首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD4+ve Th1 clones, as well as normal splenic T cells, were found to suppress LPS-driven antibody secretion in a non-Ag-specific and non-MHC-restricted manner when the T cells were activated with the anti-CD3 mAb, 145-2C11. Suppression was observed with both primed and naive B cells, as well as with purified hapten-specific B cells, a result that suggests a direct effect of anti-CD3-activated T cells on B cell differentiation. Th1 clones activated by cognate Ag also suppressed LPS-driven antibody secretion. Furthermore, suppression of LPS-driven antibody secretion could be achieved across a cell-impermeable porous membrane when T cells were activated with anti-CD3. Suppression by Th1 clones and by normal T cells could not be attributed to a concomitant decrease in B cell proliferation or to a shift in the kinetics or isotype of the antibody response. These data demonstrate that CD4+ve Th1 clones, as well as normal T cells, can effect suppression of polyclonal antibody formation.  相似文献   

2.
3.
Culture of murine T cells with immobilized (platebound) anti-CD3 antibody results in autocrine growth factor secretion in both Th1 (IL-2 producing) and Th2 (IL-4 producing) cells. Using a panel of murine T cell clones, we demonstrate that the IL-2-induced proliferation of Th1 clones is dramatically inhibited by immobilized anti-CD3 antibody, whereas that of Th2 clones is not. This unresponsiveness of Th1 clones to IL-2 is not due to decreases in IL-2R expression. Supernatants from Th1 or Th2 cell cultures fail to alter the effects of anti-CD3 on the two types of clones, suggesting that unresponsiveness induced in Th1 clones or the lack thereof in Th2 clones is not mediated by a stable cytokine(s). Accessory cells enhance the proliferation of Th1 cells exposed to low concentrations of anti-CD3, but the unresponsiveness induced by high concentrations of anti-CD3 is not prevented by accessory cells. Finally, soluble anti-CD4 antibody prevents the induction of the unresponsive state even at high concentrations of anti-CD3. These experiments demonstrate that two subsets of cloned CD4+ T cells differ in their responses to anti-CD3, and that CD4 molecules may play a critical role in regulating the outcome of receptor-mediated stimulation.  相似文献   

4.
T cells can be activated to proliferate by antibodies to the T cell antigen receptor or the molecularly associated CD3 complex if monocytes are present. We have shown previously that monoclonal antibodies to the human T cell differentiation antigens CD5 (Tp67) and Tp44 each augment and prolong proliferative responses of anti-CD3-activated T cells, even in the absence of monocytes. Here we show that the functional and biochemical mechanisms of CD5 and Tp44 signal transmission are distinct. T cell proliferation is suppressed by agents that increase the concentration of intracellular cAMP. We found that antibody binding to the Tp44 surface molecule overcomes this suppression, whereas antibody binding to CD5 does not, indicating that ligand-Tp44 interaction changes T cell sensitivity to cAMP-mediated growth inhibition. The ability of anti-CD3, anti-Tp44, and anti-CD5 monoclonal antibodies to directly alter cyclic nucleotide levels in the Jurkat T cell line was examined. Anti-CD3 alone caused a rapid four- to sixfold increase in cAMP levels, but did not affect cGMP levels. However, anti-Tp44 and anti-CD5 each caused a rapid three- to fourfold increase in cGMP levels without affecting cAMP levels. In other experiments, cytoplasmic free calcium levels were measured in resting T cells after CD5 or Tp44 stimulation by using the dye indo-1 and flow cytometry. This sensitive method showed that anti-CD5 alone caused an increase in cytoplasmic calcium free levels within 3 min of antibody addition, whereas anti-Tp44 had no effect. Finally, anti-Tp44 and IL 1 each augmented proliferation of phorbol ester-stimulated lymphocytes, whereas anti-CD5 did not. The effects of IL 1 and Tp44 could be further distinguished in that the effect of anti-Tp44 was resistant to inhibition by dBcAMP whereas IL 1 was not. These data suggest that the receptor function of both Tp44 and CD5 involves changes in cyclic nucleotides levels, and that the mechanism by which anti-Tp44 and anti-CD5 antibodies affect T cell proliferative responses may be related to their selective effects on cGMP levels and cytoplasmic calcium concentrations.  相似文献   

