首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glutamate-mediated excitotoxicity, neuroinflammation, and oxidative stress are common underlying events in neurodegeneration. This pathogenic “triad” characterizes the neurobiology of epilepsy, leading to seizure-induced cell death, increased susceptibility to neuronal synchronization and network alterations. Along with other maladaptive changes, these events pave the way to spontaneous recurrent seizures and progressive degeneration of the interested brain areas.In vivo models of epilepsy are available to explore such epileptogenic mechanisms, also assessing the efficacy of chemoprevention and therapy strategies at the pre-clinical level. The kainic acid model of pharmacological excitotoxicity and epileptogenesis is one of the most investigated mimicking the chronicization profile of temporal lobe epilepsy in humans. Its pathogenic cues include inflammatory and neuronal death pathway activation, mitochondrial disturbances and lipid peroxidation of several regions of the brain, the most vulnerable being the hippocampus. The importance of neuroinflammation and lipid peroxidation as underlying molecular events of brain damage was demonstrated in this model by the possibility to counteract the related maladaptive morphological and functional changes of this organ with vitamin E, the main fat-soluble cellular antioxidant and “conditional” co-factor of enzymatic pathways involved in polyunsaturated lipid metabolism and inflammatory signaling.The present review paper provides an overview of the literature supporting the potential for a timely intervention with vitamin E therapy in clinical management of seizures and epileptogenic processes associated with excitotoxicity, neuroinflammation and lipid peroxidation, i.e. the pathogenic “triad”.  相似文献   

3.
Certain neurotrophins promote or induce oxidative neuronal death in cortical cultures. However, the effector mechanisms mediating this phenomenon have not been delineated. In this study, we investigated the possibility that NADPH oxidase and nitric oxide synthase (NOS) function as such effectors. Western blot analysis showed that treatment with brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-4/5 increased the levels of NADPH oxidase subunits. Moreover, neurotrophin treatment resulted in membrane translocation of p67phox, a characteristic feature of NADPH oxidase activation. Administration of the specific NADPH oxidase inhibitor, 4-(2-aminoethyl)benzenesulfonylfluoride (AEBSF), attenuated increases in oxygen free radicals thereby suggesting that NADPH oxidase contributes to the oxidative stress induced by neurotrophins. Furthermore, neuronal death induced by BDNF or NT-4/5 was significantly attenuated by AEBSF. Treatment with BDNF has previously been shown to induce neuronal NOS (nNOS). Our data indicated that inhibitors of nNOS attenuated neuronal death induced by BDNF or NT-4/5, consistent with an active role of nNOS in the mediation of neurotrophin neurotoxicity. As in other models of oxidative cell death, BDNF-induced neuronal death was accompanied by poly(ADP ribose) polymerase (PARP) activation. AEBSF or N-nitro-l-arginine (NNA) reduced BDNF-mediated PARP activation. PARP and poly(ADP ribose) glycohydrolase (PARG) are actively involved in mediating neurotrophin neurotoxicity since inhibitors of PARP and PARG significantly reduced levels of cell death. These results suggest that NADPH oxidase and nNOS contribute to increased oxidative stress, subsequent activation of PARP/PARG, and neuronal death induced by prolonged neurotrophin exposure.  相似文献   

4.
GSH and GSH-associated metabolism provide the major line of defense for the protection of cells from oxidative and other forms of toxic stress. Of the three amino acids that comprise GSH, cysteine is limiting for GSH synthesis. As extracellularly cysteine is readily oxidized to form cystine, cystine transport mechanisms are essential to provide cells with cysteine. Cystine uptake is mediated by system x(c)(-), a Na(+)-independent cystine/glutamate antiporter. Inhibition of system x(c)(-) by millimolar concentrations of glutamate, a pathway termed oxidative glutamate toxicity, results in GSH depletion and nerve cell death. Recently, we described a series of compounds derived from the conjugation of epicatechin (EC) with cysteine and cysteine derivatives that protected nerve cells in culture from oxidative glutamate toxicity by maintaining GSH levels. In this study, we characterize an additional EC conjugate, cysteamine-EC, that is 5- to 10-fold more potent than the earlier conjugates. In addition, we show that these EC conjugates maintain GSH levels by enhancing the uptake of cystine into cells through induction of a disulfide exchange reaction, thereby uncoupling the uptake from system x(c)(-). Thus, these novel EC conjugates have the potential to enhance GSH synthesis under a wide variety of forms of toxic stress.  相似文献   

