首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new nuclease (Rn) isolated from rye nucleus was applied for the structural studies of methionine initiator transfer ribonucleic acid and ribosomal 5S rRNA from yellow lupin seeds. The enzyme shows high specificity for some regions of both RNAs. The dihydrouridine and ribothymidine loops which are supposed to be involved in the tertiary interactions of the methionine initiator tRNA were hydrolysed. The anticodon loop is not digested at all. 5S rRNA was digested in single stranded regions (loops). The cleavage pattern of the tRNA and 5S rRNA obtained with Rn enzyme, suggests not only the high specificity toward single stranded regions, but also some dependence on their tertiary structure.  相似文献   

2.
Chemical, enzymatic and physicochemical methods of a structural analysis of 5S rRNAs in lupine, wheat germ, and other plants led us to propose a new three-dimensional model of these molecules The main features of the model are tertiary interactions between the β- and γ-domains of the molecule, specifically nucleotides (34)CCCA(37) in loop C and nucleotides (85)GGGU(88) in loop D. In addition we propose tertiary base-pairing in A100-U53 between loops B and E. We have confirmed this model by NMR spectroscopy and by chemical modification with diethylpyrocarbonate. Our results are consistent with the proposed model and are also applicable to all eukaryotic 5S rRNAs. Our model is clearly differentiated from others by intramolecular tertiary hydrogen bonds between the two domains.  相似文献   

3.
The secondary and tertiary structures of Xenopus oocyte and somatic 5S rRNAs were investigated using chemical and enzymatic probes. The accessibility of both RNAs towards single-strand specific nucleases (T1, T2, A and S1) and a helix-specific ribonuclease from cobra venom (RNase V1) was determined. The reactivity of nucleobase N7, N3 and N1 positions towards chemical probes was investigated under native (5 mM MgCl2, 100 mM KCl, 20 degrees C) and semi-denaturing (1 mM EDTA, 20 degrees C) conditions. Ethylnitrosourea was used to identify phosphates not reactive towards alkylation under native conditions. The results obtained confirm the presence of the five helical stems predicted by the consensus secondary structure model of 5S rRNA. The chemical reactivity data indicate that loops C and D are involved in a number of tertiary interactions, and loop E folds into an unusual secondary structure. A comparison of the data obtained for the two types of Xenopus 5S rRNA indicates that the conformations of the oocyte and somatic 5S rRNAs are very similar. However, the data obtained with nucleases under native conditions, and chemical probes under semi-denaturing conditions, reveal that helices III and IV in the somatic 5S rRNA are less stable than the same structures in oocyte 5S rRNA. Using chimeric 5S rRNAs, it was possible to demonstrate that the relative resistance of oocyte 5S rRNA to partial denaturation in 4 M urea is conferred by the five oocyte-specific nucleotide substitutions in loop B/helix III. In contrast, the superior stability of oocyte 5S rRNA in the presence of EDTA is related to a single C substitution at position 79.  相似文献   

4.
A new model of secondary and tertiary structure of higher plant 5S RNA is proposed. It consists of three helical domains: domain alpha includes stem I; domain beta contains stems II and III and loops B and C; domain gamma consists of stems IV and V and loops D and E. Except for, presumably, a canonical RNA-A like domain alpha, the two remaining domains apparently adopt a perturbed RNA-A structure due to irregularities within internal loops B and E and three bulges occurring in the model. Bending of RNA could bring loops B and E and/or C and D closer making tertiary interactions likely. The model differs from that suggested for eukaryotic 5S rRNA, by organization of domain gamma. Our model is based on the results of partial digestion obtained with single- and double-strand RNA specific nucleases. The proposed secondary structure is strongly supported by the observation that crude plant 5S rRNA contains abundant RNA, identified as domain gamma of 5S rRNA. Presumably it is excised from the 5S rRNA molecule by a specific nuclease present in lupin seeds. Experimental results were confirmed by computer-aided secondary structure prediction analysis of all higher plant 5S rRNAs. Differences observed between earlier proposed models and our proposition are discussed.  相似文献   

