首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Six near-term ewes were instrumented to measure regional blood flows in the maternal and fetal subthoracic structures and allowed to recover for 5 days. Control blood flows were measured and 10(-3) molar forskolin was infused in the fetal hindlimb vein at 1 ml/min. After 10 min of infusion, maternal and fetal regional blood flows were measured. The fetal blood pressure was 44 +/- 3 mmHg in the control state and 40 +/- 4 mmHg after forskolin, P less than 0.056. The fetal renal vascular resistance changed from 24.4 +/- 2.4 to 17.5 +/- 1.7 mmHg.ml-1.min.g, P less than 0.005. The placenta had a control resistance of 27.7 +/- 5.0 and 25.6 +/- 5.1 mmHg.ml-1.min.g after forskolin, P less than 0.05. The placental membranes showed vasodilation: control resistance was 261 +/- 49 and 168 +/- 39 mmHg.ml-1.min.g after forskolin, P less than 0.02. The generalized vasodilation of the fetal circulation was paralleled in the maternal circulation. Forskolin, a lipid soluble diterpene, apparently had a placental clearance close to the theoretical maximum. Vasodilation was seen in the maternal renal, placental and uterine vasculatures. Maternal blood pressure was unchanged. Maternal placental vascular resistance was 47.4 +/- 3.0 mmHg.ml-1.min.g in the control state and 40.6 +/- 3.3 mmHg.ml-1.min.g after forskolin, P less than 0.02. Forskolin is a vasodilator in both the fetal and maternal circulations. The maintenance of a relatively normal blood pressure in the face of regional vasodilation shows that forskolin may have a positive inotropic effect on the fetal heart. These results indicate that neither the fetal nor the maternal ovine placental vasculature is maximally dilated in the control state.  相似文献   

2.
Forskolin is a direct stimulant of adenylate cyclase and increases cAMP production. It also acts as a vasodilator. To study the effect of forskolin infusion on rabbit maternal vascular resistance, we instrumented 11 pregnant rabbits with catheters in the left ventricle, jugular vein, and left and right femoral arteries. After a 2-day recovery period, one of two protocols was performed. In the control period of the first protocol (N = 6), 50% ethanol in saline was infused at 0.103 ml.min-1 for 5-min. Forskolin (10(-3) M) in 50% ethanol was then infused for 5 min at 0.103 ml.min-1. After each infusion period, regional blood flows were measured by microsphere injection. Data are expressed as means +/- SEM. Blood pressure decreased from 81 +/- 3 to 79 +/- 3 mm Hg, (P less than 0.05, N = 10) during forskolin infusion. Total placental resistance fell from 180.3 +/- 10.7 to 133.8 +/- 12.0 mm Hg.min.ml-1 per gram, P less than 0.05. Cerebral, coronary, and renal vascular resistance fell significantly. During the second protocol (N = 5), angiotensin II (0.05 microgram.min-1) was infused for 5 min followed by the addition of forskolin (10(-3) M at 0.103 ml.min-1) to the infusate. Regional blood flows, vascular resistances and blood pressures were determined. Blood pressure fell from 99 +/- 6 to 92 +/- 7 mm Hg (P less than 0.05) when forskolin was added to the infusate. Placental resistance fell from 202.5 +/- 21.6 to 158.0 +/- 29.0 mm Hg.min.ml-1 per gram (P less than 0.05). While cerebral vascular resistance did not change, renal and coronary resistances fell in response to forskolin. This study demonstrates that forskolin is able to dilate rabbit placental vessels alone and in the presence of the vasoconstrictive agent angiotensin II.  相似文献   

3.
