首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Exposure of the CNS to hypoxia is associated with cell death. Our aim was to establish a temporal correlation between cellular and molecular alterations induced by an acute hypoxia evaluated at different post-hypoxia (p-h) times and at two stages of chick optic lobe development: embryonic days (ED) 12 and 18. TUNEL assays at ED12 disclosed a significant increase (300%) in pyknotic cells at 6 h p-h, while at ED18 no morphological changes were observed in hypoxic versus controls. At ED12 there was a significant increase (48%) in Bcl-2 levels at the end of the hypoxic treatment, followed by a significant increase of active caspase-9 (49%) and active caspase-3 (58%) at 30 and 60 min p-h, respectively, while at ED18 no significant changes were observed. These findings indicate that prenatal hypoxia produces an equilibrated imbalance in both pro- and anti-apoptotic proteins that culminates in a process of cell death, present at earlier stages of development.  相似文献   

3.
Lin SY  Chen CL  Wu YL  Yang YC  Hwu YM 《Cell proliferation》2008,41(3):492-505
Abstract. Objectives : To investigate potential interactions between bone morphogenetic protein (BMP) and Wnt signalling on differentiating mouse embryonic stem cells (mESC). Materials and methods : Mouse embryonic stem cells were cultured with differing combinations of Wnt3a, BMP4 and inhibitors of Wnt, BMP, PI-3K (phosphoinositide 3-kinase), p38, ERK1/2 (extracellular signal-regulated kinase 1/2) and JNK (c-Jun N-terminal kinase) pathways. Results : We found that Wnt3a synergized with BMP4 to promote mESC proliferation. Furthermore, the relative ratio of Wnt3a to BMP4 doses was critical to their synergistic effects, which could be abolished by using Dkk-1, noggin or the inhibitors of PI-3K, p38, ERK1/2 and JNK pathways. We also demonstrated that combination of Wnt3a and BMP4 could suppress ectodermal differentiation of mESCs. Moreover, inhibitors of PI-3K, p38, ERK1/2 and JNK pathways could negate this effect. Conclusion : Relative ratio of Wnt3a to BMP4 doses is critical to their synergistic effect on differentiating mESC proliferation, which may work through PI-3K, p38, ERK1/2 and JNK pathways.  相似文献   

4.
Summary Among the three major mitogen-activated protein kinase (MAPK) cascades—the extracellular signal regulated kinase (ERK) pathway, the c-JUN N-terminal/stress-activated protein kinase (JNK/SAPK) pathway, and the reactivating kinase (p38) pathway—retinoic acid selectively utilizes ERK but not JNK/SAPK or p38 when inducing myeloid differentiation of HL-60 human myeloblastic leukemia cells. Retinoic acid is known to active ERK2. The present data show that the activation is selective for this MAPK pathway. JNK/SAPK or p38 are not activated by retinoic acid. Presumably because it activates relevant signaling pathways including MAPK, the polyoma middle T antigen, as well as certain transformation defective mutants thereof, is known to promote retinoic acid-induced differentiation, although the mechanism of action is not well understood. The present results show that consistent with the selective involvement of ERK2, ectopic expression of either the polyoma middle T antigen or its dl23 mutant, which is defective for PLCγ and PI-3 kinase activation, or the Δ205 mutant, which in addition is also weakened for activation of src-like kinases, caused no enhanced JNK/SAPK or p38 kinase activity that promoted the effects of retinoic acid. However, all three of these polyoma antigens are known to enhance ERK2 activation and promote differentiation induced by retinoic acid. Polyoma-activated MAPK signaling relevant to retinoic acid-induced differentiation is thus restricted to ERK2 and does not involve JNK/SAPK or p38. Taken together, the data indicate that among the three parallel MAPK pathways, retinoic acid-induced HL-60 myeloid differentiation selectively depends on activating ERK but not the other two MAPK pathways, JNK/SAPK or p38, with no apparent cross talk between pathways. Furthermore, the striking ability of polyoma middle T antigens to promote retinoic acid-induced differentiation appears to utilize ERK, but not JNK/SPK or p38 signaling.  相似文献   

