首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Some properties of an extracellular lipase produced byLactobacillus delbrueckii subsp.bulgaricus were studied. Maximum enzyme activity was found against olive and butter oil as enzyme substrates. Addition of 9% acacia gum, 0.1% Na-deoxycholate and 0.01 M CaCl2 to the enzyme reaction mixture increased-lipase activity from 5.3 to 14.5 (FFA/mg protein/minute) at pH 6.0 and at 40° C. Maximum lipase production was reached in the presence of glucose as a sole source of carbon, wheat bran as nitrogen source, olive oil as a sole lipid source and butyric acid as fatty acid supporting the growth medium. An initial pH value of the culture medium of 6.0 and a temperature of 35° C gave the highest lipolytic activity.  相似文献   

2.
Nutritional factors relating to the production of polygalacturonate lyases by strains of Bacillus subtilis and Flavobacterium pectinovorum were examined. Studies were carried out in shake flask cultures. In the case of B. subtilis the enzyme was produced constitutively, whereas in the case of F. pectinovorum it was only produced in quantity in the presence of pectic substances. Glucose was the most suitable carbon source for production of the polygalacturonate lyase of B. subtilis; of the nitrogen sources examined, the highest activities per milliliter of supernatant and per milligram of cells were obtained with glutamine and ammonium sulfate, respectively. The pattern of enzyme production and growth was similar although enzyme production ceased at pH 5.3. Sodium polypectate was the best inducer of polygalacturonate lyase with F. pectinovorum. Highest activity per milliliter of cell-free supernatant was obtained with skin milk powder as nitrogen source, although ammonium sulfate gave highest enzyme production per unit of biomass. Growth of F. pectinovorum occurred between pH 5.7 and 7.2. Enzyme production occurred during active growth and was independent of the pH of the medium.  相似文献   

3.
Different cultural parameters that regulate pectinolytic enzyme production in vitro by Trametes trogii were studied. When grown in a medium containing pectin, T. trogii produced extracellular polymethylgalacturonase, polygalacturonase and pectin lyase but no pectate lyase activity. No significant differences in the maximum enzyme activities measured were observed with the addition of xylan, carboxymethylcellulose or both to the medium containing pectin. The addition of glucose to that medium considerably decreases all the activities studied, and in a medium with glucose as the sole carbon source no galacturonase activity could be measured, and pectin lyase activity was at its minimum. The low synthesis of pectin lyase in cultures containing glucose suggests that this enzyme is constitutive in contrast to the polygalacturonases that were not detected. The increase in pectin concentration stimulated growth and enzyme production. The highest specific activities were attained with the greatest concentration tested (15 g/l). Casamino acids were the best nitrogen source for enzyme production. Maximum growth was measured at pH 3.3; pH values of around 4.5 stimulated enzyme production, but high pectinase activities were also detected in media with more alkaline initial pH values (6.2 for galacturonases and 6.6 for lyases), probably owing to the specific induction of particular isoforms. In the range of 23 to 28°C, good results were obtained in growth as well as in enzyme production. The addition of Tween 80 promoted growth and gave the highest yield of polymethylgalacturonase and pectin lyase (0.37 and 36.2 E.U./ml, respectively). The highest polygalacturonase activity (1.1 E.U/ml) was achieved with polyethylene glycol. Tween 20 and Triton X-100 inhibited growth and pectinase production.  相似文献   

4.
Fang  Jing  Qu  Yinbo  Gao  Peiji 《Biotechnology Techniques》1997,11(3):195-198
When grown on lignocellulosic materials, cellobiose-oxidizing enzyme activities were detected in Coriolus versicolor, Flammalina velutipes, Ganoderma gibbasum, Hericium erinaceus, Neurospora crassa and Schizophyllum commune. No cellobiose-oxidizing enzyme activities were detected in 14 other cellulolytic fungi which are recognized as having no or very low lignin-degrading ability.  相似文献   