5.
Human gamma-globulin (HGG)-specific mouse Th1 clones exposed to tolerogenic signals provided by HGG-pulsed paraformaldehyde-fixed splenocytes (HGG-FAPC) were analyzed for antigen-induced progression through the early phases of the cell cycle. Exposure of Th1 clones to HGG-FAPC in primary cultures inhibits the ability of the clones to synthesize DNA in response to HGG and normal APC in secondary cultures. The Th1 clones in these secondary cultures were found to be blocked in G1a phase as evidenced by cell cycle analysis and by reduced numbers of cells expressing high levels of IL-2R and TfR. This cell cycle blockade of Th1 cells was not observed if the secondary cultures were stimulated with IL-2-containing Con A CM instead of antigen. These data suggest that in our system the inhibition in antigen-induced cell cycle progression associated with Th1 tolerance induction occurs at the G1a/G1b phase transition.  相似文献   

6.
The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK) readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK) had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.  相似文献   

7.
Human gamma globulin-specific T helper cell (Th) clones, activated by HGG in the presence of antigen (Ag)-presenting cells, stimulated polyclonal B cell proliferation. Both Th1 and Th2 clones induced B cell proliferation, but Th1 clones were generally 5- to 10-fold less efficient than Th2 in this capacity. Th1 and Th2 each induced proliferation of both small and large B cells, although Th1 induced less B cell proliferation than Th2, regardless of B cell size. Th1-induced B cell proliferation was increased significantly by stimulating the Th1 clones with immobilized anti-CD3 mAb. The B cell response to Ag-activated Th1 clones was also increased by the addition of rIL-4 or culture supernatants from activated Th2 clones, and this enhancement was abolished by addition of anti-IL-4 mAb. The differential capacity of the Th subsets to stimulate B cells could not be attributed to differences in the degree of Ag-induced activation of the Th clones as reflected by Th proliferation or Th expression of activation markers, RL388 Ag, IL-2R, or TfR. Taken together the results suggest that even though Th1 and Th2 are similarly activated by Ag-presenting cells, Ag-activated Th2 interact more effectively with B cells than Ag-activated Th1. It is possible that inefficient interaction and subsequent intercellular signaling between Th1 and B cells results in inefficient Th1-induced B cell proliferation, and that this deficiency may be circumvented by signals (e.g., lymphokines) provided by Th2, or by the stimulation of Th1 with plate-bound anti-CD3 Ab rather than Ag.  相似文献   

8.
Cyclic AMP inhibited both ERK and Akt activities in rat C6 glioma cells. A constitutively active form of phosphatidylinositol 3-kinase (PI3K) prevented cAMP from inhibiting Akt, suggesting that the inactivation of Akt by cAMP is a consequence of PI3K inhibition. Neither protein kinase A nor Epac (Exchange protein directly activated by cAMP), two known direct effectors of cAMP, mediated the cAMP-induced inhibition of ERK and Akt phosphorylation. Cyclic AMP inhibited Rap1 activation in C6 cells. Moreover, inhibition of Rap1 by a Rap1 GTPase-activating protein-1 also resulted in a decrease in ERK and Akt phosphorylation, which was not further decreased by cAMP, suggesting that cAMP inhibits ERK and Akt by inhibiting Rap1. The role of Rap1 in ERK and Akt activity was further demonstrated by our observation that an active form of Epac, which activated Rap1 in the absence of cAMP, increased ERK and Akt phosphorylation. Inhibition of ERK and/or PI3K pathways mediated the inhibitory effects of cAMP on insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 gene expression. Moreover, cAMP, as well as ERK and PI3K inhibitors produced equivalent stimulation and inhibition, respectively, of p27(Kip1) and cyclin D2 protein levels, potentially explaining the observation that cAMP prevented C6 cells from entering S phase.  相似文献   

