共查询到20条相似文献,搜索用时 15 毫秒
1.
Structure of yeast triosephosphate isomerase at 1.9-A resolution 总被引:14,自引:0,他引:14
The structure of yeast triosephosphate isomerase (TIM) has been solved at 3.0-A resolution and refined at 1.9-A resolution to an R factor of 21.0%. The final model consists of all non-hydrogen atoms in the polypeptide chain and 119 water molecules, a number of which are found in the interior of the protein. The structure of the active site clearly indicates that the carboxylate of the catalytic base, Glu 165, is involved in a hydrogen-bonding interaction with the hydroxyl of Ser 96. In addition, the interactions of the other active site residues, Lys 12 and His 95, are also discussed. For the first time in any TIM structure, the "flexible loop" has well-defined density; the conformation of the loop in this structure is stabilized by a crystal contact. Analysis of the subunit interface of this dimeric enzyme hints at the source of the specificity of one subunit for another and allows us to estimate an association constant of 10(14)-10(16) M-1 for the two monomers. The analysis also suggests that the interface may be a particularly good target for drug design. The conserved positions (20%) among sequences from 13 sources ranging on the evolutionary scale from Escherichia coli to humans reveal the intense pressure to maintain the active site structure. 相似文献
2.
J Ding G Koellner H P Grunert W Saenger 《The Journal of biological chemistry》1991,266(23):15128-15134
Ribonuclease T1 was purified from an Escherichia coli overproducing strain and co-crystallized with adenosine 2'-monophosphate (2'-AMP) by microdialysis against 50% (v/v) 2-methyl-2,4-pentanediol in 20 mM sodium acetate, 2 mM calcium acetate, pH 4.2. The crystals have orthorhombic space group P2(1)2(1)2(1), with cell dimensions a = 48.93(1), b = 46.57(4), c = 41.04(2) A; Z = 4 and V = 93520 A3. The crystal structure was determined on the basis of the isomorphous structure of uncomplexed RNase T1 (Martinez-Oyanedel et al. (1991) submitted for publication) and refined by least squares methods using stereochemical restraints. The refinement was based on Fhkl of 7,445 reflections with Fo greater than or equal to 1 sigma (Fo) in the resolution range of 10-1.8 A, and converged at a crystallographic R factor of 0.149. The phosphate group of 2'-AMP is tightly hydrogen-bonded to the side chains of the active site residues Tyr38, His40, Glu58, Arg77, and His92, comparable with vanadate binding in the respective complex (Kostrewa, D., Choe, H.-W., Heinemann, U., and Saenger, W. (1989) Biochemistry 28, 7592-7600) and different from the complex with guanosine 2'-monophosphate (Arni, R., Heinemann, U., Tokuoka, R., and Saenger, W. (1988) J. Biol. Chem. 263, 15358-15368) where the phosphate does not interact with Arg77 and His92. The adenosine moiety is not located in the guanosine recognition site but stacked on Gly74 carbonyl and His92 imidazole, which serve as a subsite, as shown previously (Lenz, A., Cordes, F., Heinemann, U., and Saenger, W. (1991) J. Biol. Chem. 266, 7661-7667); in addition, there are hydrogen bonds adenine N6H . . . O Gly74 (minor component of three-center hydrogen bond) and adenosine O5' . . . O delta Asn36. These binding interactions readily explain why RNase T1 has some affinity for 2'-AMP. The molecular structure of RNase T1 is only marginally affected by 2'-AMP binding. Its "empty" guanosine-binding site features a flipped Asn43-Asn44 peptide bond and the side chains of Tyr45, Glu46 adopt conformations typical for RNase T1 not involved in guanosine binding. The side chains of amino acids Leu26, Ser35, Asp49, Val78 are disordered. The disorder of Val78 is of interest since this amino acid is located in a hydrophobic cavity, and the disorder appears to be correlated with an "empty" guanosine-binding site. The two Asp15 carboxylate oxygens and six water molecules coordinate a Ca2+ ion 8-fold in the form of a square antiprism. 相似文献
3.