5.
The ErmE methyltransferase confers resistance to MLS antibiotics by specifically dimethylating adenine 2058 (A2058, Escherichia coli numbering) in bacterial 23S rRNA. To define nucleotides in the rRNA that are part of the motif recognized by ErmE, we investigated both in vivo and in vitro the effects of mutations around position A2058 on methylation. Mutagenizing A2058 (to G or U) completely abolishes methylation of 23S rRNA by ErmE. No methylation occurred at other sites in the rRNA, demonstrating the fidelity of ErmE for A2058. Breaking the neighboring G2057-C2611 Watson-Crick base pair by introducing either an A2057 or a U2611 mutation, greatly reduces the rate of methylation at A2058. Methylation remains impaired after these mutations have been combined to create a new A2057-U2611 Watson-Crick base interaction. The conformation of this region in 23S rRNA was probed with chemical reagents and it was shown that the A2057 and U2611 mutations alone and in combination alter the reactivity of A2058 and adjacent bases. However, mutagenizing position G-->A2032 in an adjacent loop, which has been implicated to interact with A2058, alters neither the ErmE methylation at A2058 nor the accessibility of this region to the chemical reagents. The data indicate that a less-exposed conformation at A2058 leads to reduction in methylation by ErmE. Nucleotide G2057 and its interaction with C2611 maintain the conformation at A2058, and are thus important in forming the structural motif that is recognized by the ErmE methyltransferase.  相似文献   

6.
The cytotoxin alpha-sarcin was employed to test the model of secondary and tertiary structures of plant 5S rRNAs, which we recently proposed [(1990) Int. J. Biol. Macromol. (in press)]. alpha-Sarcin is a novel ribonuclease that hydrolyzes phosphodiester bonds adjacent to purines in nucleic acids. The digestion pattern obtained for lupin and wheat germ 5S rRNAs strongly suggests the existence of tertiary interactions between residues C34, C35, C36, A37 and G85, G86, G87, U88 as previously proposed. The results on the secondary structure of plant 5S rRNA are in line with a previously proposed model.  相似文献   

7.
Thermal unfolding of 5S rRNA from wheat germ (WG) and lupin seeds (LS) was studied in solution. Experimental curves of differential scanning calorimetry (DSC) were resolved into particular components according to the thermodynamic model of two-state transitions. The DSC temperature profiles for WG and LS differ significantly in spite of very high similarities in the sequence of both molecules. Those results are interpreted according to a model of the secondary and tertiary molecular structure of 5S rRNA. A comparison of the 'nearest neighbour' model of interaction with the experimental thermodynamic results enables a complete interpretation of the process of the melting of its structures. In light of our observations, the crucial differences between both DSC melting profiles are mainly an outcome of different thermodynamic properties of the first helical fragment 'A' made up of 9 complementary base pairs. It contains 6 differences in the nucleotide sequence of both types of molecules, which still retain 9-meric double helixes. The temperature stability of his helix in WG is much lower than of the LS one. Moreover, the results supply evidence for a strong specific tertiary interaction between the two hairpin loops 'c' and 'e' in both 5S rRNA molecules, modulated by small differences in the thermodynamic properties of both 5S rRNA.  相似文献   

8.
Higher order structure of chloroplastic 5S ribosomal RNA from spinach   总被引:4,自引:0,他引:4  
The secondary and tertiary structure of chloroplastic 5S ribosomal RNA from spinach was investigated by the use of several chemical and enzymatic structure probes. The four bases were monitored at one of their Watson-Crick base-pairing positions with dimethyl sulfate [at A(N1) and C(N3)] and with 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate [at G(N1) and U(N3)]. Position N7 of purines was probed with diethyl pyrocarbonate (adenines) and with dimethyl sulfate (guanines). Ethylnitrosourea was used to probe phosphate involved in tertiary interaction or in cation coordination. In order to estimate the degree of stability of helices, the various chemical reagents were employed under "native" conditions (300 mM KCl and 20 mM magnesium at 37 degrees C), under "semidenaturing" conditions [1 mM ethylenediaminetetraacetic acid (EDTA) at 37 degrees C], and under denaturing conditions (1 mM EDTA at 90 degrees C). Unstructured regions were also tested with single-strand-specific nucleases T1, U2, and S1 and double-stranded or stacked regions with RNase V1 from cobra Naja naja oxiana venom. The results confirm the existence of the five helices and the two external loops proposed in the consensus model of 5S rRNA. However, the regions depicted as unpaired internal loops appear to be folded into a more complex conformation. A three-dimensional model derived from the present data and graphic modeling for a region encompassing helix IV, helix V, loop D, and loop E (nucleotides 70-110) is proposed. Nucleotides in the so-called loop E (73-79/100-106) display unusual features: Noncanonical base pairs (A-A and A-G) are formed, and three nucleotides (C75, U78, and U105) are bulging out. This region adopts an unwound and extended conformation that can be well suited for tertiary interactions or for protein binding. Several bases and phosphates candidate for the tertiary folding of the RNA were also identified.  相似文献   