We have tested the hypothesis that the maternal placental refractoriness to prostaglandin I2 in the sheep is a species specific response by observing the response of the maternal placental vasculature of near-term rabbits to exogenous prostaglandin I2 infused at 10 micrograms/min for 5 min. Regional blood flows were measured with radioactive microspheres. Observations were made during the infusion of vehicle (control) and after 5 min of prostaglandin I2 infusion. The experiment was then repeated using microspheres of a different size. Fifteen and 25 mu spheres were used. If the same answer were obtained with both sphere sizes we would be confident that the result was not an artifact of shunted spheres. Seven rabbits were used in this study. The control (15 micron) blood pressure was 68 +/- 4 mmHg and prostaglandin I2 resulted in a depression of the pressure to 41 +/- 3 mmHg (P less than 0.001). The renal vascular resistance was 19.2 +/- 2.1 mmHg.ml-1.min. g in the control (15 micron) condition and 9.7 +/- 1.0 mmHg.ml-1.min.g after prostaglandin I2 (P less than 0.002). Prostaglandin I2 acted as a vasodilator in this organ as would be expected. The nonplacental uterine tissue had a control (15 micron) resistance of 624 +/- 125 and 612 +/- 184 mmHg.ml-1.min.g after prostaglandin I2 (NS). Using 25 mu spheres the results were 383 +/- 28 and 341 +/- 44 mmHg.ml-1.min.g respectively (NS). Shunting was observed in this organ but the direction of the responses to prostaglandin I2 was not affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In eight anaesthesized fetal sheep (gestational age 112-127 days; term 147 days), embolization of the umbilical placental circulation was performed in order to evaluate the response of the umbilical artery pulsatility index to an exclusive increase in umbilical vascular resistance. Measurements were performed using a 20 MHz pulsed Doppler transducer and an electromagnetic flow meter mounted on the common umbilical artery and catheters at the aortic trifurcation and in one of the umbilical veins. Umbilical vascular resistance was calculated according the Poiseuille equation as the ratio of aortic to umbilical venous pressure gradient and umbilical blood flow. Microspheres were administered at 15-min intervals through a catheter in one of the cotyledonary arteries, until fetal heart rate had decreased beneath 100 beats/min or had become arrhythmic. The period of examination per fetus varied between 60 and 120 min, after which cardiac decompensation occurred. During this period, umbilical perfusion pressure increased from 20.3 +/- 4.9 to 28.1 +/- 4.7 mmHg (SD; P less than 0.01), umbilical blood flow (ml/min) decreased from 342 +/- 127 to 115 +/- 99 mmHg (SD; P less than 0.01), umbilical vascular resistance increased from 0.065 +/- 0.022 to 0.342 +/- 0.150 mmHg.min/ml (P less than 0.01) and common umbilical artery pulsatility index increased from 0.97 +/- 0.23 to 4.03 +/- 1.69 (P less than 0.01). Fetal heart rate did not change significantly (168 +/- 33 prior to cardiac decompensation versus 178 +/- 19 beats/min at baseline condition). The linear correlation between common umbilical artery pulsatility index and umbilical vascular resistance varied between 0.83 and 0.99 and the average correlation was 0.93 (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The response of the placental circulations to prostaglandin I2 (maternal dose 20 microgram/kg, fetal dose 180 microgram/kg) was observed in 10 near-term sheep with chronically implanted vascular catheters. The blood flows before and 90 s after the injection of prostaglandin I2 were measured using radioactive microspheres. The injection of prostaglandin I2 to the mother decreased th blood pressure from 109 +/- 4 to 69 +/- 5 mmHg (P < 0.001) and increased the vascular resistance of the maternal cotyledons from 0.166 +/- 0.018 to 0.209 +/- 0.02 mmHg/(ml/min) (P < 0.001). The vascular bed of the non-cotyledonary uterus vasodilated as the resistance fell from 0.705 +/- 0.02 to 0.266 +/- 0.02 mmHg/(ml/min). (P < 0.001). Prostaglandin I2 caused the fetal arteriovenous pressure to fall from 37.6 +/- 1.35 to 26.0 +/- 1.6 mmHg. There was no significant change in the vascular resistance of the fetal cotyledons. We observed vasodilation in the fetal membranes as vascular resistance fell from 1.06 +/- 0.14 to 0.75 +/- 0.10 mmHg/(ml/min) (P < 0.001). The infusion of prostaglandin I2 significantly depressed the response of the placenta and uterus to norepinephrine. We have not proved that prostaglandin I2 plays a direct role in maintaining placental vascular homeostasis but it may modulate the response of this organ to exogenous vasoactive agents.  相似文献   

6.