5.
The inflammatory response in the central nervous system involves activated microglia. Under normal conditions they remove damaged neurons by phagocytosis. On the other hand, neurodegenerative diseases are thought to involve chronic microglia activation resulting in release of excess glutamate, proinflammatory cytokines and reactive oxygen species, leading to neuronal death. System xC- cystine/glutamate antiporter (SXC), a sodium independent heterodimeric transporter found in microglia and astrocytes in the CNS, imports cystine into the cell and exports glutamate. SXC has been shown to be upregulated in neurodegenerative diseases including multiple sclerosis, ALS, neuroAIDS Parkinson's disease and Alzheimer's disease. Consequently, SXC inhibitors could be of use in the treatment of diseases characterized by neuroinflammation and glutamate excitotoxicity. We report on the optimization of a primary microglia-based assay to screen for SXC inhibitors. Rat primary microglia were activated using lipopolysaccharides (LPS) and glutamate release and cystine uptake were monitored by fluorescence and radioactivity respectively. LPS-induced glutamate release increased with increasing cell density, time of incubation and LPS concentration. Conditions to screen for SXC inhibitors were optimized in 96-well format and subsequently used to evaluate SXC inhibitors. Known SXC inhibitors sulfasalazine, S-4CPG and erastin blocked glutamate release and cystine uptake while R-4CPG, the inactive enantiomer of S-4CPG, failed to inhibit glutamate release or cystine transport. In addition, several erastin analogs were evaluated using primary microglia and found to have EC50 values in agreement with previous studies using established cell lines.  相似文献   

6.
Since experiments with freshly isolated rat hepatocytes have shown that cellular vitamin E is consumed in response to insult by compounds that induce an oxidative stress only after cellular glutathione (GSH) concentrations have been substantially depleted, experiments were performed to determine whether this sequence of events occurred in response to oxidative insult in vivo. The role that plasma vitamin E plays in the response to chemically induced oxidative injury in vivo was also assessed. Treatments with 40 mg/kg of methyl ethyl ketone peroxide (MEKP) quickly induced lipid peroxidation in vivo and from one to 4 h after treatment caused a depression in the plasma content of vitamin E and the liver content of GSH, as well as signs of toxicity (elevations in serum activities of alanine and aspartate aminotransferases). At these time points however, the liver content of vitamin E was either indistinguishable from or slightly elevated from controls. By 12 to 24 h after treatment the liver content of vitamin E was reduced by 20-25% whereas values for all other indicators had returned toward control levels. Pretreatment of rats with L-buthionine-S,R-sulfoximine, an inhibitor of GSH by 4 or 24 h after treatment, did not alter the time course or extent of hepatic vitamin E depletion that was observed after treatment with MEKP. Other compounds that induce oxidative stress and lipid peroxidation to the liver, carbon tetrachloride and menadione, did not provoke an alteration in hepatic vitamin E levels as compared to controls 1 day after treatment. These findings indicate that depletion of hepatic vitamin E may not occur as an immediate consequence of oxidative insult to the liver and that the depletion of hepatic vitamin E levels may not be related to the extent of prior GSH depletion. Moreover, these findings suggest that alterations in the plasma concentration of vitamin E may not reflect concurrent alterations in hepatic vitamin E levels. A mechanism whereby liver vitamin E stores are mobilized for the maintenance of plasma vitamin E levels is proposed.  相似文献   

7.
BACKGROUND: Nitric oxide is a messenger molecule of the nervous system, which is produced by the enzyme nitric oxide synthase, which may regulate cyclic guanosine monophosphate levels and which has been implicated in the control of neurotransmitter release. PC-12 pheochromocytoma cells differentiate to form neuronal cells in culture when they are exposed to nerve growth factor. The levels of cyclic guanosine monophosphate in the cells and their ability to release acetylcholine in response to K(+)-depolarization are both maximal after eight days of treatment with nerve growth factor. We set out to assess a possible role for nitric oxide in the processes that occur in differentiating PC-12 cells. RESULTS: Nitric oxide synthase is first evident in differentiating PC-12 cells eight days after beginning treatment with nerve growth factor, coinciding with the marked increase in K(+)-depolarization-induced release of acetylcholine. The release of both acetylcholine and dopamine in response to K(+)-depolarization is blocked by inhibitors of nitric oxide synthase and by hemoglobin, which binds nitric oxide. Providing l-arginine, a precursor required for nitric oxide synthesis, reverses the effects of the inhibitors. In synaptosomal preparations from the corpus striatum, inhibitors of nitric oxide synthase prevent the release of glutamate in response to the glutamate derivative N-methyl-d-aspartate but not in response to K(+)-depolarization. CONCLUSION: Nitric oxide may mediate the release of acetylcholine and dopamine in response to K(+)-depolarization in PC-12 cells and the release of glutamate in response to N-methyl-d-aspartate in striatal synaptosomes. Nitric oxide synthase expression is induced after eight days of treating PC-12 cells with nerve growth factor, coinciding with a marked enhancement of the release of neurotransmitters in response to K(+)-depolarization.  相似文献   

