首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of glycolysis by insulin in cultured rat hepatocytes is preceded by an activation of phosphofructokinase 2 (PFK 2) and subsequent rise of the fructose 2,6-bisphosphate [Fru(2,6)P2] level. Extracellular addition of ATP or puromycin prevented the hormonal effect on glycolysis. The mechanism through which the purines abolished glycolytic stimulation was investigated. 1. 50 microM ATP completely prevented the 3-5-fold insulin-dependent increase of glycolysis, irrespective of whether the cells initially possessed a low or a high Fru(2,6)P2 content. 50 microM puromycin prevented the stimulation of glycolysis by insulin only in cells whose initial Fru(2,6)P2 levels were low and had to be increased by insulin prior to the increase in glycolysis. It did not antagonize the action of insulin cells with initial high Fru(2,6)P2 content. 2. ATP exerted effects on its own; it decreased initially high Fru(2,6)P2 levels by 95% within 10 min and decreased the basal glycolytic rate by 60%. Half-maximal effects on the Fru(2,6)P2 level were obtained with about 25 microM ATP or 15 microM adenosine 5'[beta, gamma-methylene]triphosphate. ADP and adenosine-5-[gamma-thio]triphosphate were as effective as ATP, whereas 100 microM adenosine 5'[alpha, beta-methylene]triphosphate elicited no effect. Puromycin neither decreased high Fru(2,6)P2 levels nor inhibited basal glycolysis. 3. Extracellular ATP (100 microM) led to inhibition of the active form of PFK 2. Intracellular levels of Glc6P, citrate, ATP, ADP and AMP were increased by extracellular ATP, the phosphoenolpyruvate content was decreased, Fru6P and glycerol 3-phosphate levels stayed constant. Puromycin did not inhibit PFK 2. 4. Both puromycin and ATP prevented the insulin-dependent rise of the Fru(2,6)P2 level, they abolished the activation of PFK 2 by the hormone. Puromycin did not block the accumulation of Fru(2,6)P2 provoked by glucose addition; ATP also antagonized the glucose-dependent increase. 5. 100 microM ATP elevated the cAMP-dependent protein kinase activity ratio from 0.1 to 0.38 and increased the level of inositol trisphosphate by 16-fold within 5 min, whereas puromycin was without effect on either level. It is concluded that the two purines block the insulin effect on glycolysis by preventing the hormone increasing the Fru(2,6)P2 level. The mode of action, however, seems to be different: ATP antagonizes insulin action in that it leads to increased inhibition of PFK 2 whereas puromycin prevents the activation of PFK 2 by insulin.  相似文献   

2.
In the heart, the opening of sarcolemmal ATP-sensitive K(+) (K(ATP)) channels seems to be crucial for the cardiac protection against hypoxia/ischaemia. In the present study, we have exposed cardiomyocytes under hypoxia to high extracellular glucose (30 mM). Under these conditions, intracellular concentration of 1,3-bisphosphoglycerate has increased confirming stimulation of glycolysis. Perforated patch-clamp electrophysiology revealed that hypoxia induces whole-cell K(+) current in cardiomyocytes more efficiently in the presence than in the absence of high glucose. Glucose significantly promoted survival of cardiomyocytes exposed to hypoxia. HMR 1098, an antagonist of sarcolemmal K(ATP) channels, inhibited glucose-induced activation of whole-cell K(+) current during hypoxia as well as glucose-mediated cytoprotection. An inhibitor of glyceraldehyde 3-phosphate dehydrogenase, iodoacetate, inhibited glycolysis in hypoxia and blocked the activation of sarcolemmal K(ATP) channels. Based on the obtained results, we conclude that the activation of sarcolemmal K(ATP) channels is involved in glucose-mediated cardioprotection.  相似文献   