9.
The solution structure of an oligonucleotide containing the helix III sequence from Xenopus oocyte 5 S rRNA has been determined by NMR spectroscopy. Helix III includes two unpaired adenosine residues, flanked on either side by G:C base-pairs, that are required for binding of ribosomal protein L5. The consensus conformation of helix III in the context provided by this oligonucleotide has the two adenosine residues located in the minor groove and stacked upon the 3' flanking guanosine residue, consistent with biochemical studies of free 5 S rRNA in solution. A distinct break in stacking that occurs between the first adenosine residue of the bulge and the flanking 5' guanosine residue exposes the base of the adenosine residue in the minor groove and the base of the guanosine residue in the major groove. The major groove of the helix is widened at the site of the unpaired nucleotides and the helix is substantially bent; nonetheless, the G:C base-pairs flanking the bulge are intact. The data indicate that there may be conformational heterogeneity centered in the bulge region. The corresponding adenosine residues in the Haloarcula marismortui 50 S ribosomal subunit form a dinucleotide platform, which is quite different from the motif seen in solution. Thus, the conformation of helix III probably changes when 5 S rRNA is incorporated into the ribosome.  相似文献   

10.
Base substitutions have been introduced into the highly conserved sequences of loops D and E within domain 3 of Xenopus laevis oocyte 5 S rRNA. The effects of these mutations on the solution structure of this 5 S rRNA have been studied by means of probing with nucleases, and with chemical reagents under native and semi-denaturing conditions. The data obtained with these mutants support the graphic model of Xenopus oocyte 5 S rRNA proposed by Westhof et al. In particular, our results rule out the existence of long-range base-pairing interactions between loop C and either loop D or loop E. The data also confirm that loops D and E in the wild-type 5 S RNA adopt unusual secondary structures and illustrate the importance of nucleotide sequence in the formation of intrinsic local loop conformations via non-canonical base-pairs and specific base-phosphate contacts. Consistent with this conclusion is our observation that the domain 3 fragment of Xenopus oocyte 5 S rRNA adopts the same conformation as the corresponding region in the full-length 5 S rRNA.  相似文献   

11.
12.
J H Kim  A G Marshall 《Biochemistry》1990,29(3):632-640
Three different fragments of Bacillus megaterium ribosomal 5S RNA have been produced by enzymatic cleavage with ribonuclease T1. Fragment A consists of helices II and III, fragment B contains helix IV, and fragment C contains helix I of the universal 5S rRNA secondary structure. All (eight) imino proton resonances in the downfield region (9-15 ppm) of the 500-MHz proton FT NMR spectrum of fragment B have been identified and assigned as G80.C92-G81.C91-G82.C90-A83.++ +U89-C84.G88 and three unpaired U's (U85, U86, and U87) in helix IV by proton homonuclear Overhauser enhancement connectivities. The secondary structure in helix IV of the prokaryotic loop is completely demonstrated spectroscopically for the first time in any native or enzyme-cleaved 5S rRNA. In addition, G21.C58-A20.U59-G19.C60-A18.U61 in helix II, U32.A46-G31.C47-C30.G48-C29.G49 in helix III, and G4.C112-G5.C111-U6.G110 in the terminal stem (helix I) have been assigned by means of NOE experiments on intact 5S rRNA and its fragments A and C. Base pairs in helices I-IV of the universal secondary structure of B. megaterium 5S RNA are described.  相似文献   