8.
Endothelial dysfunction develops as a result of oxidative stress and is responsible for diabetic vascular complications. We investigated the effects of selenium on endothelial dysfunction and oxidative stress in type 2 diabetic rats. Male Wistar rats were divided into five groups: controls, untreated diabetics, and diabetics treated with 180, 300, 500 mcg/kg selenium each day. Diabetes was induced by a single intraperitoneal injection of low dose streptozotocin to rats fed a high fat diet. Endothelium-dependent and -independent relaxations were measured in the thoracic aorta. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and endothelial nitric oxide synthase (eNOS) mRNA expressions were analyzed using real-time polymerase chain reaction (RT-PCR). Fasting blood glucose, lipid profile, lipid oxidation, insulin and nitric oxide were measured in blood samples. Malondialdehyde, superoxide dismutase, catalase and glutathione peroxidase levels were measured in liver samples. RT-PCR showed that selenium reversed increased NADPH oxidase expression and decreased eNOS expression to control levels. Selenium also improved the impairment of endothelium-dependent vasorelaxation in the diabetic aorta. Selenium treatment significantly decreased blood glucose, cholesterol and triglyceride levels, and enhanced the antioxidant status in diabetic rats. Our findings suggest that selenium restores a normal metabolic profile and ameliorates vascular responses and endothelial dysfunction in diabetes by regulating antioxidant enzyme and nitric oxide release.  相似文献   

9.
The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.  相似文献   

10.
Photodynamic therapy (PDT) leads to production of reactive oxygen species (ROS) and cell destruction due to oxidative stress. We used photodynamic effect of photosensitizer radachlorin to unravel the effect of photo-induced oxidative stress on the calcium signal and lipid peroxidation in primary culture of cortical neurons and astrocytes using live cell imaging. We have found that irradiation in presence of 200 nM of radachlorin induces calcium signal in primary neurons and astrocytes. Photo-induced neuronal calcium signal depends on internal calcium stores as it was still observed in calcium-free medium and could be blocked by depletion of endoplasmic reticulum (ER) stores with inhibitor of sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) thapsigargin. Both inhibitors of phospholipase C activity U73122 and water-soluble analogue of vitamin E Trolox suppressed calcium response activated by PDT. We have also observed that the photodynamic effect of radachlorin induces lipid peroxidation in neurons and astrocytes. This data demonstrate that lipid peroxidation induced by PDT in neurons and astrocytes leads to activation of phospholipase C that results in production of inositol 1,4,5-trisphosphate (IP3).  相似文献   

11.
Several cardiovascular risk factors are characterized by the coexistence of low-grade inflammation, enhanced oxidative stress and lipid peroxidation. It has been hypothesized that F2-isoprostanes, a product of in vivo lipid peroxidation, may transduce the effects of metabolic and hemodynamic abnormalities into increased cardiovascular risk. Thus, the formation of these compounds, including urinary 8-iso-Prostaglandin (PG) F2alpha, has been investigated in clinical settings putatively associated with oxidant stress. Enhanced lipid peroxidation together with increased in vivo platelet activation have been found in association with the major cardiovascular risk factors. Thus, F2-isoprostanes may transduce the effects of oxidant stress associated with complex metabolic disorders into specialized forms of cellular activation. In particular, the low-grade inflammatory state characterizing metabolic disorders such as obesity, hypercholesterolemia, type 2 diabetes mellitus, and homozygous homocystinuria may be the primary trigger of thromboxane-dependent platelet activation mediated, at least in part, through enhanced lipid peroxidation. Moreover, oxidative stress may promote endothelial dysfunction through increased production of reactive oxygen species that inactivate nitric oxide. Accumulation and activation of leukocytes plays a key role in atherosclerosis and its complications. Interestingly, neutrophil adhesion induced by minimally modified low-density lipoproteins is mainly mediated by F2-isoprostanes. Although epidemiological studies suggest an inverse relationship between antioxidant vitamin intake and cardiovascular disease, several clinical trials have obtained conflicting results on the effects of vitamin E supplementation on the risk of cardiovascular events. On the other hand, the use of F2-isoprostane formation as a biochemical end-point for dose-finding studies of vitamin E supplementation has helped clarifying the unique features of its pharmacodynamic effects on lipid peroxidation. This information could be extremely valuable in the selection of the appropriate patient subgroups that may benefit from antioxidant interventions.  相似文献   