5.
We have studied apoptosis of gastrointestinal epithelial cells by examining the receptor-mediated and DNA damage-induced pathways using TNF-α and camptothecin (CPT), respectively. TNF-α requires inhibition of antiapoptotic protein synthesis by cycloheximide (CHX). CHX also results in high levels of active JNK, which are necessary for TNF-induced apoptosis. While CPT induces apoptosis, the increase in JNK activity was not proportional to the degree of apoptosis. Thus the mechanism of activation of JNK and its role in apoptosis are unclear. We examined the course of JNK activation in response to a combination of TNF-α and CPT (TNF + CPT), which resulted in a three- to fourfold increase in apoptosis compared with CPT alone, indicating an amplification of apoptotic signaling pathways. TNF + CPT caused apoptosis by activating JNK, p38, and caspases-8, -9, and -3. TNF-α stimulated a transient phosphorylation of JNK1/2 and ERK1/2 at 15 min, which returned to basal by 60 min and remained low for 4 h. CPT increased JNK1/2 activity between 3 and 4 h. TNF + CPT caused a sustained and robust JNK1/2 and ERK1/2 phosphorylation by 2 h, which remained high at 4 h, suggesting involvement of MEKK4/7 and MEK1, respectively. When administered with TNF + CPT, SP-600125, a specific inhibitor of MEKK4/7, completely inhibited JNK1/2 and decreased apoptosis. However, administration of SP-600125 at 1 h after TNF + CPT failed to prevent JNK1/2 phosphorylation, and the protective effect of SP-600125 on apoptosis was abolished. These results indicate that the persistent activation of JNK might be due to inhibition of JNK-specific MAPK phosphatase 1 (MKP1). Small interfering RNA-mediated knockdown of MKP1 enhanced TNF + CPT-induced activity of JNK1/2 and caspases-9 and -3. Taken together, these results suggest that MKP1 activity determines the duration of JNK1/2 and p38 activation and, thereby, apoptosis in response to TNF + CPT.  相似文献   

6.
The importance of the activation of mitogen-activated protein kinases (MAPK) for the cardioprotection achieved by ischemic preconditioning (IP) is still controversial. We therefore measured infarct size and p38, extracellular signal-regulated kinase (ERK), and c-Jun NH(2)-terminal kinase (JNK) MAPK phosphorylation (by biopsies) in enflurane-anesthetized pigs. After 90 min low-flow ischemia and 120 min reperfusion, infarct size averaged 18.3 +/- 12.4 (SD)% (group 1, n = 14). At similar subendocardial blood flows, IP by 10 min ischemia and 15 min reperfusion (group 2, n = 14) reduced infarct size to 6.2 +/- 5.1% (P < 0.05). An inconsistent increase in p38, ERK, and p54 JNK phosphorylation (by Western blot) was found during IP; p46 JNK phosphorylation increased with the subsequent reperfusion. At 8 min of the sustained ischemia, p38, ERK, and p54 JNK phosphorylation were increased with no difference between groups (medians: p38: 207% of baseline in group 1 vs. 153% in group 2; ERK: 142 vs. 144%; p54 JNK: 171 vs. 155%, respectively). MAPK phosphorylation and reduction of infarct size by IP were not correlated, thus not supporting the concept of a causal role of MAPK in mediating cardioprotection by IP.  相似文献   

7.
Human endometrium-derived mesenchymal stem cells (hMESC) under the sublethal oxidative stress induced by H2O2 activate both the p53/p21/Rb and p38/MAPKAPK-2 pathways that are responsible for the induction of hMESC premature senescence (Borodkina et al., 2014). However, the interrelations between the p53/p21/Rb and MAPK signaling pathways, including ERK1/2, p38, and JNK, remain yet unexplored. Here, we used the specific inhibitors—pifithrin-α (PFT), U0126, SB203580, and SP600125 to “switch off” one of the proteins in these cascades and to evaluate the functional status alterations of the rest of the proteins. Each MAPK suppression significantly increased the p53 phosphorylation level, as well as p21 protein expression followed by Rb hypophosphorylation. On the other hand, PFT-induced p53 inhibition enhanced mostly the ERK1/2 activation rather than p38 and JNK. These results suggest the existence of a reciprocal negative regulation between p53- and MAPK-dependent signaling pathways. By analyzing the possible interactions among the members of the MAPK family, we showed that p38 and JNK can function as ERK antagonists: JNK is able to activate ERK, while p38 may block ERK activation. Together, these results demonstrate the existence of complex links between different signaling cascades in stressed hMESC, implicating ERK, p38, and JNK in regulation of premature senescence via the p53/p21/Rb pathway.  相似文献   