13.
Several types of reagents that react with amino acid side chains induced repetitive phasic contracture of skinned skeletal muscle from frogs. The presence of 10 mM procaine or 5 mM magnesium in the medium or disruption of the sarcoplasmic reticulum (SR) eliminated this contracture, indicating that the calcium-induced calcium-release mechanism of SR is involved in the contraction. Dithiothreitol inhibited the contracture induced by chloramine T, N-acetylimidazole, or p-chloromercuriphenylsulfonic acid (pCMPS) but not in the case of carbodiimide, phenylglyoxal, trinitrobenzenesulfonic acid, diethylpyrocarbonate (DEP), or N-chlorosuccinimide (NCS). Therefore, modification of groups other than the sulfhydryl ones seems to induce contractures under such conditions. The amplitude of the caffeine-induced contracture decreased after treatment with pCMPS, DEP, or NCS. NCS shifted the pCa-tension curve toward low pCa in the SR-disrupted fibers. This shift would explain the decrease in the caffeine contracture. It is tentatively concluded that pCMPS and DEP release a large amount of calcium from SR.  相似文献   

14.
Interactions within the decoding center of the 30 S ribosomal subunit have been investigated by constructing all 15 possible mutations at nucleotides C1402 and A1500 in helix 44 of 16 S rRNA. As expected, most of the mutations resulted in highly deleterious phenotypes, consistent with the high degree of conservation of this region and its functional importance. A total of seven mutants were viable under conditions where the mutant ribosomes comprised 100 % of the ribosomal pool. A suppressor mutation specific for the C1402U-A1500G mutant was isolated at position 1520 in helix 45 of 16 S rRNA. In addition, lack of dimethylation of A1518/A1519 caused by mutation of the ksgA methylase enhanced the deleterious effect of many of the 1402/1500 mutations. These data suggest that a higher-order interaction between helices 44 and 45 in 16 S rRNA is important for the proper functioning of the ribosome. This is consistent with the recent high-resolution crystal structures of the 30 S subunit, which show a tertiary interaction between the 1402/1500 region of helix 44 and the dimethyl A stem loop.  相似文献   

15.
Ribosomal 5S RNA is present in all eubacterial and eukaryotic ribosomes. Despite a large amount of experimental data on the primary and secondary structures of these types of molecules, details of their tertiary structure and their precise function in protein biosynthesis are still not known. Recently we have proposed a new model for the tertiary structure of plant 5S rRNA. In this study we applied the Fe(II)-mediated cleavage reaction to test the model. The data presented here provide experimental evidence that in the 5S rRNA molecule only a few nucleotides are buried in the tertiary structure. Similar experiments performed with methionine initiator tRNA gave results which imply the difference in its structure when compared with the X-ray structure of yeast tRNAPhe.  相似文献   

16.
The 5S rRNAs of Escherichia coli, Bacillus stearothermophilus, and B. subtilis were isolated and their molecular conformation examined. All three 5S rRNAs were similar with regard to nucleotide chain length, base composition and general configuration. Several major differences were apparent between the secondary and tertiary conformations of the 5S rRNA of E. coli and the genus Bacillus. Only minor differences were noted between those from the two Bacillus species. Each 5S rRNA species had a different 5′-terminal nucleotide: E. coli-U; B. stearothermophilus-C; B. subtilis-G.  相似文献   

17.
Abstract

The formation and stability of structural elements in two 5S rRNA molecules from wheat germ (WG) and lupin seeds (LS) as a function of Mg2+ concentration in solution was determined using the adiabatic differential scanning microcalorimetry (DSC). The experimentally determined thermodynamic parameters are compared with calculations using thermodynamic databases used for prediction of RNA structure. The 5S rRNA molecules which show minor differences in the nucleotide sequence display very different thermal unfolding profiles (DSC profiles). Numerical deconvolution of DSC profiles provided information about structural transformations that take place in both 5S rRNA molecules. A comparative analysis of DSC data and the theoretical thermodynamic models of the structure was used to establish a relationship between the constituting transitions found in the melting profiles and the unfolding of structural domains of the 5S rRNA and stability of its particular helical elements.

