首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensions to gene set enrichment   总被引:2,自引:0,他引:2  
MOTIVATION: Gene Set Enrichment Analysis (GSEA) has been developed recently to capture changes in the expression of pre-defined sets of genes. We propose number of extensions to GSEA, including the use of different statistics to describe the association between genes and phenotypes of interest. We make use of dimension reduction procedures, such as principle component analysis, to identify gene sets with correlated expression. We also address issues that arise when gene sets overlap. RESULTS: Our proposals extend the range of applicability of GSEA and allow for adjustments based on other covariates. We have provided a well-defined procedure to address interpretation issues that can raise when gene sets have substantial overlap. We have shown how standard dimension reduction methods, such as PCA, can be used to help further interpret GSEA. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

2.
High-throughout genomic data provide an opportunity for identifying pathways and genes that are related to various clinical phenotypes. Besides these genomic data, another valuable source of data is the biological knowledge about genes and pathways that might be related to the phenotypes of many complex diseases. Databases of such knowledge are often called the metadata. In microarray data analysis, such metadata are currently explored in post hoc ways by gene set enrichment analysis but have hardly been utilized in the modeling step. We propose to develop and evaluate a pathway-based gradient descent boosting procedure for nonparametric pathways-based regression (NPR) analysis to efficiently integrate genomic data and metadata. Such NPR models consider multiple pathways simultaneously and allow complex interactions among genes within the pathways and can be applied to identify pathways and genes that are related to variations of the phenotypes. These methods also provide an alternative to mediating the problem of a large number of potential interactions by limiting analysis to biologically plausible interactions between genes in related pathways. Our simulation studies indicate that the proposed boosting procedure can indeed identify relevant pathways. Application to a gene expression data set on breast cancer distant metastasis identified that Wnt, apoptosis, and cell cycle-regulated pathways are more likely related to the risk of distant metastasis among lymph-node-negative breast cancer patients. Results from analysis of other two breast cancer gene expression data sets indicate that the pathways of Metalloendopeptidases (MMPs) and MMP inhibitors, as well as cell proliferation, cell growth, and maintenance are important to breast cancer relapse and survival. We also observed that by incorporating the pathway information, we achieved better prediction for cancer recurrence.  相似文献   

3.
Pathogens of the Aspergillus species are frequently seen in deep-seated mycoses. We previously demonstrated that the culture filtrate of Aspergillus fumigatus (CF) has immunosuppressive effects on polymorphonuclear leukocytes (PMNs), which act as the main phagocytes to hyphae of Aspergillus fumigatus (A. fumigatus). But little is known about the gene expression profiles involved in it. Therefore we investigated the changes in gene expression in human PMNs treated with CF or gliotoxin at two time points, using microarray analysis. CF and gliotoxin changed the expression of 548 and 381 genes, respectively. Only 51 genes showed the same expression patterns with the two stimulants, and CF-induced changes in gene expression occurred comparatively earlier than those induced by gliotoxin. Among 31 genes encoding apoptosis, which were up- or down-regulated in this assay, only 3 genes were similarly changed by both kinds of stimulation. Apoptosis was detected and quantified using two apoptosis assays. CF and gliotoxin changed the expessions of only 3 out of 19 regulated genes related to inflammatory mediators and receptors similarly. The up-regulation of the gene encoding annexin 1 (ANXA1), which is known to be involved in extravasation and apoptosis of neutrophils, may play a role in the immunosuppressive effect of A. fumigatus. The difference in expression changes between CF and gliotoxin is presumed to be caused by the interaction among the components of CF and therefore the interaction is an area of interest for further investigation.  相似文献   

4.
结合基因功能分类体系Gene Ontology筛选聚类特征基因   总被引:3,自引:0,他引:3  
使用两套基因表达谱数据,按各基因的表达值方差,选择表达变异基因对样本聚类,发现一般使用方差较大的前10%的基因作为特征基因,就可以较好地对疾病样本聚类。对不同的疾病,包含聚类信息的特征基因有不同的分布特点。在此基础上,结合基因功能分类体系(Gene Ontology,GO),进一步筛选聚类的特征基因。通过检验在Gene Ontology中的每个功能类中的表达变异基因是否非随机地聚集,寻找疾病相关功能类,再根据相关功能类中的表达变异基因进行聚类分析。实验结果显示:结合基因功能体系进一步筛选表达变异基因作为聚类特征基因,可以保持或提高聚类准确性,并使得聚类结果具有明确的生物学意义。另外,发现了一些可能和淋巴瘤和白血病相关的基因。  相似文献   

