首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutant, which has low Δ5-desaturase activity, of an arachidonic acid-producing fungus, Mortierella alpina 1S-4, was shown to be a novel potent producer of dihomo-γ-linolenic acid (DHGA). On submerged culture under optimal conditions for 6 days at 28°C in a 10-liter fermentor, the mutant produced 3.2 g of DHGA per liter of culture broth (123 mg/g of dry mycelia), which accounted for 23.4% of the total mycelial fatty acids. Mycelial arachidonic acid amounted to only 19 mg/g of dry mycelia (0.5 g/liter of culture broth), which accounted for 3.7% of the total mycelial fatty acids. The other major mycelial fatty acids were palmitic acid (11.0%), stearic acid (12.8%), oleic acid (22.7%), linoleic acid (8.9%), γ-linolenic acid (6.5%), and lignoceric acid (7.8%). More than 97 mol% of the DHGA produced was found in the triglyceride fraction irrespective of the growth temperature employed (12 to 28°C).  相似文献   

2.
3-Hydroxypropionic acid (3-HP) is a commercially valuable platform compound. Klebsiella pneumoniae has been concerned as an appropriate host for 3-HP production because of its robust capacity to metabolize glycerol. Glycerol conversion to 3-HP in K. pneumoniae comprises two successive reactions: glycerol dehydratase catalyzes glycerol to 3-hydroxypropionaldehyde (3-HPA); aldehyde dehydrogenase catalyzes 3-HPA to 3-HP. Previous studies focusing on inducible expression of aldehyde dehydrogenase have shown defects of high cost of inducer and low catalytic activity due to inclusion body. Here we show a different strategy that a native promoter in the host K. pneumoniae was used to drive the heterologous expression of aldehyde dehydrogenase gene ald4 from Saccharomyces cerevisiae. The 3-HP yield of the recombinant reached a peak of 4.23 g/L at log phase, but it decreased during later period of fermentation. Except the validation of high activity of ald4, particularly, the 3-HP formation was uncovered to be closely coupled with cell division, and the lacking of NAD and ATP at latter fermentation phase became the bottleneck for cell growth and 3-HP accumulation. Furthermore, 3-HP is postulated to be converted to 3-HPA via feedback inhibition or other metabolite via unknown mechanism. Since glycerol dissimilation is a common mechanism in a variety of bacteria, the expression strategy using native promoter and implications may provide significant insight into the metabolic engineering for 3-HP production.  相似文献   

3.
Mechanism of α Factor Biosynthesis in Saccharomyces cerevisiae   总被引:2,自引:3,他引:2       下载免费PDF全文
The biosynthesis of alpha factor, a mating-type-specific regulatory oligopeptide which is secreted by Saccharomyces cerevisiae cells of alpha mating type, was studied. In batch cultures only small amounts of the peptide were synthesized during the exponential growth phase. During the stationary phase, alpha factor was produced at a constant rate and accumulated in the culture medium. Inhibition of translation in wild-type cells by cycloheximide, or in mutant strains under conditions which blocked protein or ribonucleic acid (RNA) synthesis completely inhibited the production of alpha factor. These results indicate that the factor is produced by ribosomal translation of a specific messenger RNA and not by an extraribosomal mechanism of peptide synthesis.  相似文献   

4.
Previously, it was reported that a newly isolated microbial culture, Clavibacter sp. strain ALA2, produced trihydroxy unsaturated fatty acids, diepxoy bicyclic fatty acids, and tetrahydroxyfuranyl fatty acids (THFAs) from linoleic acid (C. T. Hou, J. Am. Oil Chem. Soc. 73:1359-1362, 1996; C. T. Hou and R. J. Forman III, J. Ind. Microbiol. Biotechnol. 24:275-276, 2000; C. T. Hou, H. Gardner, and W. Brown, J. Am. Oil Chem. Soc. 75:1483-1487, 1998; C. T. Hou, H. W. Gardner, and W. Brown, J. Am. Oil Chem. Soc. 78:1167-1169, 2001). In this study, we found that Clavibacter sp. strain ALA2 produced novel THFAs, including 13,16-dihydroxy-12-THFA, 15-epoxy-9(Z)-octadecenoic acid (13,16-dihydroxy-THFA), and 7,13,16-trihydroxy-12, 15-epoxy-9(Z)-octadecenoic acid (7,13,16-trihydroxy-THFA), from α-linolenic acid (9,12,15-octadecatrienoic acid). The chemical structures of these products were determined by gas chromatography-mass spectrometry and proton and 13C nuclear magnetic resonance analyses. The optimum incubation temperature was 30°C for production of both hydroxy-THFAs. 13,16-Dihydroxy-THFA was detected after 2 days of incubation, and the concentration reached 45 mg/50 ml after 7 days of incubation; 7,13,16-trihydroxy-THFA was not detected after 2 days of incubation, but the concentration reached 9 mg/50 ml after 7 days of incubation. The total yield of both 13,16-dihydroxy-THFA and 7,13,16-trihydroxy-THFA was 67% (wt/wt) after 7 days of incubation at 30°C and 200 rpm. In previous studies, it was reported that Clavibacter sp. strain ALA2 oxidized the C-7, C-12, C-13, C-16, and C-17 positions of linoleic acid (n-6) into hydroxy groups. In this case, the bond between the C-16 and C-17 carbon atoms is saturated. In α-linolenic acid (n-3), however, the bond between the C-16 and C-17 carbon atoms is unsaturated. It seems that enzymes of strain ALA2 oxidized the C-12-C-13 and C-16-C-17 double bonds into dihydroxy groups first and then converted them to hydroxy-THFAs.  相似文献   