5.
A locally isolated strain of Micromonospora sp. when grown on different natural cellulosic substrates gave the highest activity of carboxymethylcellulase (34 U/ml) and Avicelase (0.9 U/ml) on rice straw. Sugar cane bagasse was also a good substrate for growth and cellulase production. With commercial cellulosic substrates, highest carboxymethylcellulase (90 U/ml) and Avicelase (2.8 U/ml) activities were when the organism grew on xylan. Saccharification of sugar cane bagasse and rice straw by enzyme preparations of the organism grown on the respective substrates released 5.6 and 5.8 mg reducing sugar/ml. With all enzyme preparations, bagasse was more easily saccharified than rice straw.The authors are with the Atomic Energy Research Establishment, GPO Box 3787, Dhaka 1000, Bangladesh; N.A. Chowdhury, M. Moniruzzaman, and N. Choudhury in the Institute of Food and Radiation Biology, and N. Nahar in the Institute of Nuclear Science and Technology.  相似文献   

6.
Optimum activity of an extracellular pectin lyase produced by Penicillium griseoroseum in submerged culture was after 120 h using 0.1% (w/v) citrus pectin as substrate. Sucrose at 0.1% (w/v) stimulated enzyme production and citrus pectin gave the highest activity of enzyme per unit growth.  相似文献   

7.
Trichoderma reesei (QM 9123) was immobilized within the open porous network of reticulated polyurethane foam matrices, and the growth pattern, glucose consumption and cellulase production were compared with those of freely suspended cells. It was found that the method of immobilization was simple and had no detrimental effect on cell activity. Various production media, to be used after the cultivation of T. reesei were tried. It was found that a nitrogen source-free production medium gave the highest enzyme titers of 1.5 × 103 FPA U l−1. Similar results were obtained with both freely suspended and immobilized cells.  相似文献   

8.
Aspergillus foetidus was used to produce transferases that can be utilized in the synthesis of isooligosaccharides. Maltose and corn steep liquor were found to be the best carbon and nitrogen substrates at optimum concentration of 1% and 3% respectively. Surfactant Tween 80 and metal ions including Fe2+, Zn2+, Mg2+ and Cu2+ were found to have no obvious effect on the enzyme productivity. Uncontrolled pH starting with an initial value of 5.0 gave the highest transferase productivity compared with pH controlled at constant levels and control after natural fall. The optimum temperature was found to be 30v°C. Enzyme activity increased 8 fold in reactors, with better aeration and agitation condition, as compared to shake flask. The morphology of the organism was highly dependent on the nitrogen source and had great influence on enzyme productivity.  相似文献   

9.
Summary Cellulose-degrading cultures of the white-rot fungus Phanerochaete chrysosporium produce two extracellular cellobiose-oxidizing enzymes, cellobiose oxidase and cellobiose: quinone oxidoreductase. These two enzymes bind strongly to microcrystalline cellulose (MCC) in the pH range 4–7; above neutral pH their affinity for MCC decreases. Cellulose-bound enzymes could not be eluted with phosphate buffer (20 mM, pH 6) containing polyols (10%), KCl (1 M), urea (1 M) or 1% ionic or non-ionic detergent. TRIS or borate buffer at pH 9 eluted 30%–35% of the cellobiose-oxidizing enzyme activity. The cellulose-immobilized enzymes oxidized cellobiose actively, suggesting that the catalytic sites are not involved in cellulose binding. These results suggest that the cellobiose-oxidizing enzymes of P. chrysosporium may be organized into two domains: a cellulose-binding domain and a catalytic domain.Offprint requests to: V. Renganathan  相似文献   

10.
Lipases are a class of enzymes, which catalyse the hydrolysis of long chain triglycerides. Microbial lipases are currently receiving much attention with the rapid development of enzyme technology. Lipases have industrial potential in the chemical, pharmaceutical, medical, cosmetic, leather and paper manufacturing industries, biosurfactant synthesis, and agrochemicals. ABacillus strain isolated from soil was tested for the production of extracellular lipase, by batch culturing in shake flask. The growth conditions were optimised for the maximum production of enzyme. Various parameters for the production of lipase, such as temperature, incubation period, pH, carbon source, nitrogen source and lipids were studied. Maximum lipase production was found in 48-h-old culture filtrate at 37 °C, pH 8.0. Among all the carbon sources, salicin gave the maximum activity and among all the nitrogen sources yeast extract gave maximum production/activity. Tween (20 and 80) does not stimulate the growth much but assisted in enzyme production.  相似文献   

