共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell volume regulation by Amphiuma red blood cells. The role of Ca+2 as a modulator of alkali metal/H+ exchange
下载免费PDF全文

《The Journal of general physiology》1983,82(6):761-784
In response to osmotic perturbation, the Amphiuma red blood cell regulates volume back to "normal" levels. After osmotic swelling, the cells lose K, Cl, and osmotically obliged H2O (regulatory volume decrease [RVD] ). After osmotic shrinkage, cell volume is regulated as a result of Na, Cl, and H2O uptake (regulatory volume increase [RVI] ). As previously shown (Cala, 1980 alpha), ion fluxes responsible for volume regulation are electroneutral, with alkali metal ions obligatorily counter-coupled to H, whereas net Cl flux is in exchange for HCO3. When they were exposed to the Ca ionophore A23187, Amphiuma red blood cells lost K, Cl, and H2O with kinetics (time course) similar to those observed during RVD. In contrast, when cells were osmotically swollen in Ca-free media, net K loss during RVD was inhibited by approximately 60%. A role for Ca in the activation of K/H exchange during RVD was suggested from these experiments, but interpretation was complicated by the fact that an increase in cellular Ca resulted in an increase in the membrane conductance to K (GK). To determine the relative contributions of conductive K flux and K/H exchange to total K flux, electrical studies were performed and the correspondence of net K flux to thermodynamic models for conductive vs. K/H exchange was evaluated. These studies led to the conclusion that although Ca activates both conductive and electroneutral K flux pathways, only the latter pathways contribute significantly to net K flux. On the basis of observations that A23187 did not activate K loss from cells during RVI (when the Na/H exchange was functioning) and that amiloride inhibited K/H exchange by swollen cells only when cells had previously been shrunk in the presence of amiloride, I concluded that Na/H and K/H exchange are mediated by the same membrane transport moiety. 相似文献
2.
《The Journal of general physiology》1994,103(6):1035-1053
In Amphiuma red blood cells, the Na/H exchanger has been shown to play a central role in the regulation of cell volume following cell shrinkage (Cala, P. M. 1980. Journal of General Physiology. 76:683- 708.) The present study was designed to evaluate the existence of pH regulatory Na/H exchange in the Amphiuma red blood cell. The data illustrate that when the intracellular pHi was decreased below the normal value of 7.00, Na/H exchange was activated in proportion to the degree of acidification. Once activated, net Na/H exchange flux persisted until normal intracellular pH (6.9-7.0) was restored, with a half time of approximately 5 min. These observations established a pHi set point of 7.00 for the pH-activated Na/H exchange of Amphiuma red blood cell. This is in contrast to the behavior of osmotically shrunken Amphiuma red blood cells in which no pHi set point could be demonstrated. That is, when activated by cell shrinkage the Na/H exchange mediated net Na flux persisted until normal volume was restored regardless of pHi. In contrast, when activated by cell acidification, the Na/H exchanger functioned until pHi was restored to normal and cell volume appeared to have no effect on pH-activated Na/H exchange. Studies evaluating the kinetic and inferentially, the molecular equivalence of the volume and pHi-induced Amphiuma erythrocyte Na/H exchanger(s), indicated that the apparent Na affinity of the pH activated cells is four times greater than that of shrunken cells. The apparent Vmax is also higher (two times) in the pH activated cells, suggesting the involvement of two distinct populations of the transporter in pH and volume regulation. However, when analyzed in terms of a bisubstrate model, the same data are consistent with the conclusion that both pH and volume regulatory functions are mediated by the same transport protein. Taken together, these data support the conclusion that volume and pH are regulated by the same effector (Na/H exchanger) under the control of as yet unidentified, distinct and cross inhibitory volume and pH sensing mechanisms. 相似文献
3.
Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways 总被引:10,自引:7,他引:10
下载免费PDF全文

Cala PM 《The Journal of general physiology》1980,76(6):683-708
After osmotic perturbation, the red blood cells of Amphiuma exhibited a volume-regulatory response that returned cell volume back to or toward control values. After osmotic swelling, cell-volume regulation (regulatory volume decrease; RVD) resulted from net cellular loss of K, Cl, and osmotically obliged H2O. In contrast, the volume-regulatory response to osmotic shrinkage (regulatory volume increase; RVI) was characterized by net cellular uptake of Na, Cl, and H2O. The net K and Na fluxes characteristic of RVD and RVI are increased by 1-2 orders of magnitude above those observed in studies of volume-static control cells. The cell membrane potential of volume-regulating and volume-static cells was measured by impalement with glass microelectrodes. The information gained from the electrical and ion-flux studies led to the conclusion that the ion fluxes responsible for cell-volume regulation proceed via electrically silent pathways. Furthermore, it was observed that Na fluxes during RVI were profoundly sensitive to medium [HCO3] and that during RVI the medium becomes more acid, whereas alkaline shifts in the suspension medium accompany RVD. The experimental observations are explained by a model featuring obligatorily coupled alkali metal-H and Cl-HCO3 exchangers. The anion- and cation-exchange pathways are separate and distinct yet functionally coupled via the net flux of H. As a result of the operation of such pathways, net alkali metal, Cl, and H2O fluxes proceed in the same direction, whereas H and HCO3 fluxes are cyclic. Data also are presented that suggest that the ion-flux pathways responsible for cell-volume regulation are not activated by changes in cell volume per se but by some event associated with osmotic perturbation, such as changes in intracellular pH. 相似文献
4.
Ortiz-Acevedo A Rigor RR Maldonado HM Cala PM 《American journal of physiology. Cell physiology》2008,295(5):C1316-C1325
Alteration in cell volume of vertebrates results in activation of volume-sensitive ion flux pathways. Fine control of the activity of these pathways enables cells to regulate volume following osmotic perturbation. Protein phosphorylation and dephosphorylation have been reported to play a crucial role in the control of volume-sensitive ion flux pathways. Exposing Amphiuma tridactylu red blood cells (RBCs) to phorbol esters in isotonic medium results in a simultaneous, dose-dependent activation of both Na(+)/H(+) and K(+)/H(+) exchangers. We tested the hypothesis that in Amphiuma RBCs, both shrinkage-induced Na(+)/H(+) exchange and swelling-induced K(+)/H(+) exchange are activated by phosphorylation-dependent reactions. To this end, we assessed the effect of calyculin A, a phosphatase inhibitor, on the activity of the aforementioned exchangers. We found that exposure of Amphiuma RBCs to calyculin-A in isotonic media results in simultaneous, 1-2 orders of magnitude increase in the activity of both K(+)/H(+) and Na(+)/H(+) exchangers. We also demonstrate that, in isotonic media, calyculin A-dependent increases in net Na(+) uptake and K(+) loss are a direct result of phosphatase inhibition and are not dependent on changes in cell volume. Whereas calyculin A exposure in the absence of volume changes results in stimulation of both the Na(+)/H(+) and K(+)/H(+) exchangers, superimposing cell swelling or shrinkage and calyculin A treatment results in selective activation of K(+)/H(+) or Na(+)/H(+) exchange, respectively. We conclude that kinase-dependent reactions are responsible for Na(+)/H(+) and K(+)/H(+) exchange activity, whereas undefined volume-dependent reactions confer specificity and coordinated control. 相似文献
5.
Activation of electroneutral K flux in Amphiuma red blood cells by N- ethylmaleimide. Distinction between K/H exchange and KCl cotransport 总被引:1,自引:3,他引:1
下载免费PDF全文

Exposure of Amphiuma red blood cells to millimolar concentrations of N-ethylmaleimide (NEM) resulted in net K loss. In order to determine whether net K loss was conductive or was by electroneutral K/H exchange or KCl cotransport, studies were performed evaluating K flux in terms of the thermodynamic forces to which K flux by the above pathways should couple. The direction and magnitude of the NEM-induced net K flux did not correspond with the direction and magnitude of the forces relevant to K conductance or electroneutral KCl cotransport. Both the magnitude and direction of the NEM-activated K flux responded to the driving force for K/H exchange. We therefore conclude that NEM-induced K loss, like that by osmotically swollen Amphiuma red blood cells, is by an electroneutral K/H exchanger. In addition to the above studies, we evaluated the kinetic behavior of the volume- and NEM-induced K/H exchange flux pathways in media where Cl was replaced by SCN, NO3, para-aminohippurate (PAH), or gluconate. The anion replacement studies did not permit a distinction between K/H exchange and KCl cotransport, since, depending upon the anion used as a Cl replacement, partial inhibition or stimulation of volume-activated K/H exchange fluxes was observed. In contrast, all anions used were stimulatory to the NEM-induced K loss. Since, on the basis of force-flow analysis, both volume-and NEM-induced K loss are K/H exchange, it was necessary to reevaluate assumptions (i.e., anions serve as substrates and therefore probe the translocation step) associated with the use of anion replacement as a means of flux route identification. When viewed together with the force-flow studies, the Cl replacement studies suggest that anion effects upon K/H exchange are indirect. The different anions appear to alter mechanisms that couple NEM exposure and cell swelling to the activation of K/H exchange, as opposed to exerting direct effects upon K and H translocation. 相似文献
6.