Enzymes of glycolysis in Trypanosoma brucei have been identified as potential drug targets for African sleeping sickness because glycolysis is the only source of ATP for the bloodstream form of this parasite. Several inhibitors were previously reported to bind preferentially to trypanosomal phosphoglucose isomerase (PGI, the second enzyme in glycolysis) than to mammalian PGIs, which suggests that PGI might make a good target for species-specific drug design. Herein, we report recombinant expression, purification, crystallization and X-ray crystal structure determination of T. brucei PGI. One structure solved at 1.6 A resolution contains a substrate, D-glucose-6-phosphate, in an extended conformation in the active site. A second structure solved at 1.9 A resolution contains a citrate molecule in the active site. The structures are compared with the crystal structures of PGI from humans and from Leishmania mexicana. The availability of recombinant tPGI and its first high-resolution crystal structures are initial steps in considering this enzyme as a potential drug target. 相似文献
4.
X-ray crystal structure of D-xylose isomerase at 4-A resolution 总被引:10,自引:0,他引:10
H L Carrell B H Rubin T J Hurley J P Glusker 《The Journal of biological chemistry》1984,259(5):3230-3236
The structure of D-xylose isomerase from Streptomyces rubiginosus has been determined at 4-A resolution using multiple isomorphous phasing techniques. The folding of the polypeptide chain has been established and consists of two structural domains. The larger domain consists of eight beta-strand alpha-helix (beta alpha) units arranged in a configuration similar to that found for triose phosphate isomerase, 2-keto-3-deoxy-6-phosphogluconate aldolase, and pyruvate kinase. The smaller domain forms a loop away from the larger domain but overlapping the larger domain of another subunit so that a tightly bound dimer is formed. The tetramer then consists of two such dimers. The location of the active site in the enzyme has been tentatively identified from studies using a crystal grown from a solution containing the inhibitor xylitol. 相似文献
5.
Crystal structure of muconolactone isomerase at 3.3 A resolution 总被引:2,自引:0,他引:2
The crystal structure of muconolactone isomerase from Pseudomonas putida, a unique molecule with ten 96 amino acid subunits and 5-fold, and 2-fold symmetries, has been solved at 3.3 A resolution. The non-crystallographic symmetries were used to refine the initial single isomorphous replacement phases and produce an interpretable 10-fold averaged map. The backbone trace is complete and confirmed by the amino acid sequence fit. Each subunit is composed of a body with two alpha-helices and an antiparallel twisted beta-sheet of four strands, and an extended arm. The helices and the sheet fold to form a two-layered structure with an enclosed hydrophobic core and a partially formed putative active site pocket. The C-terminal arm of another subunit related by a local dyad symmetry extends over the core to complete this pocket. The decameric protein is almost spherical, with the helices forming the external coat. There is a large hydrophilic cavity in the center with open ends along the 5-fold axis. Molecular interactions between subunits are extensive. Each subunit contacts four neighbors and loses nearly 40% of its solvent contact area on oligomerization. 相似文献
6.
Wester MR Yano JK Schoch GA Yang C Griffin KJ Stout CD Johnson EF 《The Journal of biological chemistry》2004,279(34):35630-35637
The structure of human P450 2C9 complexed with flurbiprofen was determined to 2.0 A by x-ray crystallography. In contrast to other structurally characterized P450 2C enzymes, 2C5, 2C8, and a 2C9 chimera, the native catalytic domain of P450 2C9 differs significantly in the conformation of the helix F to helix G region and exhibits an extra turn at the N terminus of helix A. In addition, a distinct conformation of the helix B to helix C region allows Arg-108 to hydrogen bond with Asp-293 and Asn-289 on helix I and to interact directly with the carboxylate of flurbiprofen. These interactions position the substrate for regioselective oxidation in a relatively large active site cavity and are likely to account for the high catalytic efficiency exhibited by P450 2C9 for the regioselective oxidation of several anionic non-steroidal anti-inflammatory drugs. The structure provides a basis for interpretation of a number of observations regarding the substrate selectivity of P450 2C9 and the observed effects of mutations on catalysis. 相似文献
7.
The crystal structure of recombinant rabbit interferon-gamma was solved by the multiple isomorphous replacement technique at 2.7-A resolution and refined to a crystallographic R-factor of 26.2%. The interferon crystallizes with one-half of the functional dimer in the asymmetric unit, with the two polypeptide chains of the dimer related by a crystallographic 2-fold symmetry axis. The structure is predominantly alpha-helical with extensive interdigitation of the alpha-helical segments of the two polypeptide chains. 相似文献
8.