We have previously shown that FPL 55712, a specific leukotriene receptor antagonist, potentiates estrogen induced uterine hyperemia in nonpregnant rabbits. We therefore chose to investigate the vascular responses of pregnant rabbits to leukotriene blockade. Nine unanesthetized animals carrying 46 viable fetuses were used in this study. Regional blood flows were measured by the radioactive microsphere technique. In 5 rabbits control blood flows were measured after vehicle administration and FPL 55712, 1 mg/kg bolus, followed by infusion of 100 micrograms/kg/min was given via the jugular vein. Regional blood flows were measured again after 10 minutes of infusion. The procedural order was reversed in the remaining 4 animals. Resistance was calculated as mean arterial pressure divided by total flow to an organ. FPL 55712 decreased the blood pressure from 83 +/- 2 to 76 +/- 3 mmHg (P less than .001). Uterine resistance was not significantly changed (387 +/- 44 to 362 +/- 42 mmHg X ml-1 X min X gm), but renal resistance fell from 18.5 +/- 1.1 to 15.1 +/- 1.2 mmHg X ml-1 X min X gm (P less than .01). FPL 55712 induced maternal placental vasodilatation with resistance decreasing from 291 +/- 33 to 261 +/- 31 mmHg X ml-1 X min X gm (P less than .04). Vehicle administration did not cause dilation in any vascular bed. FPL 55712 appears to be a placental vasodilator whose action is most likely due to receptor blockade of the vasoconstrictive endogenous leukotrienes.  相似文献   

7.
Atrial natriuretic factor (ANF) is a potent endogenous vaso-dilator and diuretic peptide of uncertain physiologic relevance. In this study, the effects of ANF on normal and angiotensin II constricted placental, uterine and renal vessels were examined in pregnant sheep. Ewes were equipped with catheters to monitor vascular pressures, infuse drugs and measure blood flow by the microsphere technique. An electromagnetic flow sensor was placed around the middle uterine artery and electromyogram electrodes were attached to the uterus. ANF was administered into a branch of the uterine artery to minimize its systemic effects. The experiment included two protocols. First, blood flows and pressures were measured after a 5-min period of saline infusion into the uterine artery. These measurements were repeated at the end of a 5-min infusion of ANF (6.25 micrograms.min-1) into the uterine artery. During the second protocol, angiotensin II (AII) was infused via the jugular vein at 5 micrograms.min-1 for 10 min and ANF (6.25 micrograms.min-1) was infused through the uterine artery during the second half of the AII infusion. In the absence of AII, ANF lowered blood pressure from 97 +/- 6 to 90 +/- 6 mmHg (P less than 0.05); and placental resistance from 67.8 +/- 11.3 to 57.3 +/- 10.4 mmHg.min.ml-1 per g (P less than 0.01). Uterine resistance did not change.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We have tested the hypotheses that systemic responses to the infusion of prostaglandin I2 may have masked the ability of this substance to dilate the maternal placenta and that the inability of prostaglandin I2 to dilate the maternal near-term placenta may be a function of placental age. Regional blood flows were measured with radioactive microspheres. In 8 near-term sheep the control flows were measured and angiotensin II (AII) infusion was begun at 5 micrograms/min and continued for the duration of the experiments. At t = 15 min, regional blood flows were again measured. Prostaglandin I2 was then infused via a retrograde uterine arterial catheter at 10 micrograms/min. At t = 30 min, the flows were again measured. At this time the infusion of prostaglandin I2 was stopped and at t = 45 min the blood flows were measured for the last time. AII increased the resistance