12.
Possible involvement of reactive oxygen species and nitric oxide in the pathogenesis of human essential hypertension was investigated. It was observed that both superoxide anion and hydrogen peroxide production by polymorphonuclear leukocytes and the plasma levels of lipid peroxides are higher in uncontrolled essential hypertension compared with normal controls. Nitric oxide levels measured as its stable metabolite nitrite, as an index of nitric oxide synthesis, revealed its levels to be low in hypertensive patients. Superoxide anion, hydrogen peroxide, lipid peroxides and nitric oxide levels reverted to normal values after the control of hypertension by drugs. The concentrations of anti-oxidants such as vitamin E and superoxide dismutase were found to be decreased in patients with uncontrolled hypertension. Several anti-hypertensive drugs inhibited lipid peroxidation in vitro. Angiotensin-II, a potent vasoconstrictor, stimulated free radical generation in normal leukocytes which could be blocked by calmodulin antagonists. These results suggest that an increase in free radical generation and a simultaneous decrease in the production of nitric oxide and anti-oxidants such as SOD and vitamin E occurs in essential hypertension. This increase in free radical generation can inactivate prostacyclin and nitric oxide and decrease their half life which can lead to an increase in peripheral vascular resistance and hypertension.  相似文献   

13.
Abstract: Oxidative stress is implicated in a number of neurological disorders including stroke, Parkinson's disease, and Alzheimer's disease. To study the effects of oxidative stress on neuronal cells, we have used an immortalized mouse hippocampal cell line (HT-22) that is particularly sensitive to glutamate. In these cells, glutamate competes for cystine uptake, leading to a reduction in glutathione and, ultimately, cell death. As it has been reported that protein kinase C activation inhibits glutamate toxicity in these cells and is also associated with the inhibition of apoptosis in other cell types, we asked if glutamate toxicity was via apoptosis. Morphologically, glutamate-treated cells underwent plasma membrane blebbing and cell shrinkage, but no DNA fragmentation was observed. At the ultrastructural level, there was damage to mitochondria and other organelles although the nuclei remained intact. Protein and RNA synthesis inhibitors as well as certain protease inhibitors protected the cells from glutamate toxicity. Both the macromolecular synthesis inhibitors and the protease inhibitors had to be added relatively soon after the addition of glutamate, suggesting that protein synthesis and protease activation are early and distinct steps in the cell death pathway. Thus, the oxidative stress brought about by treatment with glutamate initiates a series of events that lead to a form of cell death distinct from either necrosis or apoptosis.  相似文献   

14.
The aim of this work was to evaluate the role of lipid peroxidation and glutathione on liver damage induced by 7-day biliary obstruction in the rat. Male Wistar rats were bile-duct-ligated and divided in groups of 10 animals. Groups received vitamin E (400 IU/rat, p.o., daily) or trolox (50 mg/kg, p.o., daily) or both. Lipid peroxidation increased significantly in the livers of bile-duct-ligated rats. Vitamin E and trolox prevented lipid peroxidation. GSH was oxidized in the BDL group and the GSH/GSSG ratio decreased as a consequence. However, total glutathione content increased in liver and blood indicating a possible induction in de novo synthesis of GSH. Antioxidants preserved the normal GSH/GSSG ratio. Despite the observation that antioxidants verted lipid peroxidation and oxidation of GSH, liver injury (as assessed by serum enzyme activities, bilirubin concentration, liver glycogen content and histology) was not affected by the treatments. These results suggest that drugs that inhibit lipid peroxidation and oxidation of glutathione have no effect on conventional biochemical markers of liver injury and on liver histology of bile-duct-ligated rats for 7 days. It seems more likely that the detergent action of bile salts is responsible for solubilization of plasma membranes and cell death, which in turn may lead to oxidative stress, GSH oxidation and lipid peroxidation.  相似文献   