S100A2 is an EF hand-containing Ca2 +-binding protein of the family of S100 proteins. The protein is localized exclusively in the nucleus and is involved in cell cycle regulation. It attracted most interest by its function as a tumor suppressor via p53 interaction. We determined the crystal structure of homodimeric S100A2 in the Ca2 +-free state at 1.6-Å resolution. The structure revealed structural differences between subunits A and B, especially in the conformation of a loop that connects the N- and C-terminal EF hands and represents a part of the target-binding site in S100 proteins. Analysis of the hydrogen bonding network and molecular dynamics calculations indicate that one of the two observed conformations is more stable. The structure revealed Na+ bound to each N-terminal EF hand of both subunits coordinated by oxygen atoms of the backbone carbonyl and water molecules. Comparison with the structures of Ca2 +-free S100A3 and S100A6 suggests that Na+ might occupy the S100-specific EF hand in the Ca2 +-free state. 相似文献
9.
S Ritter R G Hiller P M Wrench W Welte K Diederichs 《Journal of structural biology》1999,126(2):86-97
The structure of R-phycoerythrin (R-PE) from the red alga Griffithsia monilis was solved at 1.90-A resolution by molecular replacement, using the atomic coordinates of cyanobacterial phycocyanin from Fremyella diplosiphon as a model. The crystallographic R factor for the final model is 17.5% (Rfree 22.7%) for reflections in the range 100-1.90 A. The model consists of an (alphabeta)2 dimer with an internal noncrystallographic dyad and a fragment of the gamma-polypeptide. The alpha-polypeptide (164 amino acid residues) has two covalently bound phycoerythrobilins at positions alpha82 and alpha139. The beta-polypeptide (177 residues) has two phycoerythrobilins bound to residues beta82 and beta158 and one phycourobilin covalently attached to rings A and D at residues beta50 and beta61, respectively. The electron density of the gamma-polypeptide is mostly averaged out by threefold crystallographic symmetry, but a dipeptide (Gly-Tyr) and one single Tyr could be modeled. These two tyrosine residues of the gamma-polypeptide are in close proximity to the phycoerythrobilins at position beta82 of two symmetry-related beta-polypeptides and are related by the same noncrystallographic dyad as the (alphabeta)2 dimer. Possible energy transfer pathways are discussed briefly. 相似文献
10.
Crystal structure of Escherichia coli CheY refined at 1.7-A resolution 总被引:19,自引:0,他引:19
The three-dimensional structure of wild-type CheY from Escherichia coli has been refined by stereochemically restrained least squares minimization to a crystallographic R-factor of 15.1% at 1.7-A resolution. The structure contains 1165 atoms, including all atoms of the protein, 147 water molecules, and three sulfate ions. The final model has root mean square deviations of 0.018 and 0.049 A from idealized bond lengths and angle distances, respectively. Seven amino acid side chains have been modeled in dual conformations. CheY folds as a compact (beta/alpha)5 globular protein, with the phosphorylation region contained in a cavity on one face of the molecule. This active site area is bordered by the carboxyl termini of the three central beta-strands, by alpha 1, and by the loop connecting beta 5 to alpha 5. The Lys-109 side chain of this loop extends into the active site by virtue of its cis peptide bond conformation preceding Pro-110. The epsilon-amino group of Lys-109 is in close bonding contact with the carboxyl group of Asp-57, the residue that is phosphorylated in the activation process of CheY. The details of the hydrogen bonding network in the phosphorylation region indicate that structural rearrangements must accompany the phosphorylation of Asp-57. 相似文献
11.
Crystal structure of recombinant human triosephosphate isomerase at 2.8 A resolution. Triosephosphate isomerase-related human genetic disorders and comparison with the trypanosomal enzyme. 总被引:1,自引:3,他引:1 下载免费PDF全文
S. C. Mande V. Mainfroid K. H. Kalk K. Goraj J. A. Martial W. G. Hol 《Protein science : a publication of the Protein Society》1994,3(5):810-821
The crystal structure of recombinant human triosephosphate isomerase (hTIM) has been determined complexed with the transition-state analogue 2-phosphoglycolate at a resolution of 2.8 A. After refinement, the R-factor is 16.7% with good geometry. The asymmetric unit contains 1 complete dimer of 53,000 Da, with only 1 of the subunits binding the inhibitor. The so-called flexible loop, comprising residues 168-174, is in its "closed" conformation in the subunit that binds the inhibitor, and in the "open" conformation in the other subunit. The tips of the loop in these 2 conformations differ up to 7 A in position. The RMS difference between hTIM and the enzyme of Trypanosoma brucei, the causative agent of sleeping sickness, is 1.12 A for 487 C alpha positions with 53% sequence identity. Significant sequence differences between the human and parasite enzymes occur at about 13 A from the phosphate binding site. The chicken and human enzymes have an RMS difference of 0.69 A for 484 equivalent residues and about 90% sequence identity. Complementary mutations ensure a great similarity in the packing of side chains in the core of the beta-barrels of these 2 enzymes. Three point mutations in hTIM have been correlated with severe genetic disorders ranging from hemolytic disorder to neuromuscular impairment. Knowledge of the structure of the human enzyme provides insight into the probable effect of 2 of these mutations, Glu 104 to Asp and Phe 240 to Ile, on the enzyme. The third mutation reported to be responsible for a genetic disorder, Gly 122 to Arg, is however difficult to explain. This residue is far away from both catalytic centers in the dimer, as well as from the dimer interface, and seems unlikely to affect stability or activity. Inspection of the 3-dimensional structure of trypanosomal triosephosphate isomerase, which has a methionine at position 122, only increased the mystery of the effects of the Gly to Arg mutation in the human enzyme. 相似文献
12.