Pretreatment of isolated human neutrophils (resting pHi congruent to 7.25 at pHo 7.40) with 30 mM NH4Cl for 30 min leads to an intracellular acidification (pHi congruen to 6.60) when the NH4Cl prepulse is removed. Thereafter, in 140 mM Na+ medium, pHi recovers exponentially with time (initial rate, approximately 0.12 pH/min) to reach the normal resting pHi by approximately 20 min, a process that is accomplished mainly, if not exclusively, though an exchange of internal H+ for external Na+. This Na+/H+ countertransport is stimulated by external Na+ (Km congruent to 21 mM) and by external Li+ (Km congruent to 14 mM), though the maximal transport rate for Na+ is about twice that for Li+. Both Na+ and Li+ compete as substrates for the same translocation sites on the exchange carrier. Other alkali metal cations, such as K+, Rb+, or Cs+, do not promote pHi recovery, owing to an apparent lack of affinity for the carrier. The exchange system is unaffected by ouabain or furosemide, but can be competitively inhibited by the diuretic amiloride (Ki congruent to 8 microM). The influx of Na+ or Li+ is accompanied by an equivalent counter-reflux of H+, indicating a 1:1 stoichiometry for the exchange reaction, a finding consistent with the lack of voltage sensitivity (i.e., electroneutrality) of pHi recovery. These studies indicate that the predominant mechanism in human neutrophils for pHi regulation after intracellular acidification is an amiloride-sensitive alkali metal cation/H+ exchange that shares a number of important features with similar recovery processes in a variety of other mammalian cell types. 相似文献
7.
The Saccharomyces cerevisiae genome contains three genes encoding alkali metal cation/H+ antiporters (Nha1p, Nhx1p, Kha1p) that differ in cell localization, substrate specificity and physiological function. Systematic genome sequencing of other yeast species revealed highly conserved homologous ORFs in all of them. We compared the yeast sequences both at DNA and protein levels. The subfamily of yeast endosomal/prevacuolar Nhx1 antiporters is closely related to mammalian plasma membrane NHE proteins and to both plasma membrane and vacuolar plant antiporters. The high sequence conservation within this subfamily of yeast antiporters suggests that Nhx1p is of great importance in cell physiology. Yeast Kha1 proteins probably belong to the same subfamily as bacterial antiporters, whereas Nhal proteins form a distinct subfamily. 相似文献
9.
Active transport of lead by human red blood cells 总被引:1,自引:0,他引:1
T J Simons 《FEBS letters》1984,172(2):250-254
Human red cells suspended in lead-citrate buffers (2.6 microM Pb2+) take up much less Pb than predicted from studies of equilibrium binding of Pb to haemolysates. Pb uptake is increased by ATP depletion, or by loading at 0 degrees C. Tracer studies with 203Pb indicate that the low uptake at 37 degrees C in the presence of substrate is not due to membrane impermeability to Pb. Cold-loaded cells extrude Pb against a concentration gradient at 37 degrees C when glucose is present. These results suggest that the cellular loading of Pb is dependent on the balance between an inward leak and an outward pump. The extrusion of Pb from the cells is possibly brought by the Ca pump. 相似文献
10.
Tkachuk VA 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》1998,84(10):1006-1018
The main pathways of regulation of cytoplasm Ca2+ level with hormones and growth factors, as well as mechanisms of regulation of G-proteins, phospholipase C, Ca-channels, adenylate cyclase, guanylate cyclase, and protein kinase C, are discussed. Regulation of cytoplasm Ca2+ in vascular and blood cells with inositol phosphates, cAMP and cGMP, is stressed. The review summarises data on membrane receptors, G-proteins, protein kinases and their targets involved in regulation of Ca2+ turnover in platelets, endothelial and smooth muscle cells. 相似文献
11.