15.
以津春2号黄瓜为材料,采用营养液水培的方法,研究了外源一氧化氮(NO)对黄瓜幼苗生长和根系谷胱甘肽抗氧化酶系统的影响.结果表明,(1)正常生长条件下添加NO能促进黄瓜幼苗生长,而添加亚甲基蓝(MB-1)显著抑制黄瓜幼苗的生长;(2)添加NO显著缓解了NaCl胁迫对黄瓜幼苗生长的抑制,提高根系还原型谷胱甘肽(GSH)含量、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,而氧化型谷胱甘肽(GSSG)含量略有下降,同时缓解了NaCl胁迫下抗坏血酸(ASA)含量的下降幅度;(3)NaCl胁迫下添加NO的同时添加MB-1可部分解除NO的作用,与NaCl胁迫下单独添加NO处理比较,GR活性、GSH和ASA含量均降低,GSSG含量提高,APX先升高后下降.研究发现,外源NO可能通过鸟苷酸环化酶(cGC)介导来调节NaCl胁迫下黄瓜幼苗根系GR活性和GSH、GSSG、ASA含量,提高抗氧化酶活性和非酶抗氧化物质含量,增强植株对活性氧的清除能力,减少膜脂过氧化,缓解NaCl胁迫对黄瓜幼苗造成的伤害.  相似文献   

16.
BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation, prevents in vivo brain ischemic/reperfusion injury. In the present study, BN 80933 was shown to protect neurons from hypoxia-induced cell death in primary cultures of cortical neurons. BN 80933 prevented lactate dehydrogenase activity elevation induced by hypoxia, displaying an IC50 value of 0.15 +/- 0.05 microM. This effect was likely due to the antioxidant properties of BN 80933 because Trolox, but not NG-nitro-L-arginine, also elicited protection. The antioxidant property of BN 80933 was then further investigated on HT-22 cells subjected to buthionine sulfoximine- or glutamate-induced glutathione depletion. The relative order of potency of the various compounds to inhibit oxidative stress-induced neuronal death (BN 80933 > U104067 > butylated hydroxytoluene > 17beta-estradiol > Trolox > vitamin E) correlated with their ability to inhibit brain membrane lipid peroxidation (correlation coefficient = 0.939). BN 80933 afforded protection even when added 6 h after glutamate exposure. BN 80933 did not reverse intracellular glutathione depletion but prevented elevation of the level of beta-epiprostaglandin F2alpha (8-isoprostane), which appeared to be a delayed phenomenon. In conclusion, BN 80933 induces a potent cytoprotection that may be mediated by inhibition of delayed lipid peroxidation.  相似文献   

17.
Oxidative stress is one of the hypotheses involved in the etiology of Alzheimer's disease (AD). Considerable attention has been focused on increasing the intracellular glutathione (GSH) levels in many neurodegenerative diseases, including AD. Pycnogenol (PYC) has antioxidant properties and stabilizes intracellular antioxidant defense systems including glutathione levels. The present study investigated the protective effects of PYC on acrolein-induced oxidative cell toxicity in cultured SH-SY5Y neuroblastoma cells. Decreased cell survival in SH-SY5Y cultures treated with acrolein correlated with oxidative stress, increased NADPH oxidase activity, free radical production, protein oxidation/nitration (protein carbonyl, 3-nitrotyrosine), and lipid peroxidation (4-hydroxy-2-nonenal). Pretreatment with PYC significantly attenuated acrolein-induced cytotoxicity, protein damage, lipid peroxidation, and cell death. A dose-response study suggested that PYC showed protective effects against acrolein toxicity by modulating oxidative stress and increasing GSH. These findings provide support that PYC may provide a promising approach for the treatment of oxidative stress-related neurodegenerative diseases such as AD.  相似文献   