11.
In the current study, bacteria isolated from sea water samples of Murdeshwar, Karnataka, were screened for the production of alkaline protease by culturing them onto skim milk agar media. Of the isolated bacteria, Bacillus subtilis, Pseudomonas aeruginosa and Alcaligenes faecalis showed distinct zones of hydrolysis due to enzyme production. They were each inoculated into enzyme production media under submerged fermentation conditions at 37?°C for 48?h with a constant agitation of 120?rpm. Partial purification of alkaline protease was carried out by isoelectric precipitation. Enzyme activity was determined under varying conditions of pH, incubation temperature, different substrates, carbon and nitrogen sources and salt concentrations using sigma’s universal protease activity assay. Enzyme immobilization was carried out using 2% Sodium alginate and 0.1?M ice cold CaCl2 and its activity under varying pH, temperature conditions and detergent compatibility was assayed. Efficacy of enzyme in stain removal was tested and haemolysis was observed within of 60?s which resulted in removal of the stain. Among the three organisms, enzyme from Bacillus subtilis showed highest activity in all cases indicating that it was the most ideal organism for enzyme production.  相似文献   

12.
Human kidney prolinase, assayed with Pro-Ala, and non-specific dipeptidase, assayed with Gly-Leu, were purified by using DEAE-cellulose, gel-filtration, metal-ion-chelate, hydrophobic and adsorption chromatography and chromatofocusing. Both enzymes gave single peaks of activity that were congruent and the ratio of their activities was constant throughout the purification. Gel filtration indicated an Mr of 100 000 and chromatofocusing a pI of 5.4. Ni2+-chelate chromatography demonstrated the presence of exposed histidine residues on the enzyme and was an effective separative procedure. Polyacrylamide-gel electrophoresis of the final preparation showed the two enzyme activities to be coincident. Both enzyme activities decayed at the same rate at 53 degrees C and were inhibited to the same extent by p-hydroxymercuribenzoate. Of six non-specific dipeptidase substrates tested Gly-Leu gave the highest activity, and of six prolinase substrates Pro-Leu had the highest activity. Gly-Leu was hydrolysed at double the rate of Pro-Leu. Pro-Ala was a competitive inhibitor of activity towards Gly-Leu, and Gly-Leu was a competitive inhibitor of activity towards Pro-Ala. Mixed-substrate studies strongly suggested that Gly-Leu and Pro-Ala were hydrolysed at a common active site. The data are consistent with prolinase and non-specific dipeptidase activity in human kidney being due to a single enzyme.  相似文献   

13.
Summary A locally isolated strain of Aspergillus foetidus MTCC 4898 was studied for xylanase (EC 3.2.1.8) production using lignocellulosic substrates under solid state fermentation. Corncobs were found as the best substrates for high yield of xylanases with poor cellulase production. The influence of various parameters such as temperature, pH, moistening agents, moisture level, nitrogen sources and pretreatment of substrates were evaluated with respect to xylanase yield, specific activity and cellulase production. Influence of nitrogen sources on protease secretion was also examined. Maximum xylanase production (3065 U/g) was obtained on untreated corncobs moistened with modified Mandels and Strenberg medium, pH 5.0 at 1 5 moisture levels at 30 °C in 4 days of cultivation. Submerged fermentation under the same conditions gave higher yield (3300 U/g) in 5 days of cultivation, but productivity was less. Ammonium sulphate fractionation yielded 3.56-fold purified xylanase with 76% recovery. Optimum pH and temperature for xylanase activity were found to be 5.3 and 50 °C respectively. Kinetic parameters like Km and Vmax were found to be 3.58 mg/ml and 570 μmol/mg/min. Activity of the enzyme was found to be enhanced by cystiene hydrochloride, CoCl2, xylose and Tween 80, while significantly inhibited by Hg++, Cu++ and glucose. The enzyme was found to be stable at 40 °C. The half life at 50 °C was 57.53 min. However thermostability was enhanced by glycerol, trehalose and Ca++. The crude enzyme was stable during lyophilization and could be stored at less than 0 °C.  相似文献   