of all tissues examined. The blood pressure increased with AII and did not change thereafter. The non-placental uterine tissue served by the retrograde catheter dilated with prostaglandin I2. The placental tissue had an initial resistance of 59 +/- 6 mmHg.ml-1.min.g which increased to 98 +/- 22 mmHg.ml-1.min.g with the infusion of AII (P less than 0.05). This resistance remained constant at 82 +/- 19 mmHg.ml-1.min.g with the administration of prostaglandin I2 and did not change after prostaglandin I2 was removed. The local application of prostaglandin I2 in the presence of AII induced vasoconstriction caused vasodilatation in the nonplacental vessels but could not change the AII induced constriction in the placental vasculature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have reported in a previous study that adenosine infusion causes fetal placental vascular resistance to increase after 2 min. To determine whether this action is followed by a more prolonged vasodilation, we studied 7 mature fetal lambs. At surgery, catheters were inserted into the fetal hindlimb arteries and veins. After a five day recovery period, control blood flow measurements were made by radiolabeled microsphere technique immediately after an infusion of 0.9% NaCl, (vehicle, 1.03 ml.min-1) into a fetal vein for 2 min. Within 5 min of the control blood flow measurement, adenosine (10 mg/min) was infused for 2 min. Blood flow measurements were repeated 5, 10, 15, 20 and 30 min after the end of the infusion period. Fetal arterial blood pressure dropped from 50 +/- 1 to 34 +/- 5 mmHg immediately after the adenosine infusion and returned to the control value within 5 min after the infusion. No further blood pressure response was detected. However, placental vascular resistance fell from 0.334 +/- 0.040 to 0.269 +/- 0.027 (P less than 0.05) at the 15 min measurement, remained low through the 20 min measurement (P less than 0.001) and was not different from control levels 30 min after the adenosine infusion. We conclude that the fetal placental vasculature responds to systemic adenosine infusion in a biphasic manner. The immediate reaction to adenosine is a transient vasoconstriction in the fetal placental vasculature followed by vasodilation 15 to 20 min after the initial exposure to adenosine.  相似文献   

10.
Serotonin, administered on the day after the initiation of implantation, promptly terminates pregnancy in the rat. Consequently, the effects of serotonin on serum progesterone levels, implantation site blood flow, and intrauterine oxygen tension were determined to see whether the disruption of implantation is related to altered corpus luteum and/or uterine vascular function. Animals received a subcutaneous injection of physiological saline (C: control) or serotonin (S: 20 mg/kg) on Day 5 of pregnancy. Serotonin did not alter the number of blastocysts implanting (C: 6.02 +/- 0.52 vs. S: 6.29 +/- 0.46, sites/cornu) but did cause subsequent implantation site resorption (C: 0.08 +/- 0.07 vs. S: 5.46 +/- 0.44/cornu; P less than 0.001). Progesterone levels in serotonin-treated rats did not differ from those of controls at 6 h postinjection or on Days 6 through 10 of pregnancy. Implantation site blood flow was reduced at 30 min (C: 0.76 +/- 0.12 vs. S: 0.25 +/- 0.02 ml/min per g; P less than 0.01) and remained suppressed at 2 h after serotonin injection. A prompt and sustained reduction in intrauterine oxygen tension (C: 48.9 +/- 3.7 vs. S: 25.9 +/- 4.5 mmHg; P less than 0.005; 120 min) accompanied the reduced uterine perfusion. Thus, disruption of implantation is not a result of impaired corpus luteum function but is associated with marked and protracted reductions in uterine blood flow and intraluminal oxygen availability.  相似文献   

11.