3.
In an earlier study, we observed a marked accumulation of antimony in erythrocytes of rats administered potassium antimony tartrate (Sb) in drinking water. This observation has raised concerns of possible adverse effects on the hematological systems. A study was therefore carried out to investigate the effects of Sb on phosphofructokinase (PFK), a rate-limiting enzyme of erythrocyte glycolysis. Preincubation of PFK with Sb caused a marked inhibition of the enzyme with 95% loss of activity at 5 mM. In comparison, 5 mM sodium arsenite, a known enzyme inhibitor, reduced PFK activity by only 38%. Increasing the concentrations of fructose-6-phosphate (F6P) or magnesium had no effects on the inhibitory potency of Sb. Varying the concentrations of ATP and Sb produced a complex effect on PFK activity. At 1 mM ATP, 0.2 mM Sb was required for 50% inhibition (IC50) of PFK but only 0.05 mM Sb was required for the same inhibition when the concentration of ATP was reduced to 0.2 mM. Glutathione (2–10 mM) and hemoglobin (8–40 <μ > M) partially protected the enzyme from the Sb effect, with the protection being more effective at low antimony concentrations. When Sb was added to assay mixtures after initiation of a PFK reaction with physiological concentrations of ATP (0.2 mM) and F6P (0.1 mM), PFK activity was approximately 50% inhibited by 0.5 mM Sb and completely inhibited by 5 mM Sb. In contrast, glucose utilization in whole blood was only 16% lower over an 8 hour incubation period in the presence of 5 mM Sb. It is concluded that while PFK is markedly inhibited by Sb under in vitro assay conditions, glycolysis in erythrocytes is not significantly affected except at very high Sb concentrations. The weak effect of Sb on glycolysis in erythrocytes may be due in part to the protective effect of hemoglobin and, to a lesser extent, glutathione on PFK. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 227–233, 1998  相似文献   

4.
Accumulation of HIF-1alpha during normoxic conditions at high cell density has previously been shown to occur and can be used to stabilize HIF-1alpha protein in the absence of a specific anaerobic chamber. However, the impact and origin of this pool of HIF-1alpha, obtained under normoxia, has been underestimated. In this study, we have systematically compared the related pools of HIF-1alpha stabilized in normoxia by high cell density to those obtained at low density in hypoxia. At first glance, these two stimuli appear to have similar outcomes: HIF-1alpha stabilization and induction of HIF-1-dependent genes. However, upon careful analysis, we observed that molecular mechanisms involved are different. We clearly demonstrate that density-dependant HIF-1alpha accumulation during normoxia is due to the cells high consumption of oxygen, as demonstrated by using a respiration inhibitor (oligomycin) and respiratory-defective mutant cells (GSK3). Finally and most importantly, our data indicate that a decrease in AKT activity followed by a total decrease in p70(S6K) phosphorylation reflecting a decrease in mTOR activity occurs during high oxygen consumption, resulting from high cell density. In contrast, hypoxia, even at severe low O(2) levels, only slightly impacts upon the mTOR pathway under low cell density conditions. Thus, activation of HIF-1alpha in exponentially growing cells via hypoxic stimulation is independent of the Akt/mTOR pathway whereas HIF-1alpha activation obtained in high confluency is totally dependent on mTOR pathway as rapamycin totally impaired (i) HIF-1alpha stabilization and (ii) mRNA levels of CA9 and BNIP3, two HIF-target genes.  相似文献   

5.
Correlations were made among ATP synthesis, transmembrane K+ gradients, and leakage of three amino acid neurotransmitters, gamma-aminobutyric acid (GABA), aspartate, and glutamate, in rat brain synaptosomes incubated under normoxic and respiration-limited conditions. Even under normoxic conditions, a substantial proportion of total ATP synthesis (8%) was provided by glycolysis. Limitation of respiration by approximately 30% through addition of amobarbital (Amytal) caused a twofold decrease in the creatine phosphate/creatine ([CrP]/[Cr]) ratio, and consequently the [ATP]/[ADP] ratio, and a threefold increase in lactate production. There was a detectable decrease in intracellular [K+] and small rises in external GABA, aspartate, and glutamate concentrations. More severe limitations in ATP synthesis caused larger declines in the [CrP]/[Cr] ratio and progressive leakage of K+ and neurotransmitter amino acids. A comparison of delta GATP and delta GNa, K showed the former to be larger by 6 kcal, which indicates that the plasma membrane Na+/K+ pump operates at far from equilibrium. Under respiration-limited conditions, even when total ATP synthesis decreased by approximately 80% and [ATP] declined to less than 0.4 mM, delta GATP was still larger than delta GNa,K. It is suggested that during hypoxia and ischemia, the activity of the plasma membrane Na+/K+ pump in brain becomes limited by [ATP], which falls below the Km value for the low-affinity regulatory site on the enzyme. This failure of the pump and consequent collapse of the ion gradients may contribute to the leakage of neurotransmitter amino acids that occurs in these pathological states.  相似文献   