5.
6.
Medium-chain-length polyhydroxyalkanoates (PHAs) are polyesters having properties of biodegradable thermoplastics and elastomers that are naturally produced by a variety of pseudomonads. Saccharomyces cerevisiae was transformed with the Pseudomonas aeruginosa PHAC1 synthase modified for peroxisome targeting by the addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. The PHAC1 gene was put under the control of the promoter of the catalase A gene. PHA synthase expression and PHA accumulation were found in recombinant S. cerevisiae growing in media containing fatty acids. PHA containing even-chain monomers from 6 to 14 carbons was found in recombinant yeast grown on oleic acid, while odd-chain monomers from 5 to 15 carbons were found in PHA from yeast grown on heptadecenoic acid. The maximum amount of PHA accumulated was 0.45% of the dry weight. Transmission electron microscopy of recombinant yeast grown on oleic acid revealed the presence of numerous PHA inclusions found within membrane-bound organelles. Together, these data show that S. cerevisiae expressing a peroxisomal PHA synthase produces PHA in the peroxisome using the 3-hydroxyacyl coenzyme A intermediates of the β-oxidation of fatty acids present in the media. S. cerevisiae can thus be used as a powerful model system to learn how fatty acid metabolism can be modified in order to synthesize high amounts of PHA in eukaryotes, including plants.  相似文献   

7.
8.
The molecular mechanisms of vesicular protein transport in eukaryotic cells are highly conserved. Members of the syntaxin family play a pivotal role in the membrane fusion process. We have expressed rat syntaxin 6 and its cytoplasmic domain in wild-type and pep12 mutant strains of Saccharomyces cerevisiae to elucidate the role of the syntaxin 6-dependent vesicular trafficking step in yeast. Immunofluorescence microscopy revealed a punctate, Golgi-like staining pattern for syntaxin 6, which only partially overlapped with Pep12p in wild-type yeast cells. In contrast to Pep12p, syntaxin 6 was not mislocalized to the vacuole upon expression from 2 micron vectors, which might be attributed to conserved sorting and retention signals. Syntaxin 6 was not capable of complementing the sorting and maturation defects of the vacuolar hydrolase CPY in pep12 null mutants. No dominant negative effects of either syntaxin 6 or syntaxin 6 delta C overexpression on CPY sorting and maturation were observed in wild-type yeast cells. We conclude that syntaxin 6 and Pep12p do not act at the same vesicular trafficking step(s) in yeast and higher eukaryotes.  相似文献   

9.
To make dihomo-gamma-linolenic acid (DGLA) (20:3n-6) in Saccharomyces cerevisiae, we introduced Kluyveromyces lactis Delta12 fatty acid desaturase, rat Delta6 fatty acid desaturase, and rat elongase genes. Because Fad2p is able to convert the endogenous oleic acid to linoleic acid, this allowed DGLA biosynthesis without the need to supply exogenous fatty acids on the media. Medium composition, cultivation temperature, and incubation time were examined to improve the yield of DGLA. Fatty acid content was increased by changing the medium from a standard synthetic dropout medium to a nitrogen-limited minimal medium (NSD). Production of DGLA was higher in the cells grown at 15 degrees C than in those grown at 20 degrees C, and no DGLA production was observed in the cells grown at 30 degrees C. In NSD at 15 degrees C, fatty acid content increased up until day 7 and decreased after day 10. When the cells were grown in NSD for 7 days at 15 degrees C, the yield of DGLA reached 2.19 microg/mg of cells (dry weight) and the composition of DGLA to total fatty acids was 2.74%. To our knowledge, this is the first report describing the production of polyunsaturated fatty acids in S. cerevisiae without supplying the exogenous fatty acids.  相似文献   

