首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kinetic analysis of the reduction of Cr(VI) by resting cell suspensions of Desulfovibrio vulgaris ATCC 29579 and a new isolate, Desulfovibrio sp. (`Oz7') was studied using lactate as the electron donor at 30 °C. The apparent K m (K m app) and V max with respect to Cr(VI) reduction was compared for both strains. Desulfovibio sp. `Oz7' had a K m app of 90 M (threefold lower than that of D. vulgaris ATCC 29579) and a V max of 120 nmol h–1 mg–1 biomass dry wt (approx. 30% lower than for the reference strain). The potential of the new isolate for bioremediation of Cr(VI) wastewaters is discussed.  相似文献   

2.
The objectives of the present work were: (a) to analyze the Cr(VI) removal by combining activated sludge (AS) with powdered activated carbon (PAC), (b) to analyze the effect of PAC and Cr(VI) on the growth kinetics of activated sludge, and (c) to determine if the combined method (AS-PAC) for Cr(VI) removal can be considered additive or synergistic with respect to the individual processes. Chromate removal was improved by increasing PAC concentrations in both PAC and AS-PAC systems. Cr(VI) removal using the AS-PAC system was higher than using AS or PAC. The increase of Cr(VI) caused longer lag phase and lower observed specific growth rate (μobs), biomass yield (YX/S), and specific growth substrate consumption rate (qS) of activated sludge; additionally, PAC did not enhance the growth kinetic parameters (μobs, YX/S, qS). Cr(VI) reduction in AS-PAC system was the result of the additive effect of each individual Cr(VI) removal process.  相似文献   

3.
Desulfovibrio vulgaris Hildenborough is a well-studied sulfate reducer that can reduce heavy metals and radionuclides [e.g., Cr(VI) and U(VI)]. Cultures grown in a defined medium had a lag period of approximately 30 h when exposed to 0.05 mM Cr(VI). Substrate analyses revealed that although Cr(VI) was reduced within the first 5 h, growth was not observed for an additional 20 h. The growth lag could be explained by a decline in cell viability; however, during this time small amounts of lactate were still utilized without sulfate reduction or acetate formation. Approximately 40 h after Cr exposure (0.05 mM), sulfate reduction occurred concurrently with the accumulation of acetate. Similar amounts of hydrogen were produced by Cr-exposed cells compared to control cells, and lactate was not converted to glycogen during non-growth conditions. D. vulgaris cells treated with a reducing agent and then exposed to Cr(VI) still experienced a growth lag, but the addition of ascorbate at the time of Cr(VI) addition prevented the lag period. In addition, cells grown on pyruvate displayed more tolerance to Cr(VI) compared to lactate-grown cells. These results indicated that D. vulgaris utilized lactate during Cr(VI) exposure without the reduction of sulfate or production of acetate, and that ascorbate and pyruvate could protect D. vulgaris cells from Cr(VI)/Cr(III) toxicity. J.D. Wall and M.W. Fields are both affiliated to the Virtual Institute of Microbial Stress and Survival (). M.E. Clark and S.B. Thieman contributed equally to this work.  相似文献   

4.
Chromium(VI) compounds (e.g. chromates) are cytotoxic, mutagenic, and potentially carcinogenic. The reduction of Cr(VI) can yield reactive intermediates such as Cr(V) and reactive oxygen species. Bronchial epithelial cells are the primary site of pulmonary exposure to inhaled Cr(VI) and are the primary cells from which Cr(VI)-associated human cancers arise. BEAS-2B cells were used here as a model of normal human bronchial epithelium for studies on the reductive activation of Cr(VI). Cells incubated with Na2CrO4 exhibited two Cr(V) ESR signals, g = 1.979 and 1.985, which persisted for at least 1 h. The g = 1.979 signal is similar to that generated in vitro by human microsomes and by proteoliposomes containing P450 reductase and cytochrome b5. Unlike many cells in culture, these cells continued to express P450 reductase and cytochrome b5. Studies with the non-selective thiol oxidant diamide indicated that the g = 1.985 signal was thiol-dependent whereas the g = 1.979 signal was not. Pretreatment with phenazine methosulfate eliminated both Cr(V) signals suggesting that Cr(V) generation is largely NAD(P)H-dependent. ESR spectra indicated that a portion of the Cr(VI) was rapidly reduced to Cr(III). Cells incubated with an insoluble chromate, ZnCrO4, also generated both Cr(V) signals, whereas Cr(V) was not detected with insoluble PbCrO4. In clonogenic assays, the cells were very sensitive to Na2CrO4 and ZnCrO4, but considerably less sensitive to PbCrO4.  相似文献   