The crystal structure of cytochrome c peroxidase (EC 1.11.1.5) has been refined to an R factor of 0.20 computed for all reflections to 1.7 A. The refined molecular model includes 263 bound water molecules and allows for x-ray scattering by amorphous solvent. The mean positional error in atomic coordinates is estimated to lie between 0.12 and 0.21 A. Two factors are identified which may account for the ability of the enzyme to stabilize high-oxidation states of the heme iron during catalysis: 1) the proximal histidine forms a hydrogen bond with a buried aspartic acid side chain, Asp-235; and 2) the heme environment is more polar than in the cytochromes c or globins, owing to the presence of the partially buried side-chain of Arg-48 and five water molecules bound in close proximity to the heme. Two of these occupy the presumed peroxide-binding site. Two candidates are likely for the side chain that is oxidized to a free radical during formation of Compound I: 1) Trp-51, which rests 3.3 A above the heme plane in close proximity (2.7 A) to the sixth coordination position; and 2) Met-172, which is 3.7 A from the heme. Nucleophilic stabilization of the methionyl cation radical may be possible via Asp-235. His-181 is found to lie coplanar with the heme in a niche between the two propionates near the suspected cytochrome c-binding site. A network of hydrogen bonds involving this histidine may provide a preferred pathway for electron transfer between hemes. 相似文献
13.
Primary structure of human triosephosphate isomerase 总被引:10,自引:0,他引:10
Human placental triosephosphate isomerase was isolated by an improved procedure and recovered with the highest specific activity ever reported. Employing this purification procedure, sufficient amounts of the enzyme were obtained for detailed primary structural studies. For sequences analysis, the enzyme was reduced and carboxymethylated and subjected to tryptic and chymotryptic digestions. The peptide mixtures were separated by high-performance liquid chromatography using octyl or alkylphenyl reverse-phase columns and trifluoroacetic acid/acetonitrile gradient elution systems. Sequence analyses of the intact enzyme, tryptic, chymotryptic, and cyanogen bromide peptides were accomplished using high-sensitivity solid-phase sequencing procedures with either 4-N,N-dimethylaminoazobenzene-4'-isothiocyanate or phenylisothiocyanate. The primary structure of human triosephosphate isomerase is constructed from the alignment of the tryptic peptides with the analysis of the overlapping chymotryptic peptides. The enzyme is a dimeric molecule consisting of two identical polypeptide chains with 248 amino acid residues and a calculated subunit molecular mass of 26,750 daltons. A comparison of the amino acid sequences from the human placental enzyme and from other species such as rabbit, chicken, and coelacanth muscles showed relatively high sequence homology, indicating that the evolution of the enzyme is very conservative. The amino acids of the active-site pocket and the subunit-subunit contact sites exhibit few changes. 相似文献
14.
