首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ceramide is involved in development of insulin resistance. However, there are no data on ceramide metabolism in human adipose tissue. The aim of our study was to examine sphingolipid metabolism in fat tissue from obese nondiabetic (n = 11), obese diabetic (n = 11), and lean nondiabetic (n = 8) subjects. The content of ceramide (Cer), dihydroceramide (dhCer), sphingosine (SPH), sphinganine (SPA), sphingosine‐1‐phosphate (S1P; pmol/mg of protein), the expression (mRNA) and activity of key enzymes responsible for Cer metabolism: serine palmitoyltransferase (SPT), neutral and acidic sphingomyelinase (nSMase and aSMase, respectively), and neutral and acidic ceramidase (nCDase and aCDase, respectively) were examined in human adipose tissue. The contents of SPA and Cer were significantly lower whereas the content of dhCer was higher in both obese groups than the respective values in the lean subjects. The expression of examined enzymes was elevated in both obese groups. The SPT and CDases activity increased whereas aSMase activity deceased in both obese groups. We have found correlation between adipose tissue Cer content and plasma adiponectin concentration (r = 0.69, P < 0.001) and negative correlation between total Cer content and HOMA‐IR index (homeostasis model of insulin resistance) (r = ?0.67, P < 0.001). We have found that both obesity and diabetes affected pathways of sphingolipid metabolism in the adipose tissue. J. Cell. Physiol. 227: 550–557, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

2.
Plasma levels of plasminogen activator inhibitor-1 (PAI-1) are elevated in obesity and correlate with body mass index. The increase in PAI-1 associated with obesity likely contributes to increased cardiovascular risk and may predict the development of type 2 diabetes mellitus. Although adipocytes are capable of synthesizing PAI-1, the bulk of evidence indicates that cells residing in the stromal fraction of visceral fat are the primary source of PAI-1. We hypothesized that bone marrow-derived PAI-1, e.g. derived from macrophages located in visceral fat, contributes to the development of diet-induced obesity. To test this hypothesis, male C57BL/6 wild-type mice and C57BL/6 PAI-1 deficient mice were transplanted with either PAI-1(-/-), PAI-1(+/-), or PAI-1(+/+) bone marrow. The transplanted animals were subsequently fed a high fat diet for 24 weeks. Our findings show that only the complete absence of PAI-1 protects from the development of diet-induced obesity, whereas the absence of bone marrow-derived PAI-1 protects against expansion of the visceral fat mass. Remarkably, there is a link between the PAI-1 levels, the degree of inflammation in adipose tissue, and the development of obesity. Based on these findings we suggest that bone marrow-derived PAI-1 has an effect on the development of obesity through its effect on inflammation.  相似文献   

3.
Alterations in the expression level of genes may contribute to the development and pathophysiology of obesity. To find genes differentially expressed in adipose tissue during obesity, we performed suppression subtractive hybridization on epididymal fat mRNA from goldthioglucose (GTG) obese mice and from their lean littermates. We identified the secreted protein acidic and rich in cysteine (SPARC), a protein that mediates cell-matrix interactions and plays a role in modulation of cell adhesion, differentiation, and angiogenesis. SPARC mRNA expression in adipose tissue was markedly increased (between 3- and 6-fold) in three different models of obesity, i.e. GTG mice, ob/ob mice, and AKR mice, after 6 weeks of a high fat diet. Immunoblotting of adipocyte extracts revealed a similar increase in protein level. Using a SPARC-specific ELISA, we demonstrated that SPARC is secreted by isolated adipocytes. We found that insulin administration to mice increased SPARC mRNA in the adipose tissue. Food deprivation had no effect on SPARC expression, but after high fat refeeding SPARC mRNA levels were significantly increased. Our results reveal both hormonal and nutritional regulation of SPARC expression in the adipocyte, and importantly, its alteration in obesity. Finally, we show that purified SPARC increased mRNA levels of plasminogen activator inhibitor 1 (PAI-1) in cultured rat adipose tissue suggesting that elevated adipocyte expression of SPARC might contribute to the abnormal expression of PAI-1 observed in obesity. We propose that SPARC is a newly identified autocrine/paracrine factor that could affect key functions in adipose tissue physiology and pathology.  相似文献   