5.
Chromate-resistant Chlorella spp. isolated from effluents of electroplating industry could grow in the presence of 30 μM K2Cr2O7. Since photosynthesis is sensitive to oxidative stress, chromate toxicity to photosynthesis was examined in this algal isolate. Chromate [Cr(VI)] up to 100 μM was found to stimulate photosynthesis, while 90% inhibition was found, when the cells were incubated with 1 mM Cr(VI) for 4 h. Photosystem (PS) II was inhibited by 80% and PSI by 40% after such Cr(VI) treatment. Thermoluminescence studies on cells treated with 1 mM Cr(VI) for 4 h showed that S2QA ? recombination peak (Q) was shifted to higher temperature, whereas S2/S3QB ? recombination peak (B) was shifted to lower temperature. These shifts indicated alga stress response in order to overcome an excitation stress resulting from the inhibition of photosynthesis by Cr(VI). The nontreated Chlorella cells kept in the dark showed periodicity of four for the Q peak (4–8°C) and B peak (34–38°C) after exposure to series of single, turnover, saturating flashes. This periodicity was lost in Cr(VI)-treated cells. Higher concentrations of Cr(VI) inhibited mainly the electron flow in the electron transport chain, inactivated oxygen evolving complex, and affected also Calvin cycle enzymes in the Cr(VI)-resistant isolates of Chlorella.  相似文献   

6.
Hydrogenases in sulfate-reducing bacteria function as chromium reductase   总被引:6,自引:0,他引:6  
The ability of sulfate-reducing bacteria (SRB) to reduce chromate VI has been studied for possible application to the decontamination of polluted environments. Metal reduction can be achieved both chemically, by H2S produced by the bacteria, and enzymatically, by polyhemic cytochromes c3. We demonstrate that, in addition to low potential polyheme c-type cytochromes, the ability to reduce chromate is widespread among [Fe], [NiFe], and [NiFeSe] hydrogenases isolated from SRB of the genera Desulfovibrio and Desulfomicrobium. Among them, the [Fe] hydrogenase from Desulfovibrio vulgaris strain Hildenborough reduces Cr(VI) with the highest rate. Both [Fe] and [NiFeSe] enzymes exhibit the same Km towards Cr(VI), suggesting that Cr(VI) reduction rates are directly correlated with hydrogen consumption rates. Electron paramagnetic resonance spectroscopy enabled us to probe the oxidation by Cr(VI) of the various metal centers in both [NiFe] and [Fe] hydrogenases. These experiments showed that Cr(VI) is reduced to paramagnetic Cr(III), and revealed inhibition of the enzyme at high Cr(VI) concentrations. The significant decrease of both hydrogenase and Cr(VI)-reductase activities in a mutant lacking [Fe] hydrogenase demonstrated the involvement of this enzyme in Cr(VI) reduction in vivo. Experiments with [3Fe-4S] ferredoxin from Desulfovibrio gigas demonstrated that the low redox [Fe-S] (non-heme iron) clusters are involved in the mechanism of metal reduction by hydrogenases.  相似文献   