The crystal structure of the transition-state analogue 2-phosphoglycolate (2PG) bound to methylglyoxal synthase (MGS) is presented at a resolution of 2.0 A. This structure is very similar to the previously determined structure of MGS complexed to formate and phosphate. Since 2PG is a competitive inhibitor of both MGS and triosephosphate isomerase (TIM), the carboxylate groups of each bound 2PG from this structure and the structure of 2PG bound to TIM were used to align and compare the active sites despite differences in their protein folds. The distances between the functional groups of Asp 71, His 98, His 19, and the carboxylate oxygens of the 2PG molecule in MGS are similar to the corresponding distances between the functional groups of Glu 165, His 95, Lys 13, and the carboxylate oxygens of the 2PG molecule in TIM. However, these spatial relationships are enantiomorphic to each other. Consistent with the known stereochemical data, the catalytic base Asp 71 is positioned on the opposite face of the 2PG-carboxylate plane as Glu 165 of TIM. Both His 98 of MGS and His 95 of TIM are in the plane of the carboxylate of 2PG, suggesting that these two residues are homologous in function. While His 19 of MGS and Lys 13 of TIM appear on the opposite face of the 2PG carboxylate plane, their relative location to the 2PG molecule is quite different, suggesting that they probably have different functions. Most remarkably, unlike the coplanar structure found in the 2PG molecule bound to TIM, the torsion angle around the C1-C2 bond of 2PG bound to MGS brings the phosphoryl moiety out of the molecule's carboxylate plane, facilitating elimination. Further, the superimposition of this structure with the structure of MGS bound to formate and phosphate suggests a model for the enzyme bound to the first transition state. 相似文献
15.
A M de Vos M H Ultsch R F Kelley K Padmanabhan A Tulinsky M L Westbrook A A Kossiakoff 《Biochemistry》1992,31(1):270-279
The crystal structure of the kringle 2 domain of tissue plasminogen activator was determined and refined at a resolution of 2.43 A. The overall fold of the molecule is similar to that of prothrombin kringle 1 and plasminogen kringle 4; however, there are differences in the lysine binding pocket, and two looping regions, which include insertions in kringle 2, take on very different conformations. Based on a comparison of the overall structural homology between kringle 2 and kringle 4, a new sequence alignment for kringle domains is proposed that results in a division of kringle domains into two groups, consistent with their proposed evolutionary relation. The crystal structure shows a strong interaction between a lysine residue of one molecule and the lysine/fibrin binding pocket of a noncrystallographically related neighbor. This interaction represents a good model of a bound protein ligand and is the first such ligand that has been observed in a kringle binding pocket. The structure shows an intricate network of interactions both among the binding pocket residues and between binding pocket residues and the lysine ligand. A lysine side chain is identified as the positively charged group positioned to interact with the carboxylate of lysine and lysine analogue ligands. In addition, a chloride ion is located in the kringle-kringle interface and contributes to the observed interaction between kringle molecules. 相似文献
16.
Benini S González A Rypniewski WR Wilson KS Van Beeumen JJ Ciurli S 《Biochemistry》2000,39(43):13115-13126
This article reports the first X-ray structure of the soluble form of a c-type cytochrome isolated from a Gram-positive bacterium. Bacillus pasteurii cytochrome c(553), characterized by a low reduction potential and by a low sequence homology with cytochromes from Gram-negative bacteria or eukaryotes, is a useful case study for understanding the structure-function relationships for this class of electron-transfer proteins. Diffraction data on a single crystal of cytochrome c(553) were obtained using synchrotron radiation at 100 K. The structure was determined at 0.97-A resolution using ab initio phasing and independently at 1.70 A in an MAD experiment. In both experiments, the structure solution exploited the presence of a single Fe atom as anomalous scatterer in the protein. For the 0.97-A data, the phasing was based on a single data set. This is the most precise structure of a heme protein to date. The crystallized cytochrome c(553) contains only 71 of the 92 residues expected from the intact protein sequence, lacking the first 21 amino acids at the N-terminus. This feature is consistent with previous evidence that this tail, responsible for anchoring the protein to the cytoplasm membrane, is easily cleaved off during the purification procedure. The heme prosthetic group in B. pasteurii cytochrome c(553) is surrounded by three alpha-helices in a compact arrangement. The largely exposed c-type heme group features a His-Met axial coordination of the Fe(III) ion. The protein is characterized by a very asymmetric charge distribution, with the exposed heme edge located on a surface patch devoid of net charges. A structural search of a representative set of protein structures reveals that B. pasteurii cytochrome c(553) is most similar to Pseudomonas cytochromes c(551), followed by cytochromes c(6), Desulfovibrio cytochrome c(553), cytochromes c(552) from thermophiles, and cytochromes c from eukaryotes. Notwithstanding a low sequence homology, a structure-based alignment of these cytochromes shows conservation of three helical regions, with different additional secondary structure motifs characterizing each protein. In B. pasteurii cytochrome c(553), these motifs are represented by the shortest interhelix connecting fragments observed for this group of proteins. The possible relationships between heme solvent accessibility and the electrochemical reduction potential are discussed. 相似文献
17.