6.
The cytoplasmic pH, concentrations of phosphate metabolites, and rate of ATP synthesis were measured in vivo in excised rice shoot tips under normoxic and hypoxic conditions using 31P NMR. When supplied with glucose, the shoot tips grew rapidly and were relatively unaffected by hypoxia. The cytoplasmic pH decreased transiently by only 0.2 units during hypoxia, and the concentration of ATP was maintained to at least 90% of the normoxic level. Most importantly, the unidirectional rate constant of ATP synthesis from free phosphate decreased less than 25% during hypoxia. This is in contrast to other actively growing tissues such as the maize root tip. gamma-Aminobutyrate was the major nonvolatile fermentation end product after 22 h of hypoxia. Other hypoxia-induced changes included a modest increase in [Ala] and [succinate] as well as a substantial decrease in [malate].  相似文献   

7.
8.
The effects of glucose and of various inhibitors of glycolysis or of oxidative phosphorylation on stimulated lipolysis and on intracellular cyclic AMP and ATP levels were investigated in isolated human fat cells. The glycolysis inhibitors, NaF and monoiodoacetate, inhibited epinephrine or theophylline-stimulated lipolysis and parallely reduced the intracellular cyclic AMP and ATP levels; however, neither NaF nor monoidoacetate significantly affected dibutyryl cyclic AMP-induced lipolysis. Removal of glucose from the medium also reduced the rate of epinephrine-stimulated lipolysis and the intracellular cyclic AMP and ATP levels but failed to modify the lipolytic activity of dibutyryl cyclic AMP. The oxidative phosphorylation inhibitors, antimycin A and, under fixed conditions, 2,4-dinitrophenol also strongly decreased the adipocyte cyclic AMP and ATP levels but inhibited as well the rate of epinephrine- and of dibutyryl cyclic AMP-induced lipolysis. N-Ethylmaleimide, a mixed glycolysis and oxidative phosphorylation inhibitor, not only reduced the intracellular cyclic AMP and ATP levels and epinephrine- or theophylline-induced lipolysis, but also that stimulated by dibutyryl cyclic AMP. When glycolysis was almost fully inhibited, human fat cells were insensitive to epinephrine but remained fully responsive to dibutyryl cyclic AMP. These results, showing a relationship between ATP availability, cyclic AMP synthesis and lipolysis, suggest a different ATP requirement for cyclic AMP synthesis and triacylglycerol lipase activation, a difference which could explain why ATP issued from glucose breakdown appears to be a determinant factor for cyclic AMP synthesis, but not for triacylglycerol lipase activation in human fat cells.  相似文献   

9.
10.
The activation of monocytes involves a stimulation of glycolysis, release of potent inflammatory mediators, and alterations in gene expression. All of these processes are known to be further increased under hypoxic conditions. The activated monocytes express inducible 6-phosphofructo-2-kinase (iPFK-2), which synthesizes fructose 2,6-bisphosphate, a stimulator of glycolysis. During ischemia, AMP-activated protein kinase (AMPK) activates the homologous heart 6-phosphofructo-2-kinase isoform by phosphorylating its Ser-466. Here, we studied the involvement of AMPK and iPFK-2 in the stimulation of glycolysis in activated monocytes under hypoxia. iPFK-2 was phosphorylated on the homologous serine (Ser-461) and activated by AMPK in vitro. The activation of human monocytes by lipopolysaccharide induced iPFK-2 expression and increased fructose 2,6-bisphosphate content and glycolysis. The incubation of activated monocytes with oligomycin, an inhibitor of oxidative phosphorylation, or under hypoxic conditions activated AMPK and further increased iPFK-2 activity, fructose 2,6-bisphosphate content, and glycolysis. In cultured human embryonic kidney 293 cells, the expression of a dominant-negative AMPK prevented both the activation and phosphorylation of co-transfected iPFK-2 by oligomycin. It is concluded that the stimulation of glycolysis by hypoxia in activated monocytes requires the phosphorylation and activation of iPFK-2 by AMPK.  相似文献   