18.
In order to investigate the relationship between nitric oxide-mediated regulation of mitochondrial function and excitotoxicity, the role of mitochondrial ATP synthesis and intracellular redox status on the mode of neuronal cell death was studied. Brief (5 min) glutamate (100 microM) receptor stimulation in primary cortical neurons collapsed the mitochondrial membrane potential (psi(m)) and transiently (30 min) inhibited mitochondrial ATP synthesis, causing early (1 h) necrosis or delayed (24 h) apoptosis. The transient inhibition of ATP synthesis was paralleled to a loss of NADH, which was fully recovered shortly after the insult. In contrast, NADPH and the GSH/GSSG ratio were maintained, but progressively decreased thereafter. Twenty-four hours after glutamate treatment, ATP was depleted, a phenomenon associated with a persistent inhibition of mitochondrial succinate-cytochrome c reductase activity and delayed necrosis. Blockade of either nitric oxide synthase (NOS) activity or the mitochondrial permeability transition (MPT) pore prevented psi(m) collapse, the transient inhibition of mitochondrial ATP synthesis, early necrosis and delayed apoptosis. However, blockade of NOS activity, but not the MPT pore, prevented the inhibition of succinate-cytochrome c reductase activity and delayed ATP depletion and necrosis. From these results, we suggest that glutamate receptor-mediated NOS activation would trigger MPT pore opening and transient inhibition of ATP synthesis leading to apoptosis in a neuronal subpopulation, whereas other groups of neurons would undergo oxidative stress and persistent inhibition of ATP synthesis leading to necrosis.  相似文献   

19.
Venlafaxine is an approved antidepressant that is an inhibitor of both serotonin and norepinephrine transporters. Medical treatment with oral venlafaxine can be beneficial to depression due to reducing free radical production in the brain and medulla of depression- induced rats because oxidative stress may a play role in some depression. We investigated the effect of venlafaxine administration and experimental depression on lipid peroxidation and antioxidant levels in cortex brain, medulla and erythrocytes of rats. Thirty male wistar rats were used and were randomly divided into three groups. Venlafaxine (20 mg/kg) was orally supplemented to depression-induced rats constituting the first group for four week. Second group was depression-induced group although third group was used as control. Depressions in the first and second groups were induced on day zero of the study by chronic mild stress. Brain, medulla and erythrocytes samples were taken from all animals on day 28. Depression resulted in significant decrease in the glutathione peroxidase (GSH-Px) activity and vitamin C concentrations of cortex brain, glutathione (GSH) value of medulla although their levels were increased by venlafaxine administration to the animals of depression group. The lipid peroxidation levels in the three tissues and nitric oxide value in cortex brain elevated although their levels were decreased by venlafaxine administration. There were no significant changes in cortex brain vitamin A, erythrocytes vitamin C, GSH-Px and GSH, medulla vitamin A, GSH and GSH-Px values. In conclusion, cortex brain within the three tissues was most affected by oxidative stress although there was the beneficial effect of venlafaxine in the brain of depression-induced rats on investigated antioxidant defenses in the rat model. The treatment of depression by venlafaxine may also play a role in preventing oxidative stress. Abstract of the paper was submitted in 1st Ion Channels and Oxidative Stress Congress, 14–16 September 2006, Isparta, Turkey.  相似文献   

20.
Patients affected by nonketotic hyperglycinemia (NKH) usually present severe neurological symptoms and suffer from acute episodes of intractable seizures with leukoencephalopathy. Although excitotoxicity seems to be involved in the brain damage of NKH, the mechanisms underlying the neuropathology of this disease are not fully established. The objective of the present study was to investigate the in vitro effects of glycine (GLY), that accumulate at high concentrations in the brain of patients affected by this disorder, on important parameters of oxidative stress, such as lipid peroxidation (thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence) and the most important non-enzymatic antioxidant defense reduced glutathione (GSH) in cerebral cortex from 30-day-old rats. GLY significantly increased TBA-RS and chemiluminescence values, indicating that this metabolite provokes lipid oxidative damage. Furthermore, the addition of high doses of the antioxidants melatonin, trolox (soluble vitamin E) and GSH fully prevented GLY-induced increase of lipid peroxidation, indicating that free radicals were involved in this effect. GLY also decreased GSH brain concentrations, which was totally blocked by melatonin treatment. Finally, GLY significantly reduced sulfhydryl group content from a commercial GSH solution, but did not oxidize reduced cytochrome C. Our data indicate that oxidative stress elicited in vitro by GLY may possibly contribute at least in part to the pathophysiology of the neurological dysfunction in NKH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号