5.
Circulating cell-free DNA (ccfDNA) is a biological entity of great interest due to its potential as liquid biopsy biomaterial carrying clinically valuable information. To better understand its nature, we studied ccfDNA in vitro in two human cancer cell lines MCF-7 and HeLa. Normalized indexes of ccfDNA per cell population decreased over time of culture but were significantly elevated after exposure to IC50 doses of the demethylating/apoptotic agent 5-azacytidine (5-AZA-CR). Fragment-size profiling was indicative of active release, whereas exposure to 5-AZA-CR induced the release of additional shorter fragments, indicative of apoptosis. Finally, the methylation profile of a panel of cancer-specific genes as assessed by quantitative methylation analysis in ccfDNA was identical to the corresponding genomic DNA and followed accurately changes caused by 5-AZA-CR. Overall, our in vitro findings support that ccfDNA can be a reliable biosource of clinically relevant information that can be further studied in these cell culture models.  相似文献   

6.
Microarrays are an effective tool for monitoring genome-wide gene expression levels. In current microarray analyses, the majority of genes on arrays are frequently eliminated for further analysis because the changes in their expression levels (ratios) are considered to be not significant. This strategy risks failure to discover whole sets of genes related to a quantitative trait of interest, which is generally controlled by several loci that make various contributions. Here, we describe a high-throughput gene discovery method based on correspondence analysis with a new index for expression ratios [arctan (1/ratio)] and three artificial marker genes. This method allows us to quickly analyze the whole microarray dataset and discover up-/down-regulated genes related to a trait of interest. We employed an example dataset to show the theoretical advantage of this method. We then used the method to identify 88 cancer-related genes from a published microarray data from patients with breast cancer. This method also allows us to predict the phenotype of a given sample from the gene expression profile. This method can be easily performed and the result is also visible in 3D viewing software that we have developed.  相似文献   

7.
Techniques for analyzing genome-wide expression profiles, such as the microarray technique and next-generation sequencers, have been developed. While these techniques can provide a lot of information about gene expression, selection of genes of interest is complicated because of excessive gene expression data. Thus, many researchers use statistical methods or fold change as screening tools for finding gene sets whose expression is altered between groups, which may result in the loss of important information. In the present study, we aimed to establish a combined method for selecting genes of interest with a small magnitude of alteration in gene expression by coupling with proteome analysis. We used hypercholesterolemic rats to examine the effects of a crude herbal drug on gene expression and proteome profiles. We could not select genes of interest by using standard methods. However, by coupling with proteome analysis, we found several effects of the crude herbal drug on gene expression. Our results suggest that this method would be useful in selecting gene sets with expressions that do not show a large magnitude of alteration.  相似文献   

8.
9.
MOTIVATION: Association pattern discovery (APD) methods have been successfully applied to gene expression data. They find groups of co-regulated genes in which the genes are either up- or down-regulated throughout the identified conditions. These methods, however, fail to identify similarly expressed genes whose expressions change between up- and down-regulation from one condition to another. In order to discover these hidden patterns, we propose the concept of mining co-regulated gene profiles. Co-regulated gene profiles contain two gene sets such that genes within the same set behave identically (up or down) while genes from different sets display contrary behavior. To reduce and group the large number of similar resulting patterns, we propose a new similarity measure that can be applied together with hierarchical clustering methods. RESULTS: We tested our proposed method on two well-known yeast microarray data sets. Our implementation mined the data effectively and discovered patterns of co-regulated genes that are hidden to traditional APD methods. The high content of biologically relevant information in these patterns is demonstrated by the significant enrichment of co-regulated genes with similar functions. Our experimental results show that the Mining Attribute Profile (MAP) method is an efficient tool for the analysis of gene expression data and competitive with bi-clustering techniques.  相似文献   

10.
Model-based clustering is a popular tool for summarizing high-dimensional data. With the number of high-throughput large-scale gene expression studies still on the rise, the need for effective data- summarizing tools has never been greater. By grouping genes according to a common experimental expression profile, we may gain new insight into the biological pathways that steer biological processes of interest. Clustering of gene profiles can also assist in assigning functions to genes that have not yet been functionally annotated. In this paper, we propose 2 model selection procedures for model-based clustering. Model selection in model-based clustering has to date focused on the identification of data dimensions that are relevant for clustering. However, in more complex data structures, with multiple experimental factors, such an approach does not provide easily interpreted clustering outcomes. We propose a mixture model with multiple levels, , that provides sparse representations both "within" and "between" cluster profiles. We explore various flexible "within-cluster" parameterizations and discuss how efficient parameterizations can greatly enhance the objective interpretability of the generated clusters. Moreover, we allow for a sparse "between-cluster" representation with a different number of clusters at different levels of an experimental factor of interest. This enhances interpretability of clusters generated in multiple-factor contexts. Interpretable cluster profiles can assist in detecting biologically relevant groups of genes that may be missed with less efficient parameterizations. We use our multilevel mixture model to mine a proliferating cell line expression data set for annotational context and regulatory motifs. We also investigate the performance of the multilevel clustering approach on several simulated data sets.  相似文献   