7.
A transposon insertion mutant has been identified in a Desulfovibrio desulfuricans G20 mutant library that does not grow in the presence of 2 mM U(VI) in lactate-sulfate medium. This mutant has also been shown to be deficient in the ability to grow with 100 μM Cr(VI) and 20 mM As(V). Experiments with washed cells showed that this mutant had lost the ability to reduce U(VI) or Cr(VI), providing an explanation for the lower tolerance. A gene encoding a cyclic AMP (cAMP) receptor protein (CRP) was identified as the site of the transposon insertion. The remainder of the mre operon (metal reduction) contains genes encoding a thioredoxin, thioredoxin reductase, and an additional oxidoreductase whose substrate has not been predicted. Expression studies showed that in the mutant, the entire operon is downregulated, suggesting that the CRP may be involved in regulating expression of the whole operon. Exposure of the cells to U(VI) resulted in upregulation of the entire operon. CdCl2, a specific inhibitor of thioredoxin activity, inhibits U(VI) reduction by washed cells and inhibits growth of cells in culture when U(VI) is present, confirming a role for thioredoxin in U(VI) reduction. The entire mre operon was cloned into Escherichia coli JM109 and the transformant developed increased U(VI) resistance and the ability to reduce U(VI) to U(IV). The oxidoreductase protein (MreG) from this operon was expressed and purified from E. coli. In the presence of thioredoxin, thioredoxin reductase, and NADPH, this protein was shown to reduce both U(VI) and Cr(VI), providing a mechanism for the cytoplasmic reduction of these metals.Previous studies have shown that soluble U(VI) can be reduced to the less-soluble U(IV) by pure cultures of bacteria (19, 20, 25). This process can be useful for in situ reduction, which results in uranium precipitation and therefore decreased mobility in groundwater (8, 33). Desulfovibrio desulfuricans G20 and Desfulovibrio vulgaris, neither of which can use U(VI) as a respiratory electron acceptor, have been shown to directly reduce U(VI) (19, 24), and the mechanism for U(VI) reduction has been addressed. A purified hydrogenase and periplasmic cytochrome c3 from cell extracts of D. vulgaris will reduce U(VI) to U(IV) with hydrogen as the electron donor (19), suggesting that cytochrome c3 of D. vulgaris may be directly involved in U(VI) reduction. When a cytochrome c3 mutant of D. desulfuricans G20 was generated, it would not reduce U(VI) with H2 as the electron donor (25); however, growth and U(VI) reduction occurred with lactate as the electron donor, although at lower rates than the wild type. Cytochrome c3 was also found to be bound to insoluble U(IV), providing further evidence that this protein may be involved in U(VI) reduction (24). Electron microscopic images showed that reduced U(IV) was not only present in the periplasm but also in the cytoplasm (28), indicating that the periplasmic cytochrome c3 may be only partially responsible for the in vivo U(VI) reduction process, with an additional pathway in the cytoplasm.In order to identify this additional mechanism, transposon insertion mutants were generated. This mutant library has also been used to identify genes involved in sediment fitness (10, 21) and syntrophic growth (16). In this study, the mutants were screened for loss of U(VI) resistance. A mutant was identified that was sensitive to U(VI) and would not grow with 2 mM U(VI) or reduce it in suspensions of washed cells. This was the only mutant identified that would not reduce U(VI) in both tests. The disrupted operon (named mre, for metal reduction) was characterized, and it is shown here that the mechanism for the U(VI) reduction process involves at least three genes, including thioredoxin, thioredoxin reductase, and an additional metal oxidoreductase. Some or all of these components are likely also responsible for Cr(VI) and As(V) reduction by this organism.  相似文献   

8.
The Cr(VI)-mediated free radical generation from cystein, penicillamine, hydrogen peroxide, and model lipid hydroperoxides was investigated utilizing the electron spin resonance (ESR) spin trapping technique. Incubation of Cr(VI) with cysteine (Cys) generated cysteinyl radical. Radical yield depended on the relative concentrations of Cr(VI) and Cys. The radical generation became detectable at a cysteine: Cr(VI) ration of about 5, reached its highest level at a ratio of 30, and declined thereafter. Cr(VI) or Cys alone did not generate a detectable amount of free radicals. Similar results were obtained with penicillamine. Incubation of Cr(VI), Cys or penicillamine adn H2O2 led to hydroxyl (·OH) radical generation, which was verified by quantitative competition experiments utilizing ethanol. The mechanism for ·OH radical generation is considered to be a Cr(VI)-mediated Fenton-like reaction. When model lipid hydroperoxides such as t-butylhydroperoxide and cumene hydroperoxide were used in place of H2O2, hydroperoxide-derived free radicals were produced. Since thiols, such as Cys, exist in cellular systems at relatively high concentrations, Cr(VI)-mediated free radical generation in the presence of thiols may participate in the mechanisms of Cr(VI)-induced toxicity and carcinogenesis.  相似文献   