4.
It has been shown that inhibition of de novo sphingolipid synthesis increases insulin sensitivity. For further exploration of the mechanism involved, we utilized two models: heterozygous serine palmitoyltransferase (SPT) subunit 2 (Sptlc2) gene knockout mice and sphingomyelin synthase 2 (Sms2) gene knockout mice. SPT is the key enzyme in sphingolipid biosynthesis, and Sptlc2 is one of its subunits. Homozygous Sptlc2-deficient mice are embryonic lethal. However, heterozygous Sptlc2-deficient mice that were viable and without major developmental defects demonstrated decreased ceramide and sphingomyelin levels in the cell plasma membranes, as well as heightened sensitivity to insulin. Moreover, these mutant mice were protected from high-fat diet-induced obesity and insulin resistance. SMS is the last enzyme for sphingomyelin biosynthesis, and SMS2 is one of its isoforms. Sms2 deficiency increased cell membrane ceramide but decreased SM levels. Sms2 deficiency also increased insulin sensitivity and ameliorated high-fat diet-induced obesity. We have concluded that Sptlc2 heterozygous deficiency- or Sms2 deficiency-mediated reduction of SM in the plasma membranes leads to an improvement in tissue and whole-body insulin sensitivity.  相似文献   

5.
6.
Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.  相似文献   

7.
It was shown that high-fat feeding of mice with cardiac-specific overexpression of peroxisome proliferator-activated receptor (PPAR) alpha but not wild type animals leads to the accumulation of ceramide (an important mediator of lipotoxicity) in the heart [Finck et al. 2003 Proc Natl Acad Sci USA]. To investigate the mechanism of this phenomenon we examined the effects of PPARalpha activation on ceramide metabolism in the myocardium. Male Wistar rats were fed either a standard chow or a high-fat diet. Each group was divided into two subgroups: control and treated with selective PPARalpha activator - WY-14643. In the rats fed on the standard diet WY-14643 did not affect the myocardial content of sphingomyelin and ceramide but reduced the content of sphinganine and sphingosine. It also inhibited the activity of neutral sphingomyelinase and increased the activity of acid sphingomyelinase, whereas the activity of ceramidases and serine palmitoyltransferase (SPT) remained stable. High-fat diet itself did not affect the content of the examined sphingolipids. However, it reduced the activity of sphingomyelinases and ceramidases having no effect on the activity of SPT. Administration of WY-14643 to this group significantly increased the content of myocardial free palmitate, ceramide, sphingomyelin and the activity of SPT. Our results demonstrated that PPARalpha activation modulates myocardial ceramide metabolism and leads to the accumulation of ceramide in the heart of the high-fat fed rats due to its increased synthesis de novo.  相似文献   

8.
Obesity increases the risk for hepatic steatosis. Recent studies have demonstrated that high fat diet (HFD) may affect sphingolipid formation in skeletal muscles, heart, and other tissues. In this work we sought to investigate whether HFD feeding provokes changes in content and fatty acids (FAs) composition of sphingomyelin and ceramide at the level of liver and hepatic nuclei. Furthermore, we investigated whether the ceramide formation is related to the activity of either neutral sphingomyelinase (N-SMase) or acidic sphingomyelinase (A-SMase). Three weeks of HFD provision induced pronounced ceramide and sphingomyelin accumulation in both liver and hepatic nuclei, accompanied by increased activity of N-SMase but not A-SMase. Furthermore, a shift toward greater FAs saturation status in these sphingolipids was also observed. These findings support the conclusion that HFD has a major impact on sphingolipid metabolism not only in the liver, but also in hepatic nuclei.  相似文献   