9.
The CD27 Ag is expressed by the majority of resting T lymphocytes and appears to play a crucial role in T cell activation. We found that some resting peripheral blood NK cells also express CD27. Furthermore, CD27 expression was up-regulated on NK cells stimulated by IL-2. The cytolytic activity of IL-2-activated, but not resting, NK cells was inhibited by an anti-CD27 mAb (anti-1A4). However, anti-1A4 did not affect conjugate formation between IL-2-activated NK cells and tumor cell targets. In contrast, anti-1A4 inhibited CD2-mediated calcium mobilization and the serine esterase activity of NK cell granules. These inhibitory effects could be mediated in part by increase in intracellular cAMP levels induced by anti-1A4. Our results suggest that the CD27 Ag plays an important role in the regulation of activated NK cells.  相似文献   

10.
11.
The regulation of the activation of T lymphocyte proliferation is not well understood. It is known that the tumor promoter, PMA, which activates protein kinase C (PKC), can induce the proliferation of several murine CTL clones; in combination with calcium ionophores, which raise the level of intracellular Ca2+, PMA can also stimulate the proliferation of several HTL clones. Activation of the TCR is believed to result in the liberation of diacylglycerol, which is an activator of PKC, and inositol 1,4,5-trisphosphate, which stimulates an increase in intracellular levels of calcium. We now report that pretreatment with cholera toxin (CT) inhibits the proliferation of murine T cell clones stimulated through the TCR/CD3 complex. In addition, CT-pretreatment blocks the proliferation of CTL clones activated with PMA or of HTL clones activated with PMA + calcium ionophore. In contrast, CT-pre-treatment inhibits much less effectively (100- to 1000-fold) the proliferation of these T cell clones stimulated with IL-2. Furthermore, activators of PKC, but not IL-2, potentiate the CT-induced cAMP elevation in T cell clones. The ability of CT to inhibit much more effectively the proliferation triggered by putative activators of PKC than that induced by IL-2 may be mediated by cAMP-dependent mechanisms.  相似文献   

12.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in the suppression of human B cell function by immobilized anti-CD3-activated CD4+ T cells was examined by studying the effects of mAb to these determinants. The suppressive activity was assessed by the effects of CD4+ T cells without mitomycin C treatment activated by immobilized anti-CD3 for 72 hr on the differentiation into Ig-secreting cells of B cells activated for 72 hr with immobilized anti-CD3-stimulated CD4+ T cells that had been treated with mitomycin C (T4 mito). Suppression was not observed when activated CD4+ T cells and B cells were separated by filter membranes, indicating that the suppression requires the direct interactions between anti-CD3-activated CD4+ T cells and activated B cells. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) reversed the suppression of B cell function by suppressor CD4+ T cells significantly. Reversal of suppression of B cell function was most marked when activated B cells were treated with mAb to ICAM-1 and suppressor CD4+ T cells were treated with mAb to LFA-1, but not vice versa. Studies using fluorescence-activated cell sorter revealed marked increase of expression of ICAM-1 on B cells after 72 hr of activation with immobilized anti-CD3-stimulated T4 mito. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the suppressive activity of anti-CD3-activated CD4+ T cells to B cells. Moreover, the data are consistent with a model of T-cell-mediated B cell suppression in which interactions between LFA-1 on suppressor T cells and ICAM-1 on activated B cells play a central role in the suppression of B cell function.  相似文献   