9.
Chromium (VI) is toxic to microorganisms and can inhibit the biodegradation of organic pollutants in contaminated soils. We used microcosms amended with either glucose or protein (to drive bacterial community change) and Fe(III) (to stimulate iron-reducing bacteria) to study the effect of various concentrations of Cr(VI) on anaerobic bacterial communities. Microcosms were destructively sampled based on microbial activity (measured as evolution of CO2) and analyzed for the following: (i) dominant bacterial community by PCR-denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA gene; (ii) culturable Cr-resistant bacteria; and (iii) enrichment of iron-reducing bacteria of the Geobacteraceae family by real-time PCR. The addition of organic C stimulated the activities of anaerobic communities. Cr(VI) amendment resulted in lower rates of CO2 production in glucose microcosms and a slow mineralization phase in protein-amended microcosms. Glucose and protein amendments selected for different bacterial communities. This selection was modified by the addition of Cr(VI), since some DGGE bands were intensified and new bands appeared in Cr(VI)-amended microcosms. A second dose of Cr(VI), added after the onset of activity, had a strong inhibitory effect when higher levels of Cr were added, indicating that the developing Cr-resistant communities had a relatively low tolerance threshold. Most of the isolated Cr-resistant bacteria were closely related to previously studied Cr-resistant anaerobes, such as Pantoea, Pseudomonas, and Enterobacter species. Geobacteraceae were not enriched during the incubation. The studied Cr(VI)-contaminated soil contained a viable anaerobic bacterial community; however, Cr(VI) altered its composition, which could affect the soil biodegradation potential.  相似文献   

10.
Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI) to insoluble and relatively non-toxic Cr(III), bacterial bioremediation of Cr(VI) pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI) remediation. To identify novel Cr(VI) reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI) indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI) reductase (kcat/KM  = 1.1×105 M−1s−1 with NADH as cofactor). Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI) remediation.  相似文献   

11.
Soil and water contamination with chromium is an issue of recent concern in Thailand due to increases in industrial activity. Gynura pseudochina (L.) DC., a chromium tolerance plant, could be employed to address this problem via phytoremediation. To understand the tolerance mechanism, this study investigated the speciation and distribution of chromium accumulated in G. pseudochina (L.) DC. using AAS, XAFS, μ-XANES, μ-XRF imaging and EPR. The plants were separately treated with K2Cr2O7 and Cr2(SO4)3 in a hydroponic system. μ-XRF imaging clarified the distributions of Cr, Fe, Zn, Ca, Cl, K and S within the samples. In G. pseudochina (L.) DC. treated with Cr(VI) solution, the Cr was mainly distributed in the vascular bundle and periderm of the tuber, the stem xylem, the vein and the epidermis, including the trichome of the leaf tissues. This Cr distribution corresponded to those of Cu, Fe and Zn. In G. pseudochina (L.) DC. treated with Cr(III) solution, the Cr was distributed in the periderm of the tuber, the stem cortex, and the epidermis and parenchyma of the leaf tissues. μ-XANES and XAFS indicated that highly toxic Cr(VI) was reduced to the intermediate Cr(V) and accumulated as less toxic Cr(III), and EXAFS spectra showed that the reduced Cr(III) was bound to oxygen ligands. The coordination number (N) and the interatomic distance (R) to the first shell were approximately 3–4 (N) and 2 Å (R), respectively. EPR spectra of the plant samples treated with Cr(VI) revealed the presence of Cr(V) and Cr(III). Thus, Cr(III) and Cr(VI) were taken up into the vascular system and transported from the roots to the leaves. Cr(III) was distributed via the symplast system to the ground tissue and accumulated mainly in the stem cortex. Cr(VI) was transported to the xylem via the apoplast system, and the adsorption of Cr(VI) and its reduction to Cr(V) and Cr(III) occurred on oxygen ligands in the lignocellulosic structure of the xylem and vein.  相似文献   

12.
A bacterial isolate (G161) with high Cr(VI)-reducing capacity was isolated from Cr(VI)-contaminated soil and identified as Leucobacter sp. on the basis of 16S rRNA gene sequence analysis. The isolate was a Gram-positive, aerobic rod. The hexavalent chromate-reducing capability of the isolate was investigated under three conditions of oxygen stress. The isolate was found to reduce Cr(VI) under all conditions but performed most effectively during aerobic growth followed by facultative anaerobic incubation. Under these conditions, the isolate tolerated K2Cr2O7 concentrations up to 1,000 mg/l and completely reduced 400 mg/l K2Cr2O7 within 96 h. The strain reduced Cr(VI) over a wide range of pH (6.0–11.0) and temperatures (15–45 °C) with optimum performance at pH?8.0 and 35 °C. The presence of other metals, such as Ca2+, Co2+, Cu2+, Mn2+, Ni2+, and Zn2+, induced no effect or else played a stimulatory role on Cr(VI)-reduction activity of the strain. The strain was tested for Cr(VI) removal in wastewaters and proved capable of completely reducing the contained Cr(VI). This is the novel report of a bacterial growth and Cr(VI)-reduction process under sequential aerobic growth and facultative anaerobic conditions. The study suggested that the isolate possesses a distinct capability for Cr(VI) reduction which could be harnessed for the detoxification of chromate-contaminated wastewaters.  相似文献   