This study was designed to test the hypothesis that the pulsatility index (PI) of the umbilical artery flow velocity waveform varies as a function of placental vascular resistance. Placental vascular resistance was raised by a one-minute occlusion of the maternal inferior vena cava. Occlusion of the maternal inferior vena cava resulted in a decrease in fetal heart rate from 183 +/- 7.8 beats/min to 142 +/- 8.6 beats/min at the end of occlusion (P less than 0.05). Placental vascular resistance increased from 0.113 +/- 0.021 mmHg.ml-1.min during control to 0.151 +/- 0.033 mmHg.ml-1.min (P less than 0.05) during occlusion. The pulsatility index increased from 1.05 +/- 0.05 to 1.85 +/- 0.4 (P less than 0.05) during occlusion. After parasympathetic blockade with atropine fetal heart rate did not change during occlusion. Placental vascular resistance increased from 0.091 +/- 0.014 before to 0.121 +/- 0.021 mmHg.ml-1.min during occlusion (P less than 0.05). The pulsatility index increased from 0.98 +/- 0.1 before to 1.12 +/- 0.12 during occlusion (P less than 0.05). These results support the hypothesis that, in the fetal sheep, placental vascular resistance is one of the determinants of the pulsatility index of the umbilical artery.  相似文献   

12.
The time related hemodynamic responses to forskolin-elicited increases in cAMP were studied in the near-term fetus. Catheters and electrodes were inserted into 6 fetal sheep to measure arterial, venous and thoracic pressures, electrocorticogram, and electrocardiogram. At gestational day 134, experiments were performed to determine the effect of forskolin infusion (400 micrograms/ml at 1.03 ml/min for 5 min) on fetal blood pressure, coronary and cerebral blood flow and resistance. Blood flow measurements were made using 15 microns microspheres labelled with radioactive isotopes during the control period and at 0, 5, 10, 15, and 45 min after forskolin infusion. Forskolin infusion was always initiated during a high-voltage electrocortical epoch and was given twice in each animal. In each case, forskolin caused electrocortical activity to change from high-voltage state to an intermediate voltage state. Blood pressure fell significantly by the end of the infusion period and returned to control levels 10 min later. Fetal heart rate and coronary blood flow were immediately elevated by forskolin (P less than 0.01) whereas cerebral blood flow did not increase until 5 min later (P less than 0.01). Cerebral blood flow was still elevated (P less than 0.05) 45 min after the end of forskolin infusion, whereas coronary blood flow had returned to control levels. Both cerebral and coronary vascular resistance fell significantly in response to forskolin infusion (P less than 0.01). This effect lasted at least 15 min and had returned to control levels 45 min after forskolin had been terminated.  相似文献   

13.
The effect of labour on cardiac output and uterine blood flow was measured in pregnant ewes at a mean gestation of 124 days using radioactive microspheres labelled with 169Yb and 85Sr. Labour was induced by a continuous infusion of ACTH into the foetal circulation. Cardiac ouput measured before ACTH infusion in seven ewes was 5234 +/- 175-9 ml./min (mean +/- S.E.) and total uterine blood flow was 732 +/- 57-9 ml./min (mean +/- S.E.). Measurements during labour in six ewes showed a significant increase in cardiac output to 6175 +/- 149-6 ml./min (P less than 0-005) but no significant change in uterine blood flow. However, the partition of blood flow was altered; thus myometrial flow increased by 67% from 114 +/- 15-4 ml./min to 190 +/- 13-2 ml./min (P less than 0-005) while placental blood flow decreased, although not significantly, from 618 +/- 55-9 ml./min to 575 +/- 40-7 ml./min. Similar changes were observed in one ewe in spontaneous labour at term and in another ewe receiving an infusion of 4 mg oestradiol 17beta over a 24 hr period. It is concluded that labour is not associated with any major alternation in total uterine blood flow although myometrial blood flow is increased. It is not known whether this is due to the rise in circulating oestrogens which occurs prior to parturition in the ewe, or to other factors such as the work of uterine muscle during labour.  相似文献   

14.