13.
cAMP exerts an antiproliferative effect on a number of cell types including lymphocytes. This effect of cAMP is proposed to be mediated by its ability to inhibit G1/S transition. In this report, we provide evidence for a new mechanism whereby cAMP might inhibit cellular proliferation. We show that elevation of intracellular levels of cAMP inhibits DNA replication and arrests the cells in S phase. The cAMP-induced inhibition of DNA synthesis was associated with the increased binding of p21Cip1 to Cdk2-cyclin complexes, inhibition of Cdk2 kinase activity, dephosphorylation of Rb, and dissociation of PCNA from chromatin in S phase cells. The ability of cAMP to inhibit DNA replication and trigger release of PCNA from chromatin required Rb and p21Cip1 proteins, since both processes were only marginally affected by increased levels of cAMP in Rb-/- and p21Cip1-/- 3T3 fibroblasts. Importantly, the implications of cAMP-induced inhibition of DNA synthesis in cancer treatment was demonstrated by the ability of cAMP to reduce apoptosis induced by S phase-specific cytotoxic drugs. Taken together, these results demonstrate a novel role for cAMP in regulation of DNA synthesis and support a model in which activation of cAMP-dependent signaling protects cells from the effect of S phase-specific antitumor agents.  相似文献   

14.
Human atopen-specific types 1 and 2 T helper cell clones.   总被引:11,自引:0,他引:11  
Eight representative T lymphocyte clones (TLC) randomly selected from previously described panels of CD4+ housedust mite Dermatophagoides pteronyssinus (Dp)-specific TLC from atopic and nonatopic donors were studied in more detail in a comparative investigation. The TLC from the atopic donors closely resembled murine type 2 Th (Th2) cells by secreting substantial IL-4, IL-5, IL-6, TNF-alpha, and granulocyte-macrophage (GM)-CSF, minimal IFN-gamma, and relatively little IL-2. In contrast, the nonatopic's TLC resembled murine type 1 Th (TH1) cells by secreting substantial IFN-gamma, IL-2, TNF-alpha, and GM-CSF, no IL-4, and little IL-5. A difference with murine Th1 cells was their additional secretion of IL-6. These cytokine profiles were consistent upon stimulation via different activation pathways including stimulation with specific Dp Ag, mitogenic lectins, and antibodies to CD2, CD3, or CD28. The observed differences in IL-2 secretion, however, were most evident upon stimulation with anti-CD28. If TLC cells were cultured with highly purified B cells and stimulated with anti-CD3 in the absence of exogenous IL-4, IgE synthesis was induced only in cultures with the atopics' Th2 clones, which could be completely abrogated by anti-IL-4. The mere presence of exogenous rIL-4, however, did not result in IgE synthesis, nor did unstimulated TLC cells alone. But if unstimulated TLC cells (that proved not to secrete detectable amounts of cytokines) were added together with rIL-4, again IgE synthesis was induced only in cultures with the atopics' Th2 clones, suggesting the involvement of an additional, as yet unidentified accessory helper function of the atopics' Th2 clones for IgE induction. Unstimulated Th2 clones showed a significantly higher expression of CD28 than the Th1 clones, but three days after stimulation, CD28 expression was elevated to comparable levels on both subsets. When added to B cells at this time point, together with rIL-4 and anti-IFN-gamma, still only the atopics' Th2 clones supported IgE synthesis, arguing against a role for CD28 in this accessory helper function. Whereas the atopics' Th2 clones were excellent helper cells for IgE induction, a unique property of the nonatopic's Th1 clones was their cytolytic activity toward autologous APC which could be induced by specific Dp Ag and by anti-CD3. The present data provide clear evidence for the existence of Th1 and Th2 cells in man.  相似文献   