10.
Artemisinic acid is a precursor of antimalarial compound artemisinin. The titre of biosynthesis of artemisinic acid using Saccharomyces cerevisiae platform has been achieved up to 25 g l?1; however, the performance of platform cells is still industrial unsatisfied. Many strategies have been proposed to improve the titre of artemisinic acid. The traditional strategies mainly focused on partial target sites, simple up‐regulation key genes or repression competing pathways in the total synthesis route. However, this may result in unbalance of carbon fluxes and dysfunction of metabolism. In this review, the recent advances on the promising methods in silico and in vivo for biosynthesis of artemisinic acid have been discussed. The bioinformatics and omics techniques have brought a great prospect for improving production of artemisinin and other pharmacal compounds in heterologous platform.  相似文献   

11.
Cystathionine γ-lyase of Saccharomyces cerevisiae was immobilized to aminohexyl-Sepharose through the cofactor pyridoxal 5′-phosphate and was characterized with respect to its cystathionine γ-synthase activity. The immobilized product was so stable that it repeatedly catalyzed as many as five cycles of the reaction without losing activity.  相似文献   

12.
Zearalenone, a secondary metabolite produced by several plant-pathogenic fungi of the genus Fusarium, has high estrogenic activity in vertebrates. We developed a Saccharomyces cerevisiae bioassay strain that we used to identify plant genes encoding UDP-glucosyltransferases that can convert zearalenone into zearalenone-4-O-glucoside (ZON-4-O-Glc). Attachment of the glucose moiety to zearalenone prevented the interaction of the mycotoxin with the human estrogen receptor. We found that two of six clustered, similar UGT73C genes of Arabidopsis thaliana encode glucosyltransferases that can inactivate zearalenone in the yeast bioassay. The formation of glucose conjugates seems to be an important plant mechanism for coping with zearalenone but may result in significant amounts of “masked” zearalenone in Fusarium-infected plant products. Due to the unavailability of an analytical standard, the ZON-4-O-Glc is not measured in routine analytical procedures, even though it can be converted back to active zearalenone in the digestive tracts of animals. Zearalenone added to yeast transformed with UGT73C6 was converted rapidly and efficiently to ZON-4-O-Glc, suggesting that the cloned UDP-glucosyltransferase could be used to produce reference glucosides of zearalenone and its derivatives.  相似文献   

13.
A high level production system for heterologous protein by cold culture of yeast transformants at 15°C was developed. The yeast transformants, carrying a plasmid containing cDNA for Aspergillus oryzae α-amylase (Taka-amylase A) or human lysozyme synthetic DNA, were cultivated in a selective medium for 1 or 2 days until full growth at 30°C. The yeast cells were harvested by centrifugation from the culture fluid and then were transferred to YPD medium. These inoculated broths were incubated for 2 days at 15°C and then for another 2 days at 30°C. By the cold culture method described above, higher amounts of Taka-amylase A (28.6 mg/liter) and human lysozyme (6.1 mg/liter) were produced by the yeast transformants compared to those by conventional methods.

Heterologous protein productions using YEp, YCp, and YIp types of yeast expression vectors with ADH1 or GAPDH promoter by the cold culture method showed effective productivity of about 2-fold compared to those by the conventional method of culture at 30°C. The high level production of heterologous protein by this method was not specific to the S. cerevisiae strains examined.  相似文献   

14.
The possibility of using the nutritionally versatile bacterium Pseudomonas cepacia to produce poly-β-hydroxyalkanoic acid was evaluated. Chemostat culture showed that growth of P. cepacia became nitrogen limited when the molar carbon-to-nitrogen ratio of the medium fed into the fermentor was above 15. When grown under nitrogen limitation in batch culture with fructose as the sole source of carbon, P. cepacia accumulated poly-β-hydroxybutyric acid (PHB) in excess of 50% of the dry weight of its biomass. In batch culture, almost no PHB was produced until the onset of nitrogen limitation. After this point, PHB was produced at a linear rate of 0.12 g liter−1 h−1 (from a constant value of 1.6 g of cellular protein liter−1). PHB produced by P. cepacia had a weight-average molecular weight of 5.37 × 105 g mol−1 and a polydispersivity index of 3.9. Poly(β-hydroxybutyric acid-β-hydroxyvaleric acid) copolymer was produced with a poly-β-hydroxybutyric acid-poly-β-hydroxyvaleric acid ratio of up to 30% by weight when propionic acid was added to the medium.  相似文献   

15.
The mechanism proposed for the activation of animal acetyl-coenzyme A (CoA) carboxylase by alpha-glycerophosphate, namely, the removal of inhibitory palmityl-CoA via glyceride synthesis, is not the only possible one in the yeast system because extracts exhibiting marked stimulation of acetyl-CoA carboxylase activity by alpha-glyerophosphate show a lack of acyl-CoA compounds.  相似文献   