Preeclampsia (PE) is associated with increased total peripheral resistance (TPR), reduced cardiac output (CO), and diminished uterine and placental blood flow. We have developed an animal model that employs chronic reductions in uterine perfusion pressure (RUPP) in pregnant rats to generate a "preeclamptic-like" state during late gestation that is characterized by hypertension, proteinuria, and endothelial dysfunction. Although this animal model has many characteristics of human PE, the systemic hemodynamic and regional changes in blood flow that occur in response to chronic RUPP remains unknown. Therefore, we hypothesized that RUPP would decrease uteroplacental blood flow and CO, and increase TPR. Mean arterial pressure (MAP), CO, cardiac index (CI), TPR, and regional blood flow to various tissues were measured using radiolabeled microspheres in the following two groups of conscious rats: normal pregnant rats (NP; n = 8) and RUPP rats (n = 8). MAP was increased (132 +/- 4 vs. 99 +/- 3 mmHg) in the RUPP rats compared with the NP dams. The hypertension in RUPP rats was associated with increased TPR (2.15 +/- 0.02 vs. 0.98 +/- 0.08 mmHg x ml(-1) x min(-1)) and decreased CI (246 +/- 20 vs. 348 +/- 19 ml x min(-1) x kg(-1), P < 0.002) when contrasted with NP dams. Furthermore, uterine (0.16 +/- 0.03 vs. 0.38 +/- 0.09 ml x min(-1) x g tissue(-1)) and placental blood flow (0.30 +/- 0.08 vs. 0.70 +/- 0.10 ml x min(-1) x g tissue(-1)) were decreased in RUPP compared with the NP dams. These data demonstrate that the RUPP model of pregnancy-induced hypertension has systemic hemodynamic and regional blood flow alterations that are strikingly similar to those observed in women with PE.  相似文献   

15.
D W Busija 《Prostaglandins》1985,30(2):229-239
The role of prostanoids in regulation of the renal circulation during hypercapnia was examined in unanesthetized rabbits. Renal blood flow (RBF) was determined with 15 micron radioactive microspheres during normocapnia (PaCO2 congruent to 30 mmHg) and hypercapnia (PaCO2 congruent to 60 mmHg), before and after intravenous administration of indomethacin (10 mg/kg) or vehicle (n = 6 for each group). Arterial blood pressure was not different among the 4 conditions in each group. RBF was 438 +/- 61 and 326 +/- 69 (P less than 0.05) ml/min per 100 g during normocapnia and hypercapnia, respectively, before indomethacin, and following administration of indomethacin, RBF was 426 +/- 59 ml/min per 100 g during normocapnia and 295 +/- 60 ml/min per 100 g during hypercapnia (P less than 0.05). In the vehicle group, RBF was 409 +/- 74 and 226 +/- 45 (P less than 0.05) ml/min per 100 g during normocapnia and hypercapnia, respectively, before vehicle; and following administration of vehicle, RBF was 371 +/- 46 ml/min per 100 g during normocapnia and 219 +/- 50 (P less than 0.05) ml/min per 100 g during hypercapnia. RBF during normocapnia was not affected by administration of indomethacin or vehicle. The successive responses to hypercapnia were not different within the indomethacin and vehicle groups, and the second responses to hypercapnia were not different between the two groups. These findings suggest that prostanoids do not contribute significantly to regulation of the renal circulation during normocapnia and hypercapnia in unanesthetized rabbits.  相似文献   

16.