11.
As much of the focus of genetics and molecular biology has shifted toward the systems level, it has become increasingly important to accurately extract biologically relevant signal from thousands of related measurements. The common property among these high-dimensional biological studies is that the measured features have a rich and largely unknown underlying structure. One example of much recent interest is identifying differentially expressed genes in comparative microarray experiments. We propose a new approach aimed at optimally performing many hypothesis tests in a high-dimensional study. This approach estimates the optimal discovery procedure (ODP), which has recently been introduced and theoretically shown to optimally perform multiple significance tests. Whereas existing procedures essentially use data from only one feature at a time, the ODP approach uses the relevant information from the entire data set when testing each feature. In particular, we propose a generally applicable estimate of the ODP for identifying differentially expressed genes in microarray experiments. This microarray method consistently shows favorable performance over five highly used existing methods. For example, in testing for differential expression between two breast cancer tumor types, the ODP provides increases from 72% to 185% in the number of genes called significant at a false discovery rate of 3%. Our proposed microarray method is freely available to academic users in the open-source, point-and-click EDGE software package.  相似文献   

12.
Reconstructing the evolutionary relationships of species is a major goal in biology. Despite the increasing number of completely sequenced genomes, a large number of phylogenetic projects rely on targeted sequencing and analysis of a relatively small sample of marker genes. The selection of these phylogenetic markers should ideally be based on accurate predictions of their combined, rather than individual, potential to accurately resolve the phylogeny of interest. Here we present and validate a new phylogenomics strategy to efficiently select a minimal set of stable markers able to reconstruct the underlying species phylogeny. In contrast to previous approaches, our methodology does not only rely on the ability of individual genes to reconstruct a known phylogeny, but it also explores the combined power of sets of concatenated genes to accurately infer phylogenetic relationships of species not previously analyzed. We applied our approach to two broad sets of cyanobacterial and ascomycetous fungal species, and provide two minimal sets of six and four genes, respectively, necessary to fully resolve the target phylogenies. This approach paves the way for the informed selection of phylogenetic markers in the effort of reconstructing the tree of life.  相似文献   

13.
Mining gene expression databases for association rules   总被引:16,自引:0,他引:16  
  相似文献   

14.
MOTIVATION: An important application of microarray technology is to relate gene expression profiles to various clinical phenotypes of patients. Success has been demonstrated in molecular classification of cancer in which the gene expression data serve as predictors and different types of cancer serve as a categorical outcome variable. However, there has been less research in linking gene expression profiles to the censored survival data such as patients' overall survival time or time to cancer relapse. It would be desirable to have models with good prediction accuracy and parsimony property. RESULTS: We propose to use the L(1) penalized estimation for the Cox model to select genes that are relevant to patients' survival and to build a predictive model for future prediction. The computational difficulty associated with the estimation in the high-dimensional and low-sample size settings can be efficiently solved by using the recently developed least-angle regression (LARS) method. Our simulation studies and application to real datasets on predicting survival after chemotherapy for patients with diffuse large B-cell lymphoma demonstrate that the proposed procedure, which we call the LARS-Cox procedure, can be used for identifying important genes that are related to time to death due to cancer and for building a parsimonious model for predicting the survival of future patients. The LARS-Cox regression gives better predictive performance than the L(2) penalized regression and a few other dimension-reduction based methods. CONCLUSIONS: We conclude that the proposed LARS-Cox procedure can be very useful in identifying genes relevant to survival phenotypes and in building a parsimonious predictive model that can be used for classifying future patients into clinically relevant high- and low-risk groups based on the gene expression profile and survival times of previous patients.  相似文献   

