首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plantlet regeneration through indirect somatic embryogenesis was attempted from rhizome derived callus of Cymbopogon winterianus Jowitt (cv. Jorlab2). Optimum callus was induced on Murashige and Skoog (MS) basal medium supplemented with 4 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D). Initially the callus was friable, shiny white and watery in nature. After subculturing on MS medium containing 2,4-D and kinetin (Kn), callus was transferred onto the MS medium supplemented with 2,4 -D, Kn and coconut water to induce somatic embryogenesis. Optimum somatic embryogenesis (78.33 %) was achieved on MS medium containing 3.0 mg dm−3 2,4-D and 0.5 mg dm−3 Kn. High frequency (65 %) plantlet conversion from embryos was achieved in MS medium supplemented with 2 mg dm−3 N6-benzyladenine (BA), 0.5 mg dm−3 Kn, 0.2 mg dm−3 calcium pantothenate and 0.2 mg dm−3 biotin.  相似文献   

2.
Influence of boron on somatic embryogenesis in papaya (Carica papaya L.) cv. Honey Dew was investigated. Immature zygotic embryos were grown in the induction medium containing Murashige and Skoog basal salts, with B5 vitamins, picloram (1 mg dm−3) or 2,4-dichlorophenoxy acetic acid (2 mg dm−3) and different concentrations of boric acid (30 to 500 mg dm−3). Maximum somatic embryo initiation was observed at 62 mg dm−3 boric acid irrespective of the growth regulator used. The cotyledonary stage somatic embryos were germinated on MS basal medium devoid of growth regulators. The regenerated plantlets were hardened under greenhouse conditions and transferred to field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
An efficient regeneration protocol via somatic embryogenesis was optimized for mung bean [Vigna radiata (L.) Wilczek; cv. Vamban 1]. Primary leaf explants were used for embryogenic callus induction in MMS medium (Murashige and Skoog salts with B5 vitamins) containing 2.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D), 150 mg dm−3 glutamine and 3 % sucrose. Fast growing, highly embryogenic cell suspensions were established from 21-d-old calli in MMS medium supplemented with 0.5 mg dm−3 2,4-D and 50 mg dm−3 proline (Pro), and maximum recovery of globular (39.0 %), heart-shaped (26.3 %) and torpedo-stage (21.0 %) somatic embryos were observed in this medium. Mature cotyledonary-stage somatic embryos were cultured for 5 d in half strength B5 liquid medium containing 0.05 mg dm−3 2,4-D, 20 mg dm−3 Pro, 5 μM abscisic acid, 1000 mg dm−3 KNO3, 50 mg dm−3 polyethylene glycol (PEG 6000) and 30 g dm−3 D-mannitol. Mature somatic embryos were germinated after dessication for 3 d and complete development of plantlets accomplished in MMS medium containing 30 g dm−3 maltose, 0.5 mg dm−3 benzyladenine and 500 mg dm−3 KNO3. Profuse lateral roots, and regeneration frequency (up to 60 %) were observed in half-strength MMS medium containing 0.5 mg dm−3 indolebutyric acid (IBA). The regenerated plants were grown to fruiting and were morphologically normal and fertile.  相似文献   

4.
A protocol for plant regeneration via somatic embryogenesis was developed in two chickpea (Cicer arietinum L.) cultivars ICCV-10 and Annigeri. Somatic embryos were induced from immature cotyledons on Murashige and Skoog’s (MS) medium supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), α-naphthaleneacetic acid (NAA) and picloram alone or in combination with 0.5 — 2.0 mg dm−3 N6-benzylaminopurine (BA) or kinetin (KIN). NAA was better for somatic embryo induction compared to other auxins. The well formed, cotyledonary shaped embryos germinated into plantlets with 36.6 % frequency on MS medium supplemented with 2.0 mg dm−3 BA + 0.5 mg dm−3 abscisic acid (ABA). The frequency of embryogenesis and plantlet regeneration was higher in cv. ICCV-10 as compared to cv. Annigeri. Regenerated plants were transferred to soil (40 % survival) and grown to maturity. Histological studies of explants at various developmental stages of somatic embryogenesis reveled that somatic embryos developed directly from the cotyledon cells and they were single cell origin.  相似文献   