Our objective was to investigate the potential role of selective endothelial nitric oxide (NO) synthase (eNOS) overexpression in coronary blood vessels in the control of myocardial oxygen consumption (MVO2). Transgenic (Tg) eNOS-overexpressing mice (eNOS Tg) (n=22) and wild-type (WT) mice (n=24) were studied. Western blot analysis indicated greater than sixfold increase of eNOS in cardiac tissue. Echocardiography in awake mice indicated no difference in cardiac function between WT and eNOS Tg; however, systolic pressure in eNOS Tg mice decreased significantly (126 +/- 2.3 to 109 +/- 2.3 mmHg; P <0.05), whereas heart rate (HR) was not different. Total peripheral resistance (TPR) was also decreased (9.8 +/- 0.8 to 7.6 +/- 0.4 4 mmHg.ml(-1).min; P <0.05) in eNOS Tg. Furthermore, female eNOS Tg mice showed even lower TPR (7.2 +/- 0.4 mmHg.ml(-1).min) compared with male eNOS mice (8.6 +/- 0.5, mmHg.ml.min(-1); P <0.05). Left ventricular slices were isolated from WT and eNOS Tg mice. With the use of a Clark-type oxygen electrode in an airtight bath, MVO2 was determined as the percent decrease during increasing doses (10(-10) to 10(-4) mol/l) of bradykinin (BK), carbachol (CCh), forskolin (10(-12) to 10(-6) mol/l), or S-nitroso-N-acetyl penicillamine (SNAP; 10(-7) to 10(-4) mol/l). Baseline MVO2 was not different between WT (181 +/- 13 nmol.g(-1).min(-1)) and eNOS Tg (188 +/- 14 nmol.g(-1).min(-1)). BK decreased MVO2 (10(-4) mol/l) in WT by 17% +/- 1.1 and 33% +/- 2.7 in eNOS Tg (P < 0.05). CCh also decreased MVO2, 10(-4) mol/l, in WT by 20% +/- 1.7 and 31% +/- 2.0 in eNOS Tg (P <0.05). Forskolin (10(-6) mol/l) or SNAP (10(-4) mol/l) also decreased MVO2 in WT by 24% +/- 2.8 and 36% +/- 1.8 versus eNOS 31% +/- 1.8 and 37% +/- 3.5, respectively. N-nitro-L-arginine methyl ester (10(-3) mol/l) inhibited the MVO2 reduction to BK, CCh, and forskolin by a similar degree (P <0.05), but not to SNAP. Thus selective overexpression of eNOS in cardiac blood vessels in mice enhances the control of MVO2 by eNOS-derived NO.  相似文献   

17.
N W Bruce 《Teratology》1977,16(3):327-331
The uterine artery of one horn of 13 rats was ligated on day 18 of gestation; the remaining horn was used as a control. The effect, four days later, on blood flow to the reproductive tract, was measured with radioactive microspheres and compared to the effect on fetal and placental weights. Fetal survival in the ligated horns, 41 percent, was significantly lower (P less than 0.05) than that in the control horns, 98 percent. Fetal and placental weights of the survivors in the ligated horns, 3.159 +/- 0.133 g (SE) and 450 +/- 18 mg respectively, were similarly lower than those in the control horns, 3.814 +/- 0.111 g and 529 +/- 27 mg respectively. Maternal placental blood flow closely reflected the weight of tissue being supplied and was similar in the ligated and control horns, 129 +/- 21 and 130 +/- 18 ml.min(-1). 100g(-1), respectively. Myometrial blood flow was again similar in the ligated and control horns, 34 +/- 5 and 37 +/- 4 ml.min(-1). 100 g(-1), respectively, and in the ovarian, middle and cervical sections of each horn. These results are compatible with the view that ligation causes only a temporary reduction in uterine blood flow which permanently checks placental and fetal, or placental thus fetal, growth. Blood flow then returns to normal levels compatible with the reduced weights of tissues being supplied.  相似文献   

18.