9.
Plasminogen activator inhibitor-1, adipose tissue and insulin resistance   总被引:4,自引:0,他引:4  
PURPOSE OF REVIEW: Plasminogen activator inhibitor (PAI)-1 is a physiological inhibitor of plasminogen activators (urokinase and tissue types) and vitronectin. It is synthesized by adipose tissue, and its levels in plasma are increased in obesity and reduced with weight loss. Circulating PAI-1 level predicts development of type 2 diabetes, suggesting that it may be causally related to development of obesity. A role for PAI-1 in development of obesity has only partially been established, however. This review summarizes current knowledge, gives context to developments thus far and discusses controversies. RECENT FINDINGS: In addition to its role in atherothrombosis, PAI-1 might be involved in adipose tissue development. PAI-1 is produced by ectopic fat depots under the influence of inducers. Among the most recently described inducers are inflammation, oxidative stress and circadian clock protein. PAI-1 may play several roles in contributing to obesity: through indirect effects on insulin signalling, by influencing adipocyte differentiation and by regulating recruitment of inflammatory cells within adipose tissue. SUMMARY: These recent findings emphasize the involvement of PAI-1 in controlling the biology of adipose tissue; PAI-1 is an attractive new therapeutic target to retard the metabolic complications that accompany obesity.  相似文献   

10.
The de novo pathway of sphingolipid synthesis has been identified recently as a novel means of generating ceramide during apoptosis. Furthermore, it has been suggested that the activation of dihydroceramide synthase is responsible for increased ceramide production through this pathway. In this study, accumulation of ceramide mass in Molt-4 human leukemia cells by the chemotherapy agent etoposide was found to occur primarily due to activation of the de novo pathway. However, when the cells were labeled with a substrate for dihydroceramide synthase in the presence of etoposide, there was no corresponding increase in labeled ceramide. Further investigation using a labeled substrate for serine palmitoyltransferase, the rate-limiting enzyme in the pathway, resulted in an accumulation of label in ceramide upon etoposide treatment. This result suggests that the activation of serine palmitoyltransferase is the event responsible for increased ceramide generation during de novo synthesis initiated by etoposide. Importantly, the ceramide generated from de novo synthesis appears to have a distinct function from that induced by sphingomyelinase action in that it is not involved in caspase-induced poly (ADP-ribose)polymerase proteolysis but does play a role in disrupting membrane integrity in this model system. These results implicate serine palmitoyltransferase as the enzyme controlling de novo ceramide synthesis during apoptosis and begin to define a unique function of ceramide generated from this pathway.  相似文献   

11.
12.
Obesity and metabolic syndrome are associated with glomerulosclerosis and proteinuria, but the mechanisms are not known. The purpose of this study was to determine if there is altered renal lipid metabolism and increased expression of sterol regulatory element-binding proteins (SREBPs) in a model of diet-induced obesity. C57BL/6J mice that were fed a high fat, 60 kcal % saturated (lard) fat diet (HFD) developed obesity, hyperglycemia, and hyperinsulinemia compared with those that were fed a low fat, 10 kcal % fat diet (LFD). In contrast, A/J mice were resistant when fed the same diet. C57BL/6J mice with HFD exhibited significantly higher levels of renal SREBP-1 and SREBP-2 expression than those mice with LFD, whereas in A/J mice there were no changes with the same treatment. The increases in SREBP-1 and SREBP-2 expression in C57BL/6J mice resulted in renal accumulation of triglyceride and cholesterol. There were also significant increases in the renal expression of plasminogen activator inhibitor-1 (PAI-1), vascular endothelial growth factor (VEGF), type IV collagen, and fibronectin, resulting in glomerulosclerosis and proteinuria. To determine a role for SREBPs per se in modulating renal lipid metabolism and glomerulosclerosis we performed studies in SREBP-1c(-/-) mice. In contrast to control mice, in the SREBP-1c(-/-) mice with HFD the accumulation of triglyceride was prevented, as well as the increases in PAI-1, VEGF, type IV collagen, and fibronectin expression. Our results therefore suggest that diet-induced obesity causes increased renal lipid accumulation and glomerulosclerosis in C57BL/6J mice via an SREBP-1c-dependent pathway.  相似文献   

13.
Tumor necrosis factor (TNF) contributes to insulin resistance by binding to the 55kDa TNF receptor (TNF-R55), resulting in serine phosphorylation of proteins such as insulin receptor (IR) substrate (IRS)-1, followed by reduced tyrosine phosphorylation of IRS-1 through the IR and, thereby, diminished IR signal transduction. Through independent receptor domains, TNF-R55 activates a neutral (N-SMase) and an acid sphingomyelinase (A-SMase), that both generate the sphingolipid ceramide. Multiple candidate kinases have been identified that serine-phosphorylate IRS-1 in response to TNF or ceramide. However, due to the fact that the receptor domain of TNF-R55 mediating inhibition of the IR has not been mapped, it is currently unknown whether TNF exerts these effects with participation of N-SMase or A-SMase. Here, we identify the death domain of TNF-R55 as responsible for the inhibitory effects of TNF on tyrosine phosphorylation of IRS-1, implicating ceramide generated by A-SMase as a downstream mediator of inhibition of IR signaling.  相似文献   

