity of the culture medium was reduced by up to 70%. We can therefore state that P. flavido-alba is capable of reducing important environmental parameters of industrial effluents and that prospects are positive for the use of this process at a larger scale, even when working at room temperature.  相似文献   

18.
The anaerobic digestion model No. 1 (ADM1), conceived by the international water association (IWA) task group for mathematical modelling of anaerobic digestion processes is a structured generic model which includes multiples steps describing biochemical and physicochemical processes encountered in the anaerobic degradation of complex organic substrates and a common platform for further model enhancement and validation of dynamic simulations for a variety of anaerobic processes. In this study the ADM1 model was modified and applied to simulate the mesophilic anaerobic co-digestion of olive mill wastewater (OMW) with olive mill solid waste (OMSW). The ADM1 equations were coded and implemented using the simulation software package MATLAB/Simulink. The most sensitive parameters were calibrated and validated using updated experimental data of our previous work. The results indicated that the ADM1 model could simulate with good accuracy: gas flows, methane and carbon-dioxide contents, pH and total volatile fatty acids (TVFA) concentrations of effluents for various feed concentrations digested at different hydraulic retention times (HRTs) and especially at HRTs of 36 and 24 days. Furthermore, effluent alkalinity and ammonium nitrogen were successfully predicted by the model at HRTs of 12 and 24 days for some feed concentrations.  相似文献   

19.
Olive mill wastewater (OMW) management is a serious environmental issue for the Mediterranean area where there is the most production of olive oil. OMW contains a high organic load, substantial amounts of plant nutrients but also several compounds with recognized toxicity towards living organisms. Moreover, OMW may represent a low cost source of water. We studied the influence of irrigation with OMW (amounts applied: 30, 60, 100 and 150 m3 h−1) in a field of olive trees on root colonization, photosynthesis, chlorophyll fluorescence, leaf nutrient concentration and soluble carbohydrate. The soil fatty acid methyl ester (FAME) 16:1ω5 was used to quantify biomass of arbuscular mycorrhizal (AM) fungi and the root FAME 16:1ω5 analysis was used as index for the development of colonization in the roots. Agronomic application of OMW decreased significantly the abundance of the soil FAME 16:1ω5 and the root FAME 16:1ω5 in the soil amended with 60, 100 and 150 m3 ha−1 OMW. Decreased root FAME 16:1ω5 due to OMW amendment was associated with a significant reduction of tissue nutrient concentrations in the olive trees. The highest application of OMW to the soil reduced significantly the olive trees uptake of N, P, K, Ca, Mg, Fe, Cu, Mn and Zn. Land spreading of OMW increased concentration of soluble carbohydrate in the olive leaves, mostly due to decreased sink demand for carbon by the root. In the olive trees amended with 150 m3 ha−1 OMW, net CO2 uptake rate (A), quantum yield of photosystem II electron transport (ΦPSII), maximal photochemical efficiency of photosystem II (Fv/Fm), photochemical quenching (qp) and the electron transport rate (ETR) were significantly depressed, whereas non-photochemical quenching (NPQ) was found to increase. Taken with data from experiments in field conditions, our results suggest that agronomic application of OMW alters the functioning of arbuscular mycorrhizas and can even disrupt the relationship between AM fungi and olive trees.  相似文献   

20.
Ligninolytic enzymes activities (laccases, peroxidases (total, MnP and MiP) and aryl-alcohol oxidase (AAO)) were measured during the cultivation of six commercial Pleurotus sp. strains on MMP media, on cereal grains (spawn) and on straw substrates (the three commonly utilized cultivation steps to obtain fruiting bodies) supplemented with several concentrations of autoclaved (OMW) or gamma-irradiated (iOMW) olive mill waste. Results indicated that all the strains were able to grow on MMP media and spawn containing up to 30% OMW and iOMW and on straw substrates mixed with 50% OMW. None of the strains showed AAO activity and there was not a single strain which showed the highest laccases and peroxidases activities, independently of the utilized substrate. Pleurotus mycelia adjusted their enzymatic mechanisms depending on their variety, type of substrate, concentration of OMW or iOMW added. OMW was a better supplement to use than iOMW because OMW induced higher exo-enzymes activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号