15.
In vitro Th1 cytokine-independent Th2 suppressive effects of bifidobacteria   总被引:1,自引:0,他引:1  
A comparison between 17 strains of lactic acid bacteria and 15 strains of bifidobacteria indicated that bifidobacteria induced significantly lower levels of interleukin-12 (IL-12) in murine splenic cells. The present study aims to evaluate the effect and mechanism of Bifidobacterium longum BB536, a probiotic strain, in suppressing antigen-induced Th2 immune response in vitro. BB536 suppressed immunoglobulin (Ig) E and IL-4 production by ovalbumin-sensitized splenic cells, but induction of Th1-inducing cytokine production, such as IL-12 and gamma interferon (IFN-gamma) tended to be lower compared with lactic acid bacteria. Neutralization with antibodies to IL-12, IFN-gamma, IL-10 and transforming growth factor beta indicated negative involvement of Th1-inducing cytokines and regulatory cytokines in the suppression of Th2 immune response by BB536, especially when treated at higher doses of BB536 (>10 microg cells/ml). Furthermore, BB536 induced the maturation of immature bone marrow-derived dendritic cells (BM-DCs), and suppressed antigen-induced IL-4 production mediated by BM-DCs. These results suggested that BB536 suppressed Th2 immune responses, partially independent of Th1-inducing cytokines and independent of regulatory cytokines, mediated by antigen-presenting cells such as dendritic cells.  相似文献   

16.
We examined the role of accessory cell-derived signals in promoting growth and lymphokine production by murine Th1 clones. Five of six Th1 clones failed to proliferate to immobilized anti-CD3 antibody despite producing IL-2 and IFN-gamma. These clones became unresponsive to Ag after exposure to anti-CD3. With the addition of irradiated splenic accessory cells (SAC), Th1 clones proliferated to anti-CD3 and produced greater amounts of IL-2 and IFN-gamma. High doses of plate-bound anti-CD3 completely inhibited responses of these clones to IL-2 and diminished the growth-promoting activity of SAC. The costimulatory effects of SAC on growth of Th1 clones were also seen in the presence of exogenous IL-2, indicating that enhanced IL-2 production alone was not responsible for the costimulatory effect. Delivery of the costimulatory signal from SAC required their close proximity to the T cells. The costimulatory activity of SAC was not reproduced by the addition of IL-1, IL-6, or IL-1 plus IL-6. IL-7 induced weak proliferation of Th1 clones, but did not synergize with plate-bound anti-CD3. Our results suggest a model in which SAC-derived costimulatory signals regulate growth of Th1 cells primarily at the level of cell cycle progression rather than at the level of IL-2 production.  相似文献   

17.
Epac, a guanine nucleotide exchange factor for the small GTPase Rap, binds to and is activated by the second messenger cAMP. In sperm, there are a number of signaling pathways required to achieve egg-fertilizing ability that depend upon an intracellular rise of cAMP. Most of these processes were thought to be mediated by cAMP-dependent protein kinases. Here we report a new dependence for the cAMP-induced acrosome reaction involving Epac. The acrosome reaction is a specialized type of regulated exocytosis leading to a massive fusion between the outer acrosomal and the plasma membranes of sperm cells. Ca2+ is the archetypical trigger of regulated exocytosis, and we show here that its effects on acrosomal release are fully mediated by cAMP. Ca2+ failed to trigger acrosomal exocytosis when intracellular cAMP was depleted by an exogenously added phosphodiesterase or when Epac was sequestered by specific blocking antibodies. The nondiscriminating dibutyryl-cAMP and the Epac-selective 8-(p-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate analogues triggered the acrosome reaction in the effective absence of extracellular Ca2+. This indicates that cAMP, via Epac activation, has the ability to drive the whole cascade of events necessary to bring exocytosis to completion, including tethering and docking of the acrosome to the plasma membrane, priming of the fusion machinery, mobilization of intravesicular Ca2+, and ultimately, bilayer mixing and fusion. cAMP-elicited exocytosis was sensitive to anti-alpha-SNAP, anti-NSF, and anti-Rab3A antibodies, to intra-acrosomal Ca2+ chelators, and to botulinum toxins but was resistant to cAMP-dependent protein kinase blockers. These experiments thus identify Epac in human sperm and evince its indispensable role downstream of Ca2+ in exocytosis.  相似文献   