14.
In the present study, solid-state fermentation for the production of raw starch degrading enzyme was investigated by thermotolerant Rhizopus microsporus TISTR 3531 using a combination of agro-industrial wastes as substrates. The obtained crude enzyme was applied for hydrolysis of raw cassava starch and chips at low temperature and subjected to nonsterile ethanol production using raw cassava chips. The agro-industrial waste ratio was optimized using a simplex axial mixture design. The results showed that the substrate mixture consisting of rice bran:corncob:cassava bagasse at 8?g:10?g:2?g yielded the highest enzyme production of 201.6?U/g dry solid. The optimized condition for solid-state fermentation was found as 65% initial moisture content, 35°C, initial pH of 6.0, and 5?×?106 spores/mL inoculum, which gave the highest enzyme activity of 389.5?U/g dry solid. The enzyme showed high efficiency on saccharification of raw cassava starch and chips with synergistic activities of commercial α-amylase at 50°C, which promotes low-temperature bioethanol production. A high ethanol concentration of 102.2?g/L with 78% fermentation efficiency was achieved from modified simultaneous saccharification and fermentation using cofermentation of the enzymatic hydrolysate of 300?g raw cassava chips/L with cane molasses.  相似文献   

15.
Bacillus subtilis NRC33a was able to produce both inducible and constitutive extracellular levansucrase, respectively, using sucrose and glucose as carbon source. The optimal production of the levansucrase was at 30°C. The effect of different nitrogen sources showed that baker’s yeast with 2% concentration gave the highest levansucrase activity. Addition of 0.15 g/L MgSO4 was the most favorable for levansucrase production. The enzymic synthesis of levan was studied using 60% acetone fraction. The results indicated that high enzyme concentrations produced increasing amounts of levan, and hence conversion of fructose to levan reached 84% using 1000 μg/ml enzyme protein. Sucrose concentration was the most effective factor controlling the molecular weight of the synthesized levan. The conversion of fructose to levan was maximal at 30°C. The time of reaction clearly affected the conversion of fructose to levan, which reached its maximum productivity at 18 hours (92%). Identification of levan indicated that fructose was the building unit of levan.  相似文献   

16.
A bacterium R–4 which produces a novel type of lytic enzyme which lyses fungal and yeast cell walls was isolated from the air and was identified to belong to the genus Bacillus.

Production of the enzyme appeared to require a high concentration of nitrogen source in medium. No inducing substance was needed for the enzyme production.

A crude preparation of the enzyme was used to characterize the lytic activity. From the lytic spectrum, the enzyme seemed to have the highest activity toward the cell walls of species in the genus Rhizopus among various fungi and yeasts tested, A proteolytic activity was shown to be parallel with the lytic activity. The lytic activity was also accompanied with the liberation of reducing sugars from Rhizopus cell wall, but no activity on some known carbohydrates tested was detected in the preparation.  相似文献   

17.
Culture conditions for enhanced cellulase production from a newly isolated brown rot fungus, Fomitopsis sp. RCK2010 were optimized under solid state fermentation. An initial pH of 5.5 and moisture ratio of 1:3.5 (solid:liquid) were found to be optimal for maximum enzyme production. Of the different carbon sources tested wheat bran gave the maximum production of CMCase (71.526 IU/g), FPase (3.268 IU/g), and β-glucosidase (50.696 IU/g). Among the nitrogen sources, urea caused maximum production of CMCase (81.832 IU/g), where as casein and soyabean meal gave the highest FPase (4.682 IU/g) and β-glucosidase (69.083 IU/g) production, respectively. Among amino acids tested glutamic acid gave the highest production for CMCase (84.127 IU/g); however 4-hydroxy-l-proline stimulated maximum FPase production (6.762 IU/g). Saccharification of pretreated rice straw and wheat straw by crude enzyme extract from Fomitopsis sp. RCK2010 resulted in release of 157.160 and 214.044 mg/g of reducing sugar, respectively.  相似文献   