15.
MOTIVATION: Several authors have studied expression in gene sets with specific goals: overrepresentation of interesting genes in functional groups, predictive power for class membership and searches for groups where the constituent genes show coordinated changes in expression under the experimental conditions. The purpose of this article is to follow the third direction. One important aspect is that the gene sets under analysis are known a priori and are not determined from the experimental data at hand. Our goal is to provide a methodology that helps to identify the relevant structural constituents (phenotypical, experimental design, biological component) that determine gene expression in a group. RESULTS: Gene-wise linear models are used to formalize the structural aspects of a study. The full model is contrasted with a reduced model that lacks the relevant design component. A comparison with respect to goodness of fit is made and quantified. An asymptotic test and a permutation test are derived to test the null hypothesis that the reduced model sufficiently explains the observed expression within the gene group of interest. Graphical tools are available to illustrate and interpret the results of the analysis. Examples demonstrate the wide range of application. AVAILABILITY: The R-package GlobalAncova (http://www.bioconductor.org) offers data and functions as well as a vignette to guide the user through specific analysis steps.  相似文献   

16.
Bø T  Jonassen I 《Genome biology》2002,3(4):research00-11
Methods for extracting useful information from the datasets produced by microarray experiments are at present of much interest. Here we present new methods for finding gene sets that are well suited for distinguishing experiment classes, such as healthy versus diseased tissues. Our methods are based on evaluating genes in pairs and evaluating how well a pair in combination distinguishes two experiment classes. We tested the ability of our pair-based methods to select gene sets that generalize the differences between experiment classes and compared the performance relative to two standard methods. To assess the ability to generalize class differences, we studied how well the gene sets we select are suited for learning a classifier. We show that the gene sets selected by our methods outperform the standard methods, in some cases by a large margin, in terms of cross-validation prediction accuracy of the learned classifier. We show that on two public datasets, accurate diagnoses can be made using only 15-30 genes. Our results have implications for how to select marker genes and how many gene measurements are needed for diagnostic purposes. When looking for differential expression between experiment classes, it may not be sufficient to look at each gene in a separate universe. Evaluating combinations of genes reveals interesting information that will not be discovered otherwise. Our results show that class prediction can be improved by taking advantage of this extra information.  相似文献   

17.
Three closely related clones of leukemic lymphoid CEM cells were compared for their gene expression responses to the glucocorticoid dexamethasone (Dex). All three contained receptors for Dex, but only two responded by undergoing apoptosis. After a time of exposure to Dex that ended late in the interval preceding onset of apoptosis, gene microarray analyses were carried out. The results indicate that the expression of a limited, distinctive set of genes was altered in the two apoptosis-prone clones, not in the resistant clone. That clone showed altered expression of different sets of genes, suggesting that a molecular switch converted patterns of gene expression between the two phenotypes: apoptosis-prone and apoptosis-resistant. The results are consistent with the hypothesis that altered expression of a distinctive network of genes after glucocorticoid administration ultimately triggers apoptosis of leukemic lymphoid cells. The altered genes identified provide new foci for study of their role in cell death.  相似文献   

18.
Gene expression profiles of clinical cohorts can be used to identify genes that are correlated with a clinical variable of interest such as patient outcome or response to a particular drug. However, expression measurements are susceptible to technical bias caused by variation in extraneous factors such as RNA quality and array hybridization conditions. If such technical bias is correlated with the clinical variable of interest, the likelihood of identifying false positive genes is increased. Here we describe a method to visualize an expression matrix as a projection of all genes onto a plane defined by a clinical variable and a technical nuisance variable. The resulting plot indicates the extent to which each gene is correlated with the clinical variable or the technical variable. We demonstrate this method by applying it to three clinical trial microarray data sets, one of which identified genes that may have been driven by a confounding technical variable. This approach can be used as a quality control step to identify data sets that are likely to yield false positive results.  相似文献   

19.
Genes with common functions often exhibit correlated expression levels, which can be used to identify sets of interacting genes from microarray data. Microarrays typically measure expression across genomic space, creating a massive matrix of co-expression that must be mined to extract only the most relevant gene interactions. We describe a graph theoretical approach to extracting co-expressed sets of genes, based on the computation of cliques. Unlike the results of traditional clustering algorithms, cliques are not disjoint and allow genes to be assigned to multiple sets of interacting partners, consistent with biological reality. A graph is created by thresholding the correlation matrix to include only the correlations most likely to signify functional relationships. Cliques computed from the graph correspond to sets of genes for which significant edges are present between all members of the set, representing potential members of common or interacting pathways. Clique membership can be used to infer function about poorly annotated genes, based on the known functions of better-annotated genes with which they share clique membership (i.e., “guilt-by-association”). We illustrate our method by applying it to microarray data collected from the spleens of mice exposed to low-dose ionizing radiation. Differential analysis is used to identify sets of genes whose interactions are impacted by radiation exposure. The correlation graph is also queried independently of clique to extract edges that are impacted by radiation. We present several examples of multiple gene interactions that are altered by radiation exposure and thus represent potential molecular pathways that mediate the radiation response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号