11.
Effect of fructose 2, 6-bisphosphate on 6-phosphofructokinase (ATP: D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11) in spermatid extract from rat testes was studied. Fructose 2, 6-bisphosphate stimulated the enzyme greatly by increasing its affinity for fructose 6-phosphate and relieving the inhibition by ATP. Fructose 2, 6-bisphosphate (0.8 μM) was required for 50% activation of 6-phosphofructokinase (PFK). In addition, fructose 2, 6-bisphosphate, AMP and fructose 6-phosphate acted cooperatively to stimulate the activity of PFK. This stimulation may play an important role in the regulation of glycolysis in spermatids of rat testes.  相似文献   

12.
13.
The kinetics of yeast phosphofructo-1-kinase has been studied in vitro. Effector concentrations (Fru-6-P, ATP, ADP, AMP, Pi, Fru-1,6-P2, and Fru-2,6-P2) and pH were adjusted so as to mimic intracellular concentrations in yeast. Under these conditions we were able to reproduce the measured in vivo rate of PFK. In addition, by reconstituting the intracellular conditions existing during aerobic and anaerobic glycolysis, we were able to reproduce in vitro the changes in the rate of PFK observed under these conditions. Without the addition of the newly discovered effector Fru-2,6-P2, in vitro rates of PFK are much lower than its in vivo rate. Changes in Fru-2,6-P2, Fru-1,6-P2, ATP, AMP, Pi, and pH in going from aerobic to anaerobic conditions all contributed somewhat to the change in the rate of PFK observed during the Pasteur effect, with no contribution coming from ADP. These studies show that the control of PFK under the condition of the Pasteur effect cannot be ascribed to changes in any one particular effector but rather to contributions from a variety of effectors. Also, the net change in the rate of PFK in the switch from anaerobic to aerobic glycolysis is small compared with the change in its dependence upon its substrate Fru-6-P, indicating a compensation mechanism.  相似文献   

14.
15.
Concentration of proteins, carbohydrates, lactate, total lipids, acylglycerides, and carotenoids in shrimp were evaluated for their changes under acute hypoxia, and for their genetic variation under normoxic and hypoxic conditions. Proteins and lactate concentrations in muscle and hepatopancreas were significantly higher and carbohydrates in hepatopancreas were decreased in the hypoxic group. Family variances were significantly different only for proteins and carbohydrates in hepatopancreas in the normoxic group, indicating the existence of genetic variation for these traits. When family variances for each biochemical component were compared between normoxic and hypoxic groups, it was seen that most decreased. However, total variance was not significantly changed in response to hypoxia except for lactate (increased) and carotenoids (decreased) in hepatopancreas. The decrease in genetic variance without an increase in phenotypic variances in an acute response to hypoxia might be related to the known suppression of metabolic pathways that either use or produce ATP, which could result in a decreased expression of additive genes.  相似文献   

16.
1. Injection of epinephrine induced in skin a decrease in the level of glucose-1,6-bisphosphate (Glc-1,6-P2), which was accompanied by correlated changes in the activities of several enzymes which are modulated by this regulator. 2. These effects were blocked by the alpha adrenergic blocker phentolamine, in contrast to muscle where the hormone increases Glc-1,6-P2, acting through beta receptors. 3. The changes in the enzymes' activities, as well as in glycogen and lactate content induced by epinephrine, reveal that the hormone causes, in skin, a stimulation of glycogenolysis and glycolysis, as well as an acceleration of pentose phosphate pathway. 4. The reduction in glycogen content induced by epinephrine, was blocked by the beta adrenergic blocker propranolol, whereas the hormone's effects on the other processes were mainly mediated through alpha receptors.  相似文献   