18.
The effects of varying cultural conditions were assessed for the production of pectic enzymes in a strain of Aspergillus niger, isolated from decaying orange fruit. Polygalacturonase and pectinmethylesterase were found to be inducible by polygalacturonic acid and pectin in the medium, respectively. Ammonium sulphate was the best nitrogen source for the production of both enzymes. There were variations in enzyme levels produced in culture filtrates with age of the culture, the highest levels being in 4-day-old cultures. The temperature and pH also had marked effects on the production of pectic enzymes with the best conditions being 40°C and pH 5, respectively. Surface culture technique gave appreciable enzyme yield, while agitation had an inhibitory effect on enzyme production.  相似文献   

19.
Bonete MJ  Ferrer J  Pire C  Penades M  Ruiz JL 《Biochimie》2000,82(12):1143-1150
An NAD-dependent D-2-hydroxyacid dehydrogenase (EC 1.1.1.) was isolated and characterized from the halophilic Archaeon Haloferax mediterranei. The enzyme is a dimer with a molecular mass of 101.4 +/- 3.3 kDa. It is strictly NAD-dependent and exhibits its highest activity in 4 M NaCl. The enzyme is characterized by a broad substrate specificity 2-ketoisocaproate and 2-ketobutyrate being the substrates with the higher Vmax/Km. When pyruvate and 2-ketobutyrate were the substrates the optimal pH was acidic (pH 5) meanwhile for 2-ketoisocaproate maximum activity was achieved at basic pH between 7.5 and 8.5. The optimum temperature was 52 degrees C and at 65 degrees C there was a pronounced activity decrease. This new enzyme can be used for the production of D-2-hydroxycarboxylic acid.  相似文献   

20.
Polyhydroxyalkanoates (PHAs) accumulating bacteria were isolated under various selective conditions such as pH, salt concentrations and types of heavy metal. Fifty strains of bacterial isolates were found to belong to Bacillus, Proteus, Pseudomonas, Aeromonas, Alcaligenes and Chromobacterium, based on phenotypical features and genotypic investigation. Only twenty five bacterial isolates were selected and observed for the production of PHAs. Interestingly, bacteria belonging to Firmucutes Bacillus sp. produced a high amount of PHAs. The maximum PHAs were accumulated by B. licheniformis PHA 007 at 68.80% of dry cell weight (DCW). Pseudomonas sp., Aeromonas sp., Alcaligenes sp. and Chromobacterium sp. were recorded to produce a moderate amount of PHAs, varying from 10.00-44.32% of DCW. The enzymatic activity was preliminarily analyzed by the ratio of the clear zone diameter to colony diameter. Bacillus gave the highest ratio of hydrolysis zone which corresponds to the highest hydrolytic enzyme activities. Bacillus licheniformis PHA 007 had the highest lipase and protease activity at 2.1 and 5.1, respectively. However, the highest amylase activity was observed in Bacillus sp. PHA 023 at 1.4. Determination of metabolic characteristics was also investigated to check for their ability to consume a wide range of substrates. Bacillus, Aeromonas sp. and Alcaligenes sp. had great ability to utilize a variety of substrates. To decrease high PHA cost, different sources of cheap substrates were tested for the production of PHAs. Bacillus cereus PHA 008 gave the maximal yield of PHA production (64.09% of DCW) when cultivated in anaerobically treated POME. In addition, the accumulation of PHA copolymers such as 3-hydroxyvalerate and 3-hydroxyhexanoate was also observed in Bacillus and Pseudomomas sp. strain 012 and 045, respectively. Eight of the nine isolates accumulated a significant amount of PHAs when inexpensive carbon sources were used as substrates. Here it varied from 1.69% of DCW by B. licheniformis PHA 007 to 64.09% of DCW by B. cereus PHA 008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号