It has been reported that both sodium and chloride ions must be ingested to induce the elevated blood pressure of deoxycorticosterone acetate (DOCA)-salt-sensitive hypertension. This study was designed to determine the separate roles of the sodium and chloride ions in the altered hemodynamics underlying the high blood pressure. DOCA pellets (75 mg) were implanted in uninephrectomized rats and the animals were then fed one of four diets: (i) high sodium chloride, (ii) high sodium-low chloride, (iii) high chloride-low sodium, or (iv) low sodium chloride. Blood pressures were measured weekly by tail-cuff plethysmography for 5 weeks and the animals were then subjected to a terminal experiment to measure cardiac output by thermodilution technique, renal blood flow by electromagnetic flow probe, and direct arterial pressure. Blood pressure in the DOCA-high NaCl group was significantly greater (P less than 0.05) compared with that of the DOCA-low NaCl group (160 +/- 3 mm Hg vs 124 +/- 2 mm Hg, respectively) at 5 weeks after treatment; all other groups were not significantly different from the DOCA-low NaCl group. Cardiac output was significantly greater in DOCA-treated rats consuming diets high in sodium (44 +/- 2 ml/min/100 g) or sodium chloride (40 +/- 2 ml/min/100 g) compared with animals consuming low sodium chloride (31 +/- 2 ml/min/100 g; P less than 0.01 for each comparison). Direct intraarterial blood pressure and renal blood flow were used to calculate renal vascular resistance. Renal vascular resistance was increased in those DOCA-treated rats consuming diets high in chloride (42 +/- 3 mm Hg/ml/min/100 g) and high sodium chloride (54 +/- 3 mm Hg/ml/min/100 g) compared with rats consuming low sodium chloride (30 +/- 3 mm Hg/ml/min/100 g; P less than 0.01 for each). It appears that elevations in cardiac output are associated with increased dietary sodium and act in synergy with the elevations in renal vascular resistance associated with increased dietary chloride. Increases in both cardiac output and renal vascular resistance are involved in the maintenance of elevated blood pressure in the DOCA-salt-sensitive model of hypertension.  相似文献   

19.
The purpose of this study was to determine the systemic hemodynamic mechanism(s) underlying the pressor response to nonexertional heat stress in the unrestrained conscious rat. After a 60-min control period [ambient temperature (Ta) 24 degrees C], male Sprague-Dawley rats (260-340 g) were exposed to a Ta of 42 degrees C until a colonic temperature (Tc) of 41 degrees C was attained. As Tc rose from control levels (38.1 +/- 0.1 degrees C) to 41 degrees C, mean arterial blood pressure (carotid artery catheter, n = 33) increased from 124 +/- 2 to 151 +/- 2 mmHg (P less than 0.05). During this period, heart rate increased (395 +/- 5 to 430 +/- 6 beats/min, P less than 0.05) and stroke volume remained unchanged. As a result, ascending aorta blood flow velocity (Doppler flow probe, n = 8), used as an index of cardiac output, did not change from control levels during heating, but there was a progressive Tc-dependent increase in systemic vascular resistance (+30% at end heating, P less than 0.05). This systemic vasoconstrictor response was associated with decreases in blood flow (-31 +/- 9 and -21 +/- 5%) and increases in vascular resistance (94 +/- 16 and 53 +/- 8%; all P less than 0.05) in the superior mesenteric and renal arteries (n = 8 each) and increases in plasma norepinephrine (303 +/- 37 to 1,237 +/- 262 pg/ml) and epinephrine (148 +/- 28 to 708 +/- 145 pg/ml) concentrations (n = 12, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have investigated the effect of positive end-expiratory pressure ventilation (PEEP) on regional splanchnic vascular capacitance. In 12 anesthetized dogs hepatic and splenic blood volumes were assessed by sonomicrometry. Vascular pressure-diameter curves were defined by obstructing hepatic outflow. With 10 and 15 cmH2O PEEP portal venous pressure increased 3.1 +/- 0.3 and 5.1 +/- 0.4 mmHg (P less than 0.001) while hepatic venous pressure increased 4.9 +/- 0.4 and 7.3 +/- 0.4 mmHg (P less than 0.001), respectively. Hepatic blood volume increased (P less than 0.01) 3.8 +/- 0.9 and 6.3 +/- 1.4 ml/kg body wt while splenic volume decreased (P less than 0.01) 0.8 +/- 0.2 and 1.3 +/- 0.2 ml/kg body wt. The changes were similar with closed abdomen. The slope of the hepatic vascular pressure-diameter curves decreased with PEEP (P less than 0.01), possibly reflecting reduced vascular compliance. There was an increase (P less than 0.01) in unstressed hepatic vascular volume. The slope of the splenic pressure-diameter curves was unchanged, but there was a significant (P less than 0.05) decrease in unstressed diameter during PEEP. In conclusion, hepatic blood volume increased during PEEP. This was mainly a reflection of passive distension due to elevated venous pressures. The spleen expelled blood and thus prevented a further reduction in central blood volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号