17.
We studied the effect of exogenous adenosine in isolated perfused normoxic rat hearts on glycolytic flux through pyruvate kinase (PK). We compared its effect with that of myxothiazol, an inhibitor of mitochondrial ATP production. Moreover, we tested whether an increase of membrane ionic flux with monensin is linked to a stimulation of glycolytic flux through PK. After a 20-min stabilization period adenosine, myxothiazol or monensin were administrated to the perfusate continuously at various concentrations during 10 min. The contraction was monitored and the lactate production in coronary effluents evaluated. The amount of adenine nucleotides and phosphoenolpyruvate was measured in the frozen hearts. Myxothiazol induced a decrease of the left ventricular developed pressure (LVDP : −40%) together with a stimulation of glycolytic flux secondary to PK activation. In contrast, adenosine primarily reduced heart rate (HR: −30%) with only marginal effects on LVDP. This was associated with an inhibition of glycolysis at the level of PK. The Na+ ionophore monensin affected HR (+14%) and LVDP (+25%). This effect was associated with a stimulation of glycolysis secondary to the stimulation of PK. These results provide new information of action of adenosine in the heart and support the concept of a direct coupling between glycolysis and process regulating sarcolemmal ionic fluxes.  相似文献   

18.
Rabbit liver fructose-1,6-bisphosphatase (FDPase) can reversibly inactivate both rabbit muscle and rat liver phosphofructokinases (PFK) under appropriate conditions. The peptide factor which stabilizes rat liver PFK-L2 against thermal inactivation has now been found to protect both PFKs from inactivation by FDPase. Assay at high ATP (ca. 3 mM) is necessary to demonstrate these reversible changes. In addition, the activation of FDPase by liver cytosol, by oleate plus cytosol, or by oleate plus muscle PFK is lowere about 50% in the presence of peptide factor. These observations suggest an active participation of the peptide factor in regulation of liver glycolysis and gluconeogenesis.  相似文献   

19.
In response to changes in the environment, yeast cells coordinate intracellular activities to optimize survival and proliferation. The transductions of diverse extracellular stimuli are exerted through multiple mitogen-activated protein kinase (MAPK) cascades. The high osmolarity glycerol (HOG) MAPK pathway is activated by increased environmental osmolarity and results in a rise of the cellular glycerol concentration to adapt the intracellular osmotic pressure. We studied the importance of the short time regulation of glycolysis under hyperosmotic stress for the survival and proliferation of yeast cells. A stimulation of the HOG-MAPK pathway by increasing the medium osmolarity through addition of salt or glucose to cultivated yeast leads to an activation of 6-phosphofructo-2-kinase (PFK2), which is accompanied by a complex phosphorylation pattern of the enzyme. An increase in medium osmolarity with 5% NaCl activates PFK2 3-fold over the initial value. This change in the activity is the result of a 4-fold phosphorylation of the enzyme mediated by protein kinases from the HOG-MAPK pathway. In the case of hyperosmolar glucose a 5-fold PFK2 activation was achieved by a single phosphorylation with protein kinase A near the carboxyl terminus of the protein on Ser(644) and an additional 5-fold phosphorylation within the same amino-terminal fragment as in the presence of salt. The effect of hyperosmolar glucose is the result of an activation of the Ras-cAMP pathway together with the HOG-MAPK pathway. The activation of PFK2 leads to an activation of the upper part of glycolysis, which is a precondition for glycerol accumulation. Yeast cells containing PFK2 accumulate three times more glycerol than cells lacking PFK2, which are not able to grow under hypertonic stress.  相似文献   

20.
Energy utilization and force generation under anaerobic conditions were studied in electrically stimulated quadriceps femoris muscle of four volunteers. To investigate the effects of intermittent vs. continuous stimulation one leg was stimulated intermittently and the other continuously during 50 s. The same initial force was produced, and biopsy samples were obtained before the stimulation and after 10, 20, and 50 s and analyzed for energy-rich phosphagens, glycolytic intermediates, and phosphorylase. The ATP utilization and glycolysis were greater during intermittent contraction, but glycogenolysis was equal. ATP content decreased to lower values after intermittent contraction (16.4 compared with 19.6 mmol/kg dry muscle after continuous contraction). Force generation was well preserved during continuous contraction but successively decreased after 20 s of intermittent stimulation down to 50% of initial at end of work. The energy cost per unit work was greater during intermittent stimulation and increased with contraction time, whereas it decreased with time during continuous stimulation. The decrease in force generation in intermittent exercise is suggested to be due to the higher energy cost for contraction resulting in greater changes in the intracellular environment with lower ATP and increased H+ and Pi. These changes would decrease both activation of the contractile system and the cross-bridge turnover rate resulting from activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号