18.
Studies in Jurkat cells have shown that combined stimulation through the TCR and CD28 is required for activation of c-Jun N-terminal kinase (JNK), suggesting that JNK activity may mediate the costimulatory function of CD28. To examine the role of JNK signaling in CD28 costimulation in normal T cells, murine T cell clones and CD28(+/+) or CD28(-/-) TCR transgenic T cells were used. Although ligation with anti-CD28 mAb augmented JNK activation in Th1 and Th2 clones stimulated with low concentrations of anti-CD3 mAb, higher concentrations of anti-CD3 mAb alone were sufficient for JNK activation even in the absence of anti-CD28. JNK activity was comparably induced in both CD28(+/+) and CD28(-/-) 2C/recombinase-activating gene 2(RAG2)(-/-) T cells stimulated with anti-CD3 mAb alone, and with L(d)/peptide dimers, a direct alphabeta TCR ligand. Moreover, JNK activation was also detected in 2C/RAG2(-/-) T cells stimulated with P815 cells that express the relevant alloantigen L(d) whether or not B7-1 was coexpressed. However, IL-2 production by both Th1 clones and CD28(+/+) 2C/RAG2(-/-) T cells was detected only upon TCR and CD28 coengagement. Thus, CD28 coligation is not necessary, and stimulation through the TCR is sufficient, for JNK activation in normal murine T cells. The concept that JNK mediates the costimulatory function of CD28 needs to be reconsidered.  相似文献   

19.
In the present communication, an experimental approach is utilized that facilitates the study of biochemical processes induced in B cells after their interaction with Th cells. In this approach, Th cell clones are stimulated for 18 h upon anti-CD3-coated plates, fixed with paraformaldehyde, and added at a 2 to 3:1 ratio to small, resting B cells (isolated from Percoll gradients). Th cells not stimulated on anti-CD3-coated plates, but fixed with paraformaldehyde, serve as controls for these experiments. The activated, fixed Th cells induce a transient, sixfold increase in B cell levels of cAMP, as well as an increase in B cell expression of ornithine decarboxylase (ODC) activity. This enzyme initiates the synthesis of polyamines and has been shown to be increased as cells enter the growth phase. In addition, previous studies have shown that the cellular levels of ODC activity are controlled by a multi-tiered regulatory cascade. To examine this aspect, polyclonally stimulated B cells were studied. Such cells demonstrated a gradual increase in ODC mRNA levels that peaked between 6 and 15 h and can be partially explained by a three- to fourfold increase in mRNA stability but not by changes in the enzyme affinity for substrate. The increase in ODC mRNA occurs in the absence of protein synthesis, suggesting that the ODC gene is a member of the immediate/early gene family. Finally, the early increase in ODC mRNA was enhanced in cells in which cAMP levels were artificially elevated, suggesting the possibility that the cAMP-dependent signaling pathway participates during the regulation of this gene expression. The significance of these experimental results concerning the process of B cell activation is discussed.  相似文献   

20.
The induction and maintenance of allograft tolerance is a daunting challenge. Although combined blockade of CD28 and CD40 ligand (CD40L)-costimulatory pathways prevents allograft rejection in some murine models, this strategy is unable to sustain engraftment in the most immunogenic allograft and strain combinations. By targeting T cell activation signals 1 and 2 with the novel combination of anti-CD45RB and anti-CD40L, we now demonstrate potent enhancement of engraftment in C57BL/6 recipients that are relatively resistant to costimulatory blockade. This combination significantly augments the induction of tolerance to islet allografts and dramatically prolongs primary skin allograft survival. Compared with either agent alone, anti-CD45RB plus anti-CD40L inhibits periislet infiltration by CD8 cells, B cells, and monocytes; inhibits Th1 cytokines; and increases Th2 cytokine expression within the graft. These data indicate that interference with activation signals one and two may provide synergy essential for prolonged engraftment in situations where costimulatory blockade is only partially effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号