8.
Microtubule inhibitors are widely used in cancer chemotherapy, but the signaling mechanisms that link microtubule disarray to destructive or protective cellular responses are poorly understood. Because members of the mitogen-activated protein kinase (MAPK) family have been implicated in regulation of cell survival and cell death, we examined the extent and kinetics of activation of JNK, ERK, and p38 MAPKs in response to treatment of KB-3 carcinoma cells with several microtubule inhibitors. All four agents tested (vinblastine, vincristine, Taxol, and colchicine) caused significant (6- to 13-fold) activation of JNK, concomitant inactivation of ERK, and a reduction in basal p38 MAPK activity. JNK activation and ERK inactivation occurred prior to caspase 3 activation. The microtubule inhibitors also induced phosphorylation of Raf-1 kinase. SEK-1, upstream of JNK, was also activated and phosphorylated in response to the microtubule inhibitors, and sustained phosphorylation of three endogenous JNK substrates (c-Jun, ATF-2, and JunD) was observed. By comparison, the antitumor agent doxorubicin induced activation of JNK and p38 but had no effect on ERK activity or Raf-1. These data demonstrate that microtubule inhibitors elicit distinct and specific effects on MAPK-mediated signaling pathways and suggest in particular that coordinate and reciprocal alterations in JNK and ERK activities are important facets of the cellular response to microtubule disruption.  相似文献   

9.
Osteosarcoma is the most common primary bone cancer that affects adolescents with early metastatic potential and drastically reduces their long-term survival rate if pulmonary metastases are detected at diagnosis. The natural naphthoquinol compound deoxyshikonin exhibits anticancer properties, so we hypothesized that it has an apoptotic effect on osteosarcoma U2OS and HOS cells and studied its mechanisms. After deoxyshikonin treatment, dose-dependent decreases in cell viability, induction of cell apoptosis and arrest in the sub-G1 phase of U2OS and HOS cells were observed. The increases in cleaved caspase 3 expression and the decreases in X-chromosome-linked IAP (XIAP) and cellular inhibitors of apoptosis 1 (cIAP-1) expressions after deoxyshikonin treatment in the human apoptosis array were identified in HOS cells, and dose-dependent expression changes of IAPs and cleaved caspase 3, 8 and 9 were verified by Western blotting in U2OS and HOS cells. Phosphorylation of extracellular signal-regulated protein kinases (ERK)1/2, c-Jun N-terminal kinases (JNK)1/2 and p38 expressions in U2OS and HOS cells was also increased by deoxyshikonin in a dose-dependent manner. Subsequently, cotreatment with inhibitors of ERK (U0126), JNK (JNK-IN-8) and p38 (SB203580) was performed to show that p38 signalling is responsible for deoxyshikonin-induced apoptosis in U2OS and HOS cells, but not via the ERK and JNK pathways. These discoveries demonstrate that deoxyshikonin may be a possible chemotherapeutic candidate to induce cell arrest and apoptosis by activating extrinsic and intrinsic pathways through p38 for human osteosarcoma.  相似文献   