13.
Batch removal of chromium(VI) from aqueous solution by Turkish brown coals   总被引:1,自引:0,他引:1  
The ability of using low-rank Turkish brown coals (Ilgın: BC1, Beyşehir: BC2, and Ermenek: BC3) to remove Cr(VI) from aqueous solutions was studied as a function of contact time, solution pH, temperature, concentration of metal solutions and amount of adsorbent. Their sorption properties were compared with the activated carbon from Chemviron (AQ-30). Adsorption of Cr(VI) uptake is in all cases pH-dependent showing a maximum at equilibrium pH values between 2.0 and 3.2, depending on the biomaterial, that correspond to initial pH values of 2.3 units for BC1, 3.0 units for BC2 and 3.2 units for BC3 and AQ-30. Batch equilibrium tests showed that the Cr(VI) removal was fitted with Freundlich isotherm and the adsorption reached equilibrium in 80 min. It was proceeding effectively into a short acid pH interval (2.0–3.2) where processes of Cr(VI) sorption are maximized. It was observed that the maximum adsorption capacity of 11.2 mM of Cr(VI)/g for Ilgın (BC1), 12.4 mM of Cr(VI)/g for Beyşehir (BC2), 7.4 mM of Cr(VI)/g for Ermenek (BC3) and 6.8 mM of Cr(VI)/g for activated carbon (AQ-30) was achieved at pH of 3.0. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of Cr(VI) ion. The Cr(VI) sorption capacities of Beyşehir and Ilgın brown coals were the same. Ermenek brown coals and activated carbon (AQ-30) showed a similar sorption capacity.  相似文献   

14.
Previous in vitro experiments with Desulfovibrio vulgaris strain Hildenborough demonstrated that extracts containing hydrogenase and cytochrome c3 could reduce uranium(VI) to uranium(IV) with hydrogen as the electron donor. To test the involvement of these proteins in vivo, a cytochrome c3 mutant of D. desulfuricans strain G20 was assayed and found to be able to reduce U(VI) with lactate or pyruvate as the electron donor at rates about one-half of those of the wild type. With electrons from hydrogen, the rate was more severely impaired. Cytochrome c3 appears to be a part of the in vivo electron pathway to U(VI), but additional pathways from organic donors can apparently bypass this protein.  相似文献   

15.
In the present investigation, five novel Cr(VI) reducing bacteria were isolated from tannery effluents and solid wastes and identified as Kosakonia cowanii MKPF2, Klebsiella pneumonia MKPF5, Acinetobacter gerneri MKPF7, Klebsiella variicola MKPF8 and Serratia marcescens MKPF12 by 16S rDNA gene sequence analysis. The maximum tolerance concentration of Cr(VI) as K2Cr2O7 of the bacterial isolates was varying up to 2000 mg/L. Among the investigated bacterial isolates, A. gerneri MKPF7 was best in terms of reduction rate. The optimum temperatures for growth and Cr(VI) reduction by the bacterial isolates were 35 and 40 °C, respectively except A. gerneri MKPF7 which grew and reduced Cr(VI) optimally at 40 °C. The optimum pH for growth and Cr(VI) reduction by K. cowanii MKPF2, A. gerneri MKPF7 and S. marcescens MKPF12 was 7.0 whereas the optimum pH for growth and Cr(VI) reduction by K. pneumoniae MKPF5 and K. variicola MKPF8 were 7.0, 8.0 and 6.0, 7.0, respectively. All the bacterial isolates showed maximum tolerance against Ni2+ and Zn2+ whereas minimum tolerance was observed against Hg2+ and Cd2+. The bacteria isolated in the present study thus can be used as eco-friendly biological expedients for the remediation and detoxification of Cr(VI) from the contaminated environments.  相似文献   