To determine Na+/H+ exchange in lamprey erythrocyte membranes, the cells were acidified to pH(i) 6.0 using the K+/H+ ionophore nigericin. Incubation of acidified erythrocytes in a NaCl medium at pH 8.0 caused a considerable rise in 22Na+ influx and H+ efflux during the first 1 min of exposure. In addition, exposure of acidified red cells to NaCl medium was associated with rapid elevation of intracellular Na+ content. The acid-induced changes in Na+ influx and H+ efflux were almost completely inhibited by amiloride and dimethylamiloride. In native lamprey erythrocytes, amiloride-sensitive Na+ influx progressively increased as the osmolality of incubation medium was increased by addition of 100, 200, or 300 mmol/l sucrose. Unexpectedly, the hypertonic stress induced a small, yet statistically significant decrease in intracellular Na+ content in these cells. The reduction in the cellular Na+ content increased with hypertonicity of the medium. The acid- and shrinkage-induced Na+ influxes were inhibited by both amiloride and 5-(N-ethyl-N-isopropyl)-amiloride (EIPA) in a dose-dependent manner. For both blockers, the half-maximal inhibitory values (IC50) were much greater for the shrinkage-induced (44 and 15 micromol/l for amiloride and EIPA, respectively) than for the acid-induced Na+ influx (5.1 and 3.3 micromol/l, respectively). The data obtained are the first demonstration of the presence of a Na+/H+ exchanger with high activity in acidified (pH(i) 6.0) lamprey red blood cells (on average, 512 +/- 56 mmol/l cells/h, n = 13). The amiloride-sensitive Na+ influxes produced by hypertonic cell shrinkage and acid load are likely to be mediated by distinct ion transporters in these cells. 相似文献
12.
13.
Lynn M. Amende Sidney K. Pierce 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1980,138(4):291-298
Summary The ionic and metabolic requirements of cellular volume regulation and the free amino acid (FAA) efflux from hypoosmotically stressedNoetia ponderosa (Mollusca: Arcidae) red blood cells was studied. Deletion of Ca2+ from 50% ASW prevented cell volume regulation and decreased the FAA efflux. Addition of Co2+, Mn2+, or La3+ to 50% ASW increased volume regulation and the FAA efflux, while verapamil, a Ca2+ antagonist, inhibited volume regulation and the FAA efflux. Volume regulation by the blood cells has a metabolic component also since DNP or incubation of the cells at 4°C both inhibited volume regulation and the FAA efflux. Thus, the FAA permeability ofN. ponderosa blood cell membranes can be manipulated by altering seawater [Ca2+] or by indirectly modifying intracellular levels of ATP.Abbreviations
FAA
free amino acid
-
ASW
artificial seawater
-
DMSO
dimethylsulfoxide
-
DNP
dinitrophenol 相似文献
14.
Na+ movements in dog red cells have been measured in a study of the relationship between cell volume, Na+ permeability and glycolysis. When dog red cells are shrunken by 20% at 38 °C the apparent Na+ influx increases by a factor of about fifty, and the effect remains when cells are deprived of glucose for –2.5 h. Flux returns to normal when the cells are restored to their initial volume. Glycolysis is required for the volume effect and we have studied the effect of glycolytic modifiers such as fluoride, sulfate, bisulfite and pyruvate on these glucose depleted dog red cells. The results indicate that the volume effect is associated with a change in the concentration of 3-phosphoglycerate and may be mediated by phosphoglycerate kinase, the membrame-associated enzyme which forms 3-phosphoglycerate from 1,3-diphosphoglycerate. The state of high Na+ permeability persists for several hours in the absence of glucose and it appears that shrinking the cells has opened a Na+-specific channel through which this cation can exchange easily. 相似文献
15.
John A. Jacquez 《生物化学与生物物理学报:生物膜》1983,727(2):367-378
Depletion of energy stores of human red cells decreases the maximum transport capacity, , for glucose transport to a value one-third or less of that found in red cells from freshly drawn blood. There is no change in . Hemolysis and resealing of red cells with ATP or ADP reverses the decrease in . The maximum effect occurs at concentrations of ATP in the normal range for red cells, however, there is little effect from ADP concentrations in its normal range in freshly drawn red cells. Hemolysis and resealing with ATP gives an increase in and an increase in differential labeling by photolytic labeling with tritiated cytochalasin B. Most of the activation is lost after a second hemolysis-reseal without ATP but about 25% of the activation remains. 相似文献
16.