10.
Sphingosine-1-phosphate (S-1-P) has been identified as an extracellular mediator and an intracellular second messenger that may modulate cell motility, adhesion, proliferation, and differentiation and cancer cell invasion. Widely distributed, S-1-P is most abundant in the intestine. Although S-1-P is likely to modulate various intracellular pathways, activation of the mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase 1 (ERK1), ERK2, and p38 is among the best-characterized S-1-P effects. Because the MAPKs regulate proliferation, we hypothesized that S-1-P might stimulate intestinal epithelial cell proliferation by MAPK activation. Human Caco-2 intestinal epithelial cells were cultured on a fibronectin matrix because fibronectin is an important constituent of the gut mucosal basement membrane. We assessed ERK1, ERK2, and p38 activation by Western blotting with antibodies specific for their active forms and proliferation by Coulter counting at 24 h. Specific MAP kinase kinase (MEK) and p38 inhibitors PD98059 (20 microM) and SB202190 and SB203580 (10 and 20 microM) were used to probe the role of ERK and p38 in S-1-P-mediated proliferation. Three or more similar studies were pooled for the analysis. S-1-P stimulated Caco-2 proliferation and dose-responsively activated ERK1, ERK2, and p38. Proliferation peaked at 5 microM, yielding a cell number 166.3 +/- 2.7% of the vehicle control (n = 6, P < 0.05). S-1-P also maximally stimulated ERK1, ERK2, and p38 at 5 microM, to 164.4 +/- 19.9%, 232.2 +/- 38.5%, and 169.2 +/- 20.5% of the control, respectively. Although MEK inhibition prevented S-1-P activation of ERK1 and ERK2 and slightly but significantly inhibited basal Caco-2 proliferation, MEK inhibition did not block the S-1-P mitogenic effect. However, pretreatment with 10 microM SB202190 or SB203580 (putative p38 inhibitors) attenuated the stimulation of proliferation by S-1-P. Twenty micromolars of SB202190 or SB203580 completely blocked the mitogenic effect of S-1-P. Ten to twenty micromolars of SB202190 and SB203580 also dose-dependently ablated the effects of 5 microM S-1-P on heat shock protein 27 accumulation, a downstream consequence of p38 MAPK activation. Consistent with the reports in some other cell types, S-1-P appears to activate ERK1, ERK2, and p38 and to stimulate proliferation. However, in contrast to the mediation of the S-1-P effects in some other cell types, S-1-P appears to stimulate human intestinal epithelial proliferation by activating p38. ERK activation by S-1-P is not required for its mitogenic effect.  相似文献   

11.
12.
BACKGROUND: Formation of the mammalian orofacial region involves multiple signaling pathways regulating sequential expression of and interaction between molecular signals during embryogenesis. The present study examined the expression patterns of members of the MAPK family in developing murine orofacial tissue. METHODS: Total RNA was extracted from developing embryonic orofacial tissue during gestational days (GDs) 12-14 and used to prepare biotinylated cDNA probes, which were then denatured and hybridized to murine MAPK signaling pathways gene arrays. RESULTS: Expression of a number of genes involved in the (ERK1/2) cascade transiently increased in the embryonic orofacial tissue over the developmental period examined. Numerous members of the SAPK/JNK cascade were constitutively expressed in the tissue. Genes known to play a role in p38 MAPK signaling exhibited constitutive expression during orofacial development. Western blot analysis demonstrated that ERK2/1, p38, and SAPK/JNK kinases are present in embryonic orofacial tissue on each of GD 12, 13, and 14. By using phospho-specific antibodies, active ERK was shown to be temporally regulated during orofacial development. Minimal amounts of active p38 and active SAPK/JNK were detected in orofacial tissue during GDs 12-14. CONCLUSIONS: Our study documents specific expression patterns of genes coding for proteins belonging to the ERK1/2, p38, and SAPK/JNK MAPK families in embryonic orofacial tissue. We also demonstrate that active, phosphorylated forms of ERK1/2 only were detected in the embryonic tissue investigated, suggesting a more central role for members of this family in embryonic orofacial development.  相似文献   