14.
15.
Ceramides (Cer) are implicated in obesity‐associated skeletal muscle and perhaps adipocyte insulin resistance. We examined whether the sphingolipid content of human subcutaneous adipose tissue and plasma varies by obesity and sex as well as the relationship between ceramide content and metabolic indices. Abdominal subcutaneous adipose biopsies were performed on 12 lean adults (males = 6), 12 obese adults (males = 6) for measurement of sphingolipid content and activity of the main ceramide metabolism enzymes. Blood was sampled for glucose, insulin (to calculate homeostasis model assessment‐estimated insulin resistance (HOMAIR)) adiponectin, and interleukin‐6 (IL‐6) concentrations. Compared to lean controls, total ceramide content (pg/adipocyte) was increased by 31% (P < 0.05) and 34% (P < 0.05) in obese females and males, respectively. In adipocytes from obese adults sphingosine, sphinganine, sphingosine‐1‐phosphate, C14‐Cer, C16‐Cer, and C24‐Cer were all increased. C18:1‐Cer was increased in obese males and C24:1‐Cer in obese females. For women only, there was a negative correlation between C16‐Cer ceramide and plasma adiponectin (r = ?0.77, P = 0.003) and a positive correlation between total ceramide content and HOMAIR (r = 0.74, P = 0.006). For men only there were significant (at least P < 0.05), positive correlations between adipocyte Cer‐containing saturated fatty acid and plasma IL‐6 concentration. We conclude that the sexual dimorphism in adipose tissue behavior in humans extends to adipose tissue sphingolipid content its association with adiponectin, IL‐6 and insulin resistance.  相似文献   

16.
To investigate signal transduction pathways leading to apoptosis during the early phase of neurogenesis, we employed PCC7-Mz1 cells, which cease to proliferate and begin to differentiate into a stable pattern of neurons, astroglial cells, and fibroblasts upon incubation with retinoic acid (RA). As part of lineage determination, a sizable fraction of RA-treated cultures die by apoptosis. Applying natural long-chain C(16)-ceramides as well as membrane-permeable C(2)/C(6)-ceramide analogs caused apoptosis, whereas the biologically nonactive C(2)-dihydroceramide did not. Treating PCC7-Mz1 stem cells with a neutral sphingomyelinase or with the ceramidase inhibitor N-oleoylethanolamine elevated the endogenous ceramide levels and concomitantly induced apoptosis. Addition of RA caused an increase in ceramide levels within 3-5 h, which reached a maximum (up to 3.5-fold of control) between days 1 and 3 of differentiation. Differentiated PCC7-Mz1 cells did not respond with ceramide formation and apoptosis to RA treatment. The acidic sphingomyelinase contributed only weakly and the neutral Mg(2+)-dependent and Mg(2+)-independent sphingomyelinases not at all to the RA-mediated production of ceramides. However, ceramide increase was sensitive to the ceramide synthase inhibitor fumonisin B(1), suggesting a crucial role for the de novo synthesis pathway. Enzymatic assays revealed that ceramide synthase activity remained unaltered, whereas serine palmitoyltransferase (SPT), a key enzyme in ceramide synthesis, was activated approximately 2.5-fold by RA treatment. Activation of SPT seemed to be mediated via a post-translational mechanism because levels of the mRNAs coding for the two SPT subunits were unaffected. Expression of marker proteins shows that ceramide regulates apoptosis, rather than differentiation, during early neural differentiation.  相似文献   

17.

Background

Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance.

Methodology/Principal Findings

We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state.