Yuliya Kucherenko Joseph Browning Amanda Tattersall J Clive Ellory John S Gibson 《Cellular physiology and biochemistry》2005,15(6):271-280
Peroxynitrite is generated in vivo by the reaction between nitric oxide, from endothelial and other cells, and the superoxide anion. It is therefore pertinent to examine its effects on the membrane permeability of red blood cells. Treatment of human red blood cells with peroxynitrite (nominally 1 mM) markedly stimulated passive K+ permeability. The main effect was on a Cl(-)-independent K+ pathway, which remains unidentified. Although K+-Cl- cotransport (KCC) was stimulated, this was dependent on saline composition, being inhibited by physiological levels of glucose (IC50 4 mM), and also by sucrose and MOPS. Effects on the Cl(-)-independent K+ pathway were less dependent on saline composition, and were not inhibited by amiloride, ethylisopropylamiloride, dimethylamiloride or gadolinium. Na+-K+-2Cl- cotransporter was inhibited whilst there was little effect on the Gardos channel (Ca2+-activated K+ channel). Peroxynitrite was markedly more effective in oxygenated cells than deoxygenated ones. Treatment with peroxynitrite per se did not affect initial cell volume. Anisotonic swelling modestly increased the Cl(-)-independent K+ influx, but did not affect peroxynitrite-stimulated KCC. Decreasing extracellular pH from 7.4 to 7.2 or 7.0 increased KCC stimulation, whilst the Cl(-)-independent component of K+ transport was lowest at pH 7.2. Finally, protein phosphatase inhibition with calyculin A (100 nM) inhibited KCC, implying that, as with other KCC stimuli, peroxynitrite acts via decreased protein phosphorylation; pre-treatment with calyculin A also inhibited the Cl(-)-independent component of K+ transport. These findings are relevant to the actions of peroxynitrite in vivo. 相似文献
17.
18.
Dog red blood cells (RBC) are shown to regulate their volume in anisosmotic media. Extrusion of water from osmotically swollen cells requires external calcium and is associated with net outward sodium movement. Accumulation of water by osmotically shrunken cells is not calcium dependent and is associated with net sodium uptake. Net movements of calcium are influenced by several variables including cell volume, pH, medium sodium concentration, and cellular sodium concentration. Osmotic swelling of cells increases calcium permeability, and this effect is diminished at acid pH. Net calcium flux in either direction between cells and medium is facilitated when the sodium concentrations is low in the compartment from which calcium moves and/or high in the compartment to which calcium moves. The hypothesis is advanced that energy for active sodium extrusion in dog RBC comes from passive, inward flow of calcium through a countertransport mechanism. 相似文献
19.
20.
Summary The intracellular pH (pH
i
) of Ehrlich ascites tumor cells, both in the steady state and under conditions of acid loading or recovery from acid loading, was investigated by measuring the transmembrane flux of H+ equivalents and correlating this with changes in the distribution ratio of dimethyloxazolidine-2,4-dione (DMO). The pH
i
of cells placed in an acidic medium (pH
o
below 7.15) decreases and reaches a steady-state value that is more alkaline than the outside. For example when pH
o
is acutely reduced to 5.5, pH
i
falls exponentially from 7.20 ± 0.06 to 6.29 ± 0.04 with a halftime of 5.92 ± 1.37 min, suggesting a rapid influx of H+. The unidirectional influx of H+ exhibits saturation kinetics with respect to extracellular [H+]; the maximal flux is 15.8 ± 0.05 mmol/(kg dry wt · min) andK
m
is 0.74 ± 0.09 × 10–6
m.Steady-state cells with pH
i
above 6.8 continuously extrude H+ by a process that is not dependent on ATP but is inhibited by anaerobiosis. Acid-loaded cells (pH
i
6.3) when returned to pH
o
7.3 medium respond by transporting H+, resulting in a rapid rise in pH
i
. The halftime for this process is 1.09 ± 0.22 min. The H+ efflux measured under similar conditions increases as the intracellular acid load increases. An ATP-independent as well as an ATP-dependent efflux contributes to the restoration of pH
i
to its steady-state value. 相似文献