16.
17.
The aim of this study was to investigate the effect of Cr(VI) on the plant growth-promoting traits of potential rhizobacterial strain isolated from Phaseolus vulgaris rhizosphere. A total of 36 rhizobacterial strains were recovered from the rhizosphere of P. vulgaris. Among these strains, the strain AR8 was specifically selected due to the highest resistance against heavy metals and the maximum production of plant growth-promoting substances. The rhizobacterial strain AR8 was identified as Cellulosimicrobium funkei (KM263188) following 16S rDNA gene sequencing. Strain AR8 solubilized phosphate and produced indole-3-acetic acid (32.57 µg/ml), exopolysaccharide (17.23 µg/ml), ammonia (54.16 µg/ml), catalase, biosurfactant, protease, amylase, and lipase. Under Cr(VI) stress, Cr(VI) concentration-dependent progressive decline in all plant growth-promoting traits of the C. funkei exposed was observed except for exopolysaccharide production, which consistently increased with increasing concentrations of Cr(VI). The root elongation assay resulted that the application of C. funkei strain AR8 significantly increased root length of test crops both in the presence and absence of Cr(VI) compared to uninoculated Cr(VI) treated plants. Moreover, AR8 generated a large number of colonies in diverse agricultural crops. Due to these intrinsic abilities, strain AR8 could be utilized for growth promotion as well as for the remediation of chromium in chromium-contaminated soil.  相似文献   

18.
Chromium(Cr) precipitate synthesized by Cr(VI)-reducing bacterium Flexivirga alba ST13T was examined using transmission electron microscopy (TEM) and the energy dispersive X-ray (EDX). The strain showed altered-morphology after exposing to Cr(VI) in minimal medium. The resultant precipitate included bacterial pellet and needle-like structure which was similar to the structure made from Cr(OH)3 precipitate. Cr was observed in bacterial cells using TEM–EDX. Bacteria with high electron density showed the precipitation of Ca in addition to Cr. The isolated strain would be useful to precipitate Cr from Cr(VI)-containing environment.  相似文献   

19.
Chromium (Cr) released from industrial units such as tanneries, textile and electroplating industries is detrimental to the surrounding ecosystems and human health. The focus of the present study was to check the Cr(VI) removal efficiency by marine-derived fungi from liquid broth. Amongst the three Cr(VI) tolerant isolates, #NIOSN-SK56-S19 (Aspergillus sydowii) showed Cr-removal efficiency of 0.01 mg Cr mg?1 biomass resulting in 26% abatement of total Cr with just 2.8 mg of biomass produced during the growth in 300 ppm Cr(VI). Scanning Electron Microscopy revealed aggregation of mycelial biomass with exopolysaccharide, while Electron Dispersive Spectroscopy showed the presence of Cr2O3 inside the biomass indicating presence of active Cr(VI) removal mechanisms. This was further supported when the Cr(VI) removal was monitored using DPC (1,5-diphenylcarbazide) method. The results of this study point to the potential of marine-derived fungal isolates for Cr(VI) removal.  相似文献   

20.
Toxic heavy metals constitute a worldwide environmental pollution problem. Bioremediation technologies represent efficient alternatives to the classic cleaning-up of contaminated soil and ground water. Most toxic heavy metals such as chromium are less soluble and toxic when reduced than when oxidized. Sulfate-reducing bacteria (SRB) are able to reduce heavy metals by a chemical reduction via the production of H2S and by a direct enzymatic process involving hydrogenases and c3 cytochromes. We have previously reported the effects of chromate [Cr(VI)] on SRB bioenergetic metabolism and the molecular mechanism of the metal reduction by polyhemic cytochromes. In the current work, we pinpoint the bacteria–metal interactions using Desulfovibrio vulgaris strain Hildenborough as a model. The bacteria were grown in the presence of high Cr(VI) concentration, where they accumulated precipitates of a reduced form of chromium, trivalent chromium [Cr(III)], on their cell surfaces. Moreover, the inner and outer membranes exhibited precipitates that shared the spectroscopic signature of trivalent chromium. This subcellular localization is consistent with enzymatic metal reduction by cytochromes and hydrogenases. Regarding environmental significance, our findings point out the Cr(VI) immobilization mechanisms of SRB; suggesting that SRB are highly important in metal biogeochemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号