Conclusions/Significance

The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice.  相似文献   

18.
Our objective was to investigate expression of A disintegrin and metalloproteinase (ADAM) and ADAM proteins with a thrombospondin (TS) motif (ADAMTS) family members in adipose tissue of lean and obese mice. Five-week-old male mice were kept on standard chow (SFD) or on high fat diet (HFD) for 15 weeks, and subcutaneous (SC) and gonadal (GON) adipose tissue, as well as mature adipocytes and stromal-vascular (S-V) cells were harvested. mRNA levels of plasminogen activator inhibitor-1 (PAI-1), tumor necrosis factor-alpha (TNF-alpha), ADAM-17 (TACE or TNF-alpha converting enzyme), ADAMTS-1 and ADAMTS-8 were quantified in isolated adipose tissues and cell fractions, and during differentiation of murine preadipocytes. The HFD resulted in a significantly enhanced weight of isolated SC and GON fat pads, and in enhanced blood levels of glucose, cholesterol and PAI-1. ADAM-17, TNF-alpha, PAI-1, ADAMTS-1 and ADAMTS-8 mRNA were detected in both SC and GON adipose tissue of lean mice (SFD). In SC adipose tissue of obese mice (HFD), the expression of ADAM-17 and PAI-1 was enhanced and that of ADAMTS-1 reduced, whereas in GON adipose tissue expression of TNF-alpha was enhanced and that of ADAMTS-8 reduced. In lean and obese mice, expression of ADAM-17, ADAMTS-1 and ADAMTS-8 was higher in the S-V cell fraction than in mature adipocytes. During differentiation of murine 3T3-F442A preadipocytes, expression of ADAM-17 and ADAMTS-1 remained virtually unaltered, whereas that of ADAMTS-8 decreased as adipocytes matured. Several ADAM and ADAMTS family members are expressed in adipose tissue and during differentiation of preadipocytes. Modulation of their expression upon development of obesity is adipose tissue-dependent.  相似文献   

19.
Complement activation is implicated in the development of obesity and insulin resistance, and loss of signaling by the anaphylatoxin C3a prevents obesity-induced insulin resistance in mice. Here we have identified C1q in the classical pathway as required for activation of complement in response to high fat diets. After 8 weeks of high fat diet, wild-type mice became obese and developed glucose intolerance. This was associated with increased apoptotic cell death and accumulation of complement activation products (C3b/iC3b/C3c) in liver and adipose tissue. Previous studies have shown that high fat diet-induced apoptosis is dependent on Bid; here we report that Bid-mediated apoptosis was required for complement activation in adipose and liver. Although C1qa deficiency had no effect on high fat diet-induced apoptosis, accumulation of complement activation products and the metabolic complications of high fat diet-induced obesity were dependent on C1q. When wild-type mice were fed a high fat diet for only 3 days, hepatic insulin resistance was associated with the accumulation of C3b/iC3b/C3c in the liver. Mice deficient in C3a receptor were protected against this early high fat diet-induced hepatic insulin resistance, whereas mice deficient in the negative complement regulator CD55/DAF were more sensitive to the high fat diet. C1qa−/− mice were also protected from high fat diet-induced hepatic insulin resistance and complement activation. Evidence of complement activation was also detected in adipose tissue of obese women compared with lean women. Together, these studies reveal an important role for C1q in the classical pathway of complement activation in the development of high fat diet-induced insulin resistance.  相似文献   

20.
We previously reported that incubation of bone-marrow derived macrophages in the absence of macrophage-colony stimulating factor (M-CSF), a cytokine that is essential for their growth and survival, resulted in stimulation of acid sphingomyelinase, accumulation of ceramides, and induction of apoptosis [A. Gomez-Munoz et al. 2004. Ceramide 1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45: 99–105]. Here, we show that alveolar NR8383 macrophages, which are not dependent on M-CSF for viability, undergo apoptosis when they are incubated in the absence of serum. NR8383 cells showed increased levels of ceramides under apoptotic conditions, but in contrast to bone marrow macrophage acid and neutral sphingomyelinases were only slightly activated. We found that the major mechanism for ceramide generation in NR8383 macrophages was stimulation of their synthesis de novo. This action involved activation of serine palmitoyltransferase (SPT), the key regulatory enzyme of this pathway. A relevant finding was that ceramide 1-phosphate (C1P) inhibited SPT activity and ceramide accumulation leading to inhibition of apoptosis. Furthermore, C1P enhanced the activity of antiapoptotic protein kinase B and its downstream effector nuclear factor kappa B. These observations add a new dimension to the understanding of the pro-survival actions of C1P in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号