Jin L Briggs SL Chandrasekhar S Chirgadze NY Clawson DK Schevitz RW Smiley DL Tashjian AH Zhang F 《The Journal of biological chemistry》2000,275(35):27238-27244
The N-terminal fragment 1-34 of parathyroid hormone (PTH), administered intermittently, results in increased bone formation in patients with osteoporosis. PTH and a related molecule, parathyroid hormone-related peptide (PTHrP), act on cells via a common PTH/PTHrP receptor. To define more precisely the ligand-receptor interactions, we have crystallized human PTH (hPTH)-(1-34) and determined the structure to 0.9-A resolution. hPTH-(1-34) crystallizes as a slightly bent, long helical dimer. Analysis reveals that the extended helical conformation of hPTH-(1-34) is the likely bioactive conformation. We have developed molecular models for the interaction of hPTH-(1-34) and hPTHrP-(1-34) with the PTH/PTHrP receptor. A receptor binding pocket for the N terminus of hPTH-(1-34) and a hydrophobic interface with the receptor for the C terminus of hPTH-(1-34) are proposed. 相似文献
18.
19.
Phosphoglucose isomerase (PGI, EC 5.3.1.9) catalyzes the interconversion of D-glucose 6-phosphate (G6P) and D-fructose 6-phosphate (F6P) and plays important roles in glycolysis and gluconeogenesis. Biochemical characterization of the enzyme has led to a proposed multistep catalytic mechanism. First, the enzyme catalyzes ring opening to yield the open chain form of the substrate. Then isomerization proceeds via proton transfer between C2 and C1 of a cis-enediol(ate) intermediate to yield the open chain form of the product. Catalysis proceeds in both the G6P to F6P and F6P to G6P directions, so both G6P and F6P are substrates. X-ray crystal structure analysis of rabbit and bacterial PGI has previously identified the location of the enzyme active site, and a recent crystal structure of rabbit PGI identified Glu357 as a candidate functional group for transferring the proton. However, it was not clear which active site amino acid residues catalyze the ring opening step. In this paper, we report the X-ray crystal structure of rabbit PGI complexed with the cyclic form of its substrate, D-fructose 6-phosphate, at 2.1 A resolution. The location of the substrate relative to the side chains of His388 suggest that His388 promotes ring opening by protonating the ring oxygen. Glu216 helps to position His388, and a water molecule that is held in position by Lys518 and Thr214 accepts a proton from the hydroxyl group at C2. Comparison to a structure of rabbit PGI with 5PAA bound indicates that ring opening is followed by loss of the protonated water molecule and conformational changes in the substrate and the protein so that a helix containing amino acids 513-520 moves in toward the substrate to form additional hydrogen bonds with the substrate. 相似文献
20.
The crystal structure of human ornithine transcarbamylase (OTCase) complexed with carbamoyl phosphate (CP) and L-norvaline (NOR) has been determined to 1.9-A resolution. There are significant differences in the interactions of CP with the protein, compared with the interactions of the CP moiety of the bisubstrate analogue N-(phosphonoacetyl)-L-ornithine (PALO). The carbonyl plane of CP rotates about 60 degrees compared with the equivalent plane in PALO complexed with OTCase. This positions the side chain of NOR optimally to interact with the carbonyl carbon of CP. The mixed-anhydride oxygen of CP, which is analogous to the methylene group in PALO, interacts with the guanidinium group of Arg-92; the primary carbamoyl nitrogen interacts with the main-chain carbonyl oxygens of Cys-303 and Leu-304, the side chain carbonyl oxygen of Gln-171, and the side chain of Arg-330. The residues that interact with NOR are similar to the residues that interact with the ornithine (ORN) moiety of PALO. The side chain of NOR is well defined and close to the side chain of Cys-303 with the side chains of Leu-163, Leu-200, Met-268, and Pro-305 forming a hydrophobic wall. C-delta of NOR is close to the carbonyl oxygen of Leu-304 (3.56 A), S-gamma atom of Cys-303 (4.19 A), and carbonyl carbon of CP (3.28 A). Even though the N-epsilon atom of ornithine is absent in this structure, the side chain of NOR is positioned to enable the N-epsilon of ornithine to donate a hydrogen to the S-gamma atom of Cys-303 along the reaction pathway. Binding of CP and NOR promotes domain closure to the same degree as PALO, and the active site structure of CP-NOR-enzyme complex is similar to that of the PALO-enzyme complex. The structures of the active sites in the complexes of aspartate transcarbamylase (ATCase) with various substrates or inhibitors are similar to this OTCase structure, consistent with their common evolutionary origin. 相似文献