Increased concentration of Mg2+ ions induces additional internal interactions stabilising 5S rRNA structures found at low Na+ concentrations. Observed conformational transitions suggest a structural model in which the extension of helical region E dominates over the postulated tertiary interaction between hairpin loops. We propose that helix E is stabilised by a sequence of non-standard pairings extending this helix by the formation of tetra loop e and an almost total reduction of loop d between helices E and D. Two hairpin structures in both 5S rRNA molecules: the extended C-C' and the extended E-E'-E” hairpins appear as the most stable elements of the structure. The cooperativity of the unfolding of helixes in these 5S rRNA molecules changes already at 2 mM Mg2+.  相似文献   

18.
Electron micrographs of Escherichia coli 23 S rRNA molecules obtained by scanning transmission electron microscopy, unstained and under nondenaturing conditions, reveal previously unresolved structural patterns. The complexity of the pattern is dependent upon the ambient ionic strength conditions. In water and in very low ionic strength buffer, the conformation of 23 S rRNA is characterized by an extended framework, with short side branches related to the secondary and tertiary structure of the molecule. The total length of this filamentous complex is approximately 2500 A, only about one-fourth of the length of 23 S rRNA when fully stretched under the denaturing conditions used for imaging by conventional electron microscopy. These data, supplemented by the determination of the linear density (M/L), suggest that in low ionic strength the backbone of 23 S rRNA is formed by a structure corresponding, on the average, to the mass of four nucleotide strands (M/L approximately equal to 480 Da/A). With increasing ionic strength, 23 S rRNA coils into more compact forms. Molecules in these states can be characterized by apparent radii of gyration (RG), which can be calculated from the mass distribution within the digitized images of individual RNA molecules. The 23 S rRNA is in its most condensed form (RG = 115 A) in ribosomal reconstitution buffer; however, it still does not attain the compactness of the large subunit (RG = 69 A), nor does it show any resemblance to the native 50 S subunit. The net content of ordered secondary structure, as determined by circular dichroism spectroscopy, is not visibly affected by the changes of ionic strength conditions. These results imply that the observed conformational changes in 23 S rRNA are caused by intramolecular folding of the 23 S rRNA strands induced by the shielding effect of ambient charges.  相似文献   

19.
Under physiological conditions, the ErmE methyltransferase specifically modifies a single adenosine within ribosomal RNA (rRNA), and thereby confers resistance to multiple antibiotics. The adenosine (A2058 in Escherichia coli 23S rRNA) lies within a highly conserved structure, and is methylated efficiently, and with equally high fidelity, in rRNAs from phylogenetically diverse bacteria. However, the fidelity of ErmE is reduced when magnesium is removed, and over twenty new sites of ErmE methylation appear in E. coli 16S and 23S rRNAs. These sites show widely different degrees of reactivity to ErmE. The canonical A2058 site is largely unaffected by magnesium depletion and remains the most reactive site in the rRNA. This suggests that methylation at the new sites results from changes in the RNA substrate rather than the methyltransferase. Chemical probing confirms that the rRNA structure opens upon magnesium depletion, exposing potential new interaction sites to the enzyme. The new ErmE sites show homology with the canonical A2058 site, and have the consensus sequence aNNNcgGAHAg (ErmE methylation occurs exclusively at adenosines (underlined); these are preceded by a guanosine, equivalent to G2057; there is a high preference for the adenosine equivalent to A2060; H is any nucleotide except G; N is any nucleotide; and there are slight preferences for the nucleotides shown in lower case). This consensus is believed to represent the core of the motif that Erm methyltransferases recognize at their canonical A2058 site. The data also reveal constraints on the higher order structure of the motif that affect methyltransferase recognition.  相似文献   

20.
The lack of colinearity between nucleotide sequence of the lupin 5.8 S rDNA gene (Rafalski, A.J., Wiewiórowski, M. and Soll, D. (1983) FEBS Lett. 152, 241-246) and 5.8 S rRNA of other plants (Erdmann, V.A. and Wolters, J. (1986) Nucleic Acids Res. 14, r1-r59.) prompted us to clarify this point by sequencing the native lupin 5.8 S rRNA. The sequence analysis was carried out using enzymatic and chemical methods. Lupin seed 5.8 S rRNA contains 164 nucleotides, including four modified ones: two residues of 2'-O-methylguanosine, one pseudouridine and one 2'-O-methyladenosine. The nucleotide sequence homology with the other plant 5.8 S rRNAs is approx. 88-96%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号