13.
In addition to causing overt nociception, intraplantar (ipl) endothelin (ET)-1 injection into the rat hind paw induces hyperalgesia to mechanical stimuli, mediated via local ET(B) receptors coupled to protein kinase (PK) C, but not PKA. The present study further examines the intracellular signaling mechanisms underlying this effect of ET-1. ET-1 (30 pmol) or phospate-buffered saline (PBS) was injected ipl in rats and the threshold of responsiveness to mechanical stimulation was assessed repeatedly each hour up to 8 hrs and 24 hrs, using the dynamic plantar aesthesiometer test, which detects the minimal pressure required to evoke paw withdrawal. Different groups were treated, 15 mins before ET-1 administration, with ipsilateral injection of selective inhibitors of either phospholipase (PL) A2 (1 nmol PACOCF3), PLC (30 pmol U73122), PKC (1 nmol GF109203X), p38 mitogen-activated protein kinase (MAPK; 30 nmol SB203580), extracellular signal-regulated kinase (ERK1/2; 30 nmol PD98059), c-Jun N-terminal kinase (JNK; 30 nmol SP600125), or vehicle, to assess their influence on the hyperalgesic response. The mechanical hyperalgesia caused by ET-1 started 2 hrs after injection, peaked at 5 hrs (PBS, 29 +/- 0.5 g; ET-1, 17 +/- 1.3 g) and lasted up to 8 hrs. The inhibitors of PLC, PKC, p38 MAPK, ERK1/2, and JNK caused long-lasting reductions of the mechanical hyperalgesia (inhibitions at 4 hrs of 100%, 90%, 97%, 90%, and 100%, respectively), but the PLA2 inhibitor reduced hyperalgesia only at 4 hrs (by 58%). Thus, mechanical hyperalgesia triggered by ET-1 in the rat hind paw depends importantly on signaling pathways involving PLC, PKC, p38 MAPK, ERK1/2, and JNK, whereas the contribution of PLA2 is relatively minor.  相似文献   

14.
15.
16.
17.
18.
Cadmium (Cd) is an extremely toxic metal capable of severely damaging several organs, including the brain. Studies have shown that Cd induces neuronal apoptosis partially by activating the mitogen-activated protein kinase (MAPK) pathways. However, the underlying mechanism of MAPK involving the mitochondrial apoptotic pathway in neurons remains unclear. In this study, primary rat cerebral cortical neurons were exposed to Cd, which significantly decreased cell viability and the B-cell lymphoma 2/Bcl-2 associate X protein (Bcl-2/Bax) ratio and increased the percentage of apoptotic cells, release of cytochrome c, cleavages of caspase-3 and poly (ADP-ribose) polymerase (PARP), and nuclear translocation of apoptosis-inducing factor (AIF). In addition, Cd induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK. Inhibition of ERK and JNK, but not p38 MAPK, partially protected the cells from Cd-induced apoptosis. ERK and JNK inhibition also blocked alteration of the Bcl-2/Bax ratio, release of cytochrome c, cleavages of caspase-3 and PARP, and nuclear translocation of AIF. Taken together, these data suggest that the ERK- and JNK-mediated mitochondrial apoptotic pathways play important roles in Cd-induced neuronal apoptosis.  相似文献   

19.
20.
Zhou JH  Yu DV  Cheng J  Shapiro DJ 《Steroids》2007,72(11-12):765-777
Tamoxifen (Tam), and its active metabolite, 4-hydroxytamoxifen (OHT), compete with estrogens for binding to the estrogen receptor (ER). Tam and OHT can also induce ER-dependent apoptosis of cancer cells. 10-100nM OHT induces ER-dependent apoptosis in approximately 3 days. Using HeLaER6 cells, we examined the role of OHT activation of signal transduction pathways in OHT-ER-mediated apoptosis. OHT-ER activated the p38, JNK and ERK1/2 pathways. Inhibition of p38 activation with SB203580, or RNAi-knockdown of p38alpha, moderately reduced OHT-ER mediated cell death. A JNK inhibitor partly reduced cell death. Surprisingly, the MEK1/2 inhibitor, PD98059, completely blocked OHT-ER induced apoptosis. EGF, an ERK1/2 activator, enhanced OHT-induced apoptosis. OHT induced a delayed and persistent phosphorylation of ERK1/2 that persisted for >80h. Addition of PD98059 as late as 24h after OHT largely blocked OHT-ER mediated apoptosis. The antagonist, ICI 182,780, blocked both the long-term OHT-mediated phosphorylation of ERK1/2 and OHT-induced apoptosis. Our data suggests that the p38 and JNK pathways, which often play a central role in apoptosis, have only a limited role in OHT-ER-mediated cell death. Although rapid activation of the ERK1/2 pathway is often associated with cell growth, persistent activation of the ERK1/2 pathway is essential for OHT-ER induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号