5.
In the present study, in vitro regeneration system for a recalcitrant woody tree legume, Leucaena leucocephala (cvs. K-8, K-29, K-68 and K-850) from mature tree derived nodal explants as well as seedling derived cotyledonary node explants was developed. Best shoot initiation and elongation was found on full-strength Murashige and Skoog (MS) medium supplemented with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 100 mg dm−3 glutamine, 20.9 μM N 6-benzylamino-purine (BAP) and 5.37 μM 1-naphthalene acetic acid (NAA). Rooting was induced in half-strength MS medium containing 2 % (m/v) sucrose, 100 mg dm−3 myoinositol, 14.76 μM indole-3-butyric acid (IBA) and 0.23 μM kinetin. The cultivar K-29 gave the best response under in vitro conditions. Rooted plantlets were subjected to hardening and successfully transferred to greenhouse. Further, somatic embryogenesis from nodal explants of cv. K-29 via an intermittent callus phase was also established. Pronounced callusing was observed on full-strength MS medium containing 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 40.28 μM NAA and 12.24 μM BAP. These calli were transferred to induction medium and maximum number of globular shaped somatic embryos was achieved in full-strength MS medium fortified with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 15.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D), 5.0 μM BAP and 1.0 mM proline. Moreover, an increase in endogenous proline content up to 28th day of culture in induction medium was observed. These globular shaped somatic embryos matured in full-strength MS medium with 3 % (m/v) sucrose, 100 mg dm−3 myoinositol, 10.0 μM BAP, 2.5 to 5.0 μM IBA and 0.5 mM spermidine.  相似文献   

6.
The embryogenic calli (EC) were obtained from hypocotyl explants of groundnut (Arachis hypogaea L.) cultured on Murashige and Skoog (MS) medium supplemented with different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) in combination with 0.5 mg dm−3 6-benzylaminopurine (BAP). The EC were exposed to γ-radiation (10–50 Gy) or treated with 1–5 mM of ethyl methane sulphonate (EMS) or sodium azide (SA). The mutated EC were subcultured on embryo induction medium containing 20 mg dm−3 2,4-D. Somatic embryos (SE) developed from these calli were transferred to MS medium supplemented with BAP (2.0 mg dm−3) and 0.5 mg dm−3 2,4-D for maturation. The well-developed embryos were cultured on germination medium consisting of MS salts with 2.0 mg dm−3 BAP and 0.25 mg dm−3 naphthaleneacetic acid (NAA). Well-developed plantlets were transferred for hardening and hardened plants produced normal flowers and set viable seeds. The fresh mass of the EC, mean number of SE per explant and regeneration percentage were higher at lower concentrations of mutagens (up to 30 Gy/3 mM). Some abnormalities in regenerated plants were observed, especially variations in leaf shape.  相似文献   

7.
An in vitro propagation system was developed for castor-bean (Ricinus communis L. cv. TMV 6) through cotyledon derived callus cultures. The impact of different concentrations of auxins, cytokinins, additives, amino acids and sugars were evaluated for callus induction and shoot proliferation. Green compact nodular organogenic callus was obtained on the medium fortified with Murashige and Skoog (MS) salts, B5 vitamins, 2.0 mg dm−3 6-benzyladenine and 0.8 mg dm−3 α-naphthalene acetic acid (NAA). Multiple shoot proliferation from the callus cultures was achieved on the medium with MS salts, B5 vitamins, 2.5 mg dm−3 thidiazuron (TDZ), 0.4 mg dm−3 NAA and 15 mg dm−3 glutamine. During multiple shoot induction the phenolic secretion was controlled by the addition of 15 mg dm−3 polyvinylpyrolidone. The proliferated shoots were elongated on the medium comprising MS salts, B5 vitamins, 1.5 mg dm−3 TDZ and 0.3 mg dm−3 gibberellic acid. The elongated shoots were rooted on the medium containing MS salts, B5 vitamins, 0.3 mg dm−3 indole-3-butyric acid and 0.6 mg dm−3 silver nitrate. After root induction, the plants were hardened in earthen pots containing sand, soil and vermiculite.  相似文献   

8.
Embryogenic callus in Catharanthus roseus was initiated from hypocotyl on Murashige and Skoog’s (MS) medium supplemented with 1.0–2.0 mg dm−3 of 2,4-dichlorophenoxyacetic acid (2,4-D) or chlorophenoxyacetic acid (CPA). Calli from other sources were non-embryogenic. Numerous somatic embryos were induced from primary callus on MS medium suplemented with naphthalene acetic acid (NAA) within two weeks of culture. Embryo proliferation was much faster on medium supplemented with 6-benzylaminopurine (BAP). After transfer to medium with gibberellic acid (GA3, 1.0 mg dm− 3) mature green embryos were developed and germinated well into plantlets on MS liquid medium supplemented with 0.5 mg dm−3 BAP. Later, embryos with cotyledonary leaves were subjected to different auxins treatments for the development of roots. Before transfer ex vitro, plantlets were cultivated on half strength MS medium containing 3 % sucrose and 0.5 mg dm−3 BAP for additional 2 weeks. Additionally, the effect of liquid medium has been evaluated at different morphogenetic stages.  相似文献   