16.
An α-amylase gene (AMY) was cloned from Schwanniomyces occidentalis CCRC 21164 into Saccharomyces cerevisiae AH22 by inserting Sau3AI-generated DNA fragments into the BamHI site of YEp16. The 5-kilobase insert was shown to direct the synthesis of α-amylase. After subclones containing various lengths of restricted fragments were screened, a 3.4-kilobase fragment of the donor strain DNA was found to be sufficient for α-amylase synthesis. The concentration of α-amylase in culture broth produced by the S. cerevisiae transformants was about 1.5 times higher than that of the gene donor strain. The secreted α-amylase was shown to be indistinguishable from that of Schwanniomyces occidentalis on the basis of molecular weight and enzyme properties.  相似文献   

17.
Non-ribosomal peptides (NRPs) are a diverse family of secondary metabolites with a broad range of biological activities. We started to develop an eukaryotic microbial platform based on the yeast Saccharomyces cerevisiae for heterologous production of NRPs using δ-(l-α-aminoadipyl)–l-cysteinyl–d-valine (ACV) as a model NRP. The Penicillium chrysogenum gene pcbAB encoding ACV synthetase was expressed in S. cerevisiae from a high-copy plasmid together with phosphopantetheinyl transferase (PPTase) encoding genes from Aspergillus nidulans, P. chrysogenum and Bacillus subtilis, and in all the three cases production of ACV was observed. To improve ACV synthesis, several factors were investigated. Codon optimization of the 5′ end of pcbAB did not significantly increase ACV production. However, a 30-fold enhancement was achieved by lowering the cultivation temperature from 30 to 20 °C. When ACVS and PPTase encoding genes were integrated into the yeast genome, a 6-fold decrease in ACV production was observed indicating that gene copy number was one of the rate-limiting factors for ACV production in yeast.  相似文献   

18.
Microbial production of carotenoids has mainly focused towards a few products, such as β-carotene, lycopene and astaxanthin. However, other less explored carotenoids, like violaxanthin, have also shown unique properties and promissory applications. Violaxanthin is a plant-derived epoxidated carotenoid with strong antioxidant activity and a key precursor of valuable compounds, such as fucoxanthin and β-damascenone. In this study, we report for the first time the heterologous production of epoxycarotenoids in yeast. We engineered the yeast Saccharomyces cerevisiae following multi-level strategies for the efficient accumulation of violaxanthin. Starting from a β-carotenogenic yeast strain, we first evaluated the performance of several β-carotene hydroxylases (CrtZ), and zeaxanthin epoxidases (ZEP) from different species, together with their respective N-terminal truncated variants. The combined expression of CrtZ from Pantoea ananatis and truncated ZEP of Haematococcus lacustris showed the best performance and led to a yield of 1.6 mg/gDCW of violaxanthin. Further improvement of the epoxidase activity was achieved by promoting the transfer of reducing equivalents to ZEP by expressing several redox partner systems. The co-expression of the plant truncated ferredoxin-3, and truncated root ferredoxin oxidoreductase-1 resulted in a 2.2-fold increase in violaxanthin yield (3.2 mg/gDCW). Finally, increasing gene copy number of carotenogenic genes enabled reaching a final production of 7.3 mg/gDCW in shake flask cultures and batch bioreactors, which is the highest yield of microbially produced violaxanthin reported to date.  相似文献   

19.
The yeast Saccharomyces cerevisiae was genetically modified to assemble a minicellulosome on its cell surface by heterologous expression of a chimeric scaffoldin protein from Clostridium cellulolyticum under the regulation of the phosphoglycerate kinase 1 ( PGK1 ) promoter and terminator regulatory elements, together with the β-xylanase 2 secretion signal of Trichoderma reesei and cell wall protein 2 (Cwp2) of S. cerevisiae . Fluorescent microscopy and Far Western blot analysis confirmed that the Scaf3p is targeted to the yeast cell surface and that the Clostridium thermocellum cohesin domain is functional in yeast. Similarly, functionality of the C. thermocellum dockerin domain in yeast is shown by binding to the Scaf3 protein in Far Western blot analysis. Phenotypic evidence for cohesin–dockerin interaction was also established with the detection of a twofold increase in tethered endoglucanase enzyme activity in S. cerevisiae cells expressing the Scaf3 protein compared with the parent strain. This study highlights the feasibility to future design of enhanced cellulolytic strains of S. cerevisiae through emulation of the cellulosome concept. Potentially, Scaf3p-armed yeast could also be developed into an alternative cell surface display strategy with various tailor-made applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号