9.
Somatic embryogenesis and plant regeneration were successfully established on Nitsch and Nitsch (NN) medium from immature zygotic embryos of six genotypes of grapevine (Vitis vinifera). The optimum hormone combinations were 1.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction and 1.0 mg dm−3 α-naphthalene acetic acid (NAA) + 0.5 mg dm−3 6-benzyladenine (BA) for embryos production and 0.03 mg dm−3 NAA + 0.5 mg dm−3 BA for embryos conversion and plant regeneration. The frequency of somatic embryogenesis varied from 10.5 to 37.5 % among six genotypes and 15.5–42.1 % of somatic embryos converted into normal plantlets. The analysis of DNA content determined by flow cytometry and chromosome counting of the regenerated plantlets clearly indicated that no ploidy changes were induced during somatic embryogenesis and plant regeneration, the nuclear DNA content and ploidy levels of the regenerated plants were stable and homogeneous to those of the donor plants. RAPD markers were also used to evaluate the genetic fidelity of plants regenerated from somatic embryos. All RAPD profiles from regenerated plants were monomorphic and similar to those of the field grown donor plants. We conclude that somaclonal variation is almost absent in our grapevine plant regeneration system.  相似文献   

10.
Efficient plant regeneration through somatic embryogenesis was achieved in Polyscias filicifolia. Embryogenic calluses were induced on Murashige and Skoog (MS) basal medium supplemented with 0.5 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg l−1 benzylaminopurine (BAP; type I callus) and on MS medium with 2.0 mg l−1 2,4-D and 0.01 mg l−1 kinetin (type II callus) from leaf explants of a 2-yr-old plant. Primary somatic embryos (PSEs) developed after four passages of suspension culture established from embryogenic callus when cultured in liquid half-strength MS medium (1/2 MS) without growth regulators. PSEs in the cotyledonary stage were multiplied by adventitious embryogenesis. Single secondary somatic embryos (SSEs) or their clusters developed at the base of PSE hypocotyls and regenerated into plantlets in a one-step process on plant growth regulator-free 1/2 MS medium. Low sucrose concentration of 15 g l−1 promoted development of normal SSEs. All SSEs regenerated into single, well-rooted plantlets on a Nitsch and Nitsch medium supplemented with 0.5 mg l−1 kinetin, 0.1 mg l−1 indole-3-butyric acid, and 10 mg l−1 adenine sulfate. Subsequent two subculture cycles on the same medium were necessary to obtain plantlets sufficiency developed to allow successful transfer to the soil. Rooted plantlets were established in a peat mixture with 90% survival, with the plants showing normal morphological characteristics.  相似文献   

11.
A three-stage procedure for embryogenesis in Trachyspermum ammi was developed from cotyledon and cotyledonary node explants cultured in Murashige and Skoog (MS) liquid medium supplemented with 0.2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D). Globular somatic embryos without intervening callus phase developed in 4 wk. The development of embryos to heart and torpedo stages required second-stage subculture of the explants (along with developing embryos) in liquid medium with lower concentrations of 2,4-D. Further development of embryos required a third-stage subculture in hormone-free liquid medium supplemented with 100 mg l−1 casein hydrolysate. Regeneration of complete plantlets occurred after the fully developed somatic embryos were transferred to solidified half-strength MS medium supplemented with 1 mg l−1 gibberellic acid.  相似文献   

12.
An improved protocol for high frequency plant regeneration via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield (Brasenia schreberi) was developed. Zygotic embryos formed pale-yellow globular structures and white friable callus at a frequency of 80% when cultured on half-strength MS medium supplemented with 0.3 mg l−1 2,4-D. However, the frequency of formation of pale-yellow globular structures and white friable callus decreased slightly with increasing concentrations of 2,4-D up to 3 mg l−1, where the frequency reached ~50% of the control. Cell suspension cultures from zygotic embryo-derived white friable callus were established using half-strength MS medium supplemented with 0.3 mg l−1 2,4-D. Upon plating of cell aggregates on half-strength MS basal medium, approximately 8.3% gave rise to somatic embryos and developed into plantlets. However, the frequency of plantlet development from cell aggregates was sharply increased (by up to 55%) when activated charcoal and zeatin were applied. Regenerated plantlets were successfully transplanted to potting soil and grown to normal plants in a growth chamber. The distinctive feature of this study is the establishment of a high frequency plant regeneration system via somatic embryogenesis from zygotic embryo-derived cell suspension cultures of watershield, which has not been previously reported. The protocol for plant regeneration of watershield through somatic embryogenesis could be useful for the mass propagation and transformation of selected elite lines.  相似文献   

13.
Summary High-frequency somatic embryogenesis and plant regeneration was achieved on callus derived from leaf (petiole and lamina) and internode explants of Centella asiatica L. Growth regulators significantly influenced the frequency of somatic embryogenesis and plant regeneration. Calluses developed on Murashige and Skoog (MS) medium fortified with 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-D) or 5.37 μM α-naphthaleneacetic acid (NAA), both with 2.32 μM kinetin (Kn), were superior for somatic embryogenesis. Callus developed on NAA and Kn-supplemented medium favored induction and maturation of embryos earlier compared to that on 2,4-D and Kn. Embryogenic callus transferred from NAA and Kn-supplemented medium to suspension cultures of half-strength MS medium with NAA (2.69 μM) and Kn (1.16 μM) developed a mean of 204.3 somatic embryos per 100 mg of callus. Embryogenic callus transferred from 2,4-D and Kn subsequently to suspension cultures of half-strength MS medium with 2,4-D (0.45 μM) and Kn (1.16 μM) developed a mean of 303.1 embryos per 100 mg of callus. Eighty-eight percent of the embryos underwent maturation and conversion to plantlets upon transfer to half-strength MS semisolid medium having 0.054 μM NAA with either 0.044 μM BA or 0.046 μM Kn. Embryo-derived plantlets established in field conditions displayed morphological characters identical to those of the parent plant.  相似文献   

14.
A method for plant regeneration in Robinia pseudoacacia L. from cell suspension culture was established. Non regenerative friable callus from hypocotyls and cotyledon explants from in vitro raised seedling induced on solid Murashige and Skoog (MS) medium supplemented with 0.05 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) was used for initiation of cell suspension cultures on same MS medium but without agar. Single cells were isolated after 3 d and the optimum cell density was 1–3 × 104 cells per cm3 of the liquid MS medium. Plating efficiency was 29.6 % and callus formed within 4 weeks was subcultured and transferred to solid MS medium supplemented with 0.6 mg dm−3 benzyladenine (BA) along with 0.05 mg dm−3 α-naphthalene-1-acetic acid (NAA) for the induction of adventitious bud primordia. The shoots developed were isolated and re-cultured on MS medium containing 0.6 mg dm−3 BA. These microshoots after dipping in 1–2 cm3 of 10 mg dm−3 indole-3-butyric acid (IBA) for 24 h in dark were cultured on half strength solid MS medium supplemented with 0.05 % charcoal and showed 80–82 % rooting within 4 weeks.  相似文献   

15.
A new micropropagation system for Lycium barbarum (L.) was developed using root explants as starting material. Callus can be produced from root explants on Murashige and Skoog (MS) medium containing 0.2 mg dm−3 2,4-dichlorophenoxyacetic acid. After three subcultures on the same medium, callus was then transferred onto the MS medium supplemented with 500 mg dm−3 lactalbumin hydrolysate to induce somatic embryogenesis (SE). After 20 d, about 60 somatic embryos per 0.25 g(f.m.) of embryogenic callus were obtained but only about 10 % of embryos converted into plantlets. After acclimated in the greenhouse, all of the randomly selected plantlets had survived and were similar phenotypically to zygotic seedlings. In addition, the effects of irradiance, photoperiod, growth regulators, explant age and cold treatment on SE of root-derived callus were evaluated.  相似文献   

16.
Explants of four F1 hybrids (OMR 36-41/1, OMR 36-41/2, OMR 36-41/4 and OMR 36-41/5) and two cultivars (Rayong 1 and Rayong 60) of cassava (Manihot esculenta Crantz) were subjected to different combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (NAA), kinetin (KIN) and N6-benzylaminopurine (BAP) to induce somatic embryogenesis, organogenesis and micropropagation. Shoot apices of the F1 hybrids exhibited higher frequency (62 – 74 %) of proliferation of somatic embryos than the cultivars (21 – 43 %) in Murashige and Skoog basal medium supplemented with 8 mg dm−3 2,4-D and 0.5 mg dm−3 NAA. Nodal explants of regenerated plantlets were rapidly micropropagated with 90 % efficiency on a medium containing 0.1 mg dm−3 NAA and 0.05 mg dm−3 BAP irrespective of explant source. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Immature zygotic embryos were cultured on Murashige and Skoog's medium (MS) supplemented with various combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), naphthaleneacetic acid (NAA), benzyladenine (BA) and zeatin or with various concentrations of 2,4-D alone. The maximum number (8 per embryo) of adventitious buds formed from cotyledons of heart stage embryos cultured on MS medium with 1 mg dm−3 BA and 0.01 mg dm−3 NAA. The adventitious buds originated from procambial strands of immature embryo cotyledons and then developed into adventitious bud primordia within 20 d. Adventitious buds transferred to hormone free MS medium grew into shoots, but did not produce plantlets because the shoots failed to root. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Summary In vitro regeneration of plants via somatic embryogenesis through cell suspension culture was achieved in horsegram. Embryogenic calluses were induced on leaf segments on solid Murashige and Skoog (MS) medium with 9.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Differentiation of somatic embryos occurred when the embryogenic calluses were transferred to liquid MS medium containing 2,4-D. Maximum frequency (33.2%) of somatic embryos was observed on MS medium supplemented with 7.9 μM 2,4-D. Cotyledonary-torpedo-shaped embryos were transferred to liquid MS medium without growth regulators for maturation and germination. About 5% of the embryos germinated into plants, which grew further on solid MS medium. The plants were hardened and established in soil. Effects of various auxins, cytokinins, carbohydrates, amino acids, and other additives on induction and germination of somatic embryos were also studied. A medium supplemented with 7.9 μM 2,4-D, 3.0% sucrose, 40 mg l−1 L-glutamine, and 1.0 μM abscisic acid was effective to achieve a high frequency of somatic embryo induction, maturation, and further development.  相似文献   

19.
In this study, we have demonstrated that Zoysia japonica callus induced from mature seeds can produce high frequencies of plant regeneration and somatic embryogenesis, even following a prolonged period of subculturing. Initial callus cultures were induced from mature seeds of Japanese lawngrass (Z. japonica Steud.) incubated on a medium containing major N6 medium salts, minor Murashige and Skoog (MS) medium salts, and modified MS medium organic elements supplemented with 3 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.01–0.02 mg L−1 6-benzyladenine. Compact callus were selected and subcultured monthly on a medium containing 2 mg L−1 2,4-D, 0.5 mg L−1 kinetin, 500 mg L−1 casein hydrolysate, 500 mg L−1 proline, and 500 mg L−1 myoinositol. Callus maintained in vitro for 18 mo could be induced to regenerate plantlets with a frequency of >90%. By contrast, 36-mo-old callus cultures failed to produce normal shoot regeneration. However, the addition of CuSO4 to the subculture media maintained >90% regeneration frequencies in such long-term callus cultures. Histological observations revealed that plant regeneration occurred both through somatic embryogenesis and organogenesis pathways. The ability to sustainable regeneration in long-term callus cultures will be valuable to the program of genetic transformation and somaclonal variant selection.  相似文献   

20.
An efficient protocol for micropropagation of Harpagophytum procumbens DC., an endangered African medicinal plant, was developed. Maximum shoot multiplication without callus was obtained from nodal explants cultured on Murashige and Skoog (MS) basal salts plus Gamborg’s (B5) vitamins supplemented with 0.1 mg dm−3 indole-3-acetic acid and 5.0 mg dm−3 kinetin. The shoots were subsequently subcultured every 3 weeks on the same medium. Detached axillary shoots were transferred to MS basal salts plus B5 vitamins supplemented with various concentrations of α-naphthalene-acetic acid or indole-3-butyric acid (IBA), ranging from 0.5 to 2.5 mg dm−3 and 100 % rooting and optimal subsequent acclimatization was achieved on 1.0 mg dm−3 IBA. After 4 weeks of culture, the rooted shoots (>5 cm) were planted in pots containing peat, vermiculite and bark (2:1:1), covered with plastic domes and maintained at 25 °C for 2 weeks before being transferred to a glasshouse. Plant survival was about 40 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号