首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examined the functional attributes of a gene encountered by sequencing the streptokinase gene region of Streptococcus equisimilis H46A. This gene, originally called rel, here termed relS. equisimilis, is homologous to two related Escherichia coli genes, spoT and relA, that function in the metabolism of guanosine 5',3'-polyphosphates [(p)ppGpp]. Studies with a variety of E. coli mutants led us to deduce that the highly expressed rel S. equisimilis gene encodes a strong (p)ppGppase and a weaker (p)ppGpp synthetic activity, much like the spoT gene, with a net effect favoring degradation and no complementation of the absence of the relA gene. We verified that the Rel S. equisimilis protein, purified from an E. coli relA spoT double mutant, catalyzed a manganese-activated (p)ppGpp 3'-pyrophosphohydrolase reaction similar to that of the SpoT enzyme. This Rel S. equisimilis protein preparation also weakly catalyzed a ribosome-independent synthesis of (p)ppGpp by an ATP to GTP 3'-pyrophosphoryltransferase reaction when degradation was restricted by the absence of manganese ions. An analogous activity has been deduced for the SpoT protein from genetic evidence. In addition, the Rel S. equisimilis protein displays immunological cross-reactivity with polyclonal antibodies specific for SpoT but not for RelA. Despite assignment of rel S. equisimilis gene function in E. coli as being similar to that of the native spoT gene, disruptions of rel S. equisimilis in S. equisimilis abolish the parental (p)ppGpp accumulation response to amino acid starvation in a manner expected for relA mutants rather than spoT mutants.  相似文献   

3.
4.
Addition of divalent ion chelating agents picolinic acid, 1,10-phenanthroline, or quinoline-2-carboxylic acid to wild type, relA, or relX, but not spoT strains of Escherichia coli increases the levels of guanosine 5'-diphosphate 3'-diphosphate (ppGpp). Poorly chelating analogs of these agents and a larger and more highly charged chelating agent, ethylene glycol bis(beta-amino-ethyl ether) N,N,N',N'-tetraacetic acid are ineffective. Mn2+ reverses the increase in ppGpp. The increase in ppGpp in wild type cells can be explained by an inhibition of degradation. In spoT cells the response is more complex; ppGpp does not increase although degradation is completely inhibited. The lack of increase in spoT cells suggests a role for spoT in synthesis of ppGpp in addition to its known role in degradation. Growth of both spoT+ and spoT cells is inhibited following chelator addition. This suggests that growth inhibition is through a mechanism not directly involving ppGpp. The results of this study provide evidence in intact cells for a role for Mn2+ and the spoT gene product in ppGpp degradation, and provide further evidence for an involvement of spoT and possibly divalent ions in ppGpp synthesis.  相似文献   

5.
The bacterial response to stress is controlled by two proteins, RelA and SpoT. RelA generates the alarmone (p)ppGpp under amino acid starvation, whereas SpoT is responsible for (p)ppGpp hydrolysis and for synthesis of (p)ppGpp under a variety of cellular stress conditions. It is widely accepted that RelA is associated with translating ribosomes. The cellular location of SpoT, however, has been controversial. SpoT physically interacts with the ribosome-associated GTPase CgtA, and we show here that, under an optimized salt condition, SpoT is also associated with a pre-50S particle. Analysis of spoT and cgtA mutants and strains overexpressing CgtA suggests that the ribosome associations of SpoT and CgtA are mutually independent. The steady-state level of (p)ppGpp is increased in a cgtA mutant, but the accumulation of (p)ppGpp during amino acid starvation is not affected, providing strong evidence that CgtA regulates the (p)ppGpp level during exponential growth but not during the stringent response. We show that CgtA is not associated with pre-50S particles during amino acid starvation, indicating that under these conditions in which (p)ppGpp accumulates, CgtA is not bound either to the pre-50S particle or to SpoT. We propose that, in addition to its role as a 50S assembly factor, CgtA promotes SpoT (p)ppGpp degradation activity on the ribosome and that the loss of CgtA from the ribosome is necessary for maximal (p)ppGpp accumulation under stress conditions. Intriguingly, we found that in the absence of spoT and relA, cgtA is still an essential gene in Escherichia coli.  相似文献   

6.
Escherichia coli ppGpp synthetase II activity requires spoT   总被引:21,自引:0,他引:21  
Escherichia coli has two enzymes catalyzing the synthesis of guanosine tetraphosphate (ppGpp), designated ppGpp synthetase I (PSI = RelA) and II (PSII), whose activities are regulated differently. Until now, the gene for PSII had not been identified. Here, an E. coli relA1 strain that expresses lacZ from an rrnB P1 promoter was used to screen mutants with increased beta-galactosidase activity on 5-bromo-4-chloro-3-indoyl beta-D-galactoside indicator plates at 30 degrees C. About 15% of the mutants obtained in this manner had reduced levels of ppGpp at 30 degrees C and no detectable ppGpp at 43 degrees C. These mutants did not form colonies at 42 degrees C on minimal medium plates and had elevated ribosome concentrations and higher growth rates at 30 degrees C. Genetic mapping by phage P1 transduction and complementation analyses showed that the mutations were located in spoT and that they were recessive. Specific inhibition of SpoT-dependent ppGpp degradation activity with picolinic acid showed that two of the mutants tested were deficient in ppGpp synthesis activity. These results indicate that spoT is required for PSII activity, suggesting that spoT encodes both ppGpp degradation and synthesis activities and that these two functions can be affected independently by mutation.  相似文献   

7.
The relA gene of Escherichia coli encodes guanosine 3',5'-bispyrophosphate (ppGpp) synthetase I, a ribosome-associated enzyme that is activated during amino acid starvation. The stringent response is thought to be mediated by ppGpp. Mutations in relA are known to result in pleiotropic phenotypes. We now report that three different relA mutant alleles, relA1, relA2, and relA251::kan, conferred temperature-sensitive phenotypes, as demonstrated by reduced plating efficiencies on nutrient agar (Difco) or on Davis minimal agar (Difco) at temperatures above 41 degrees C. The relA-mediated temperature sensitivity was osmoremedial and could be completely suppressed, for example, by the addition of NaCl to the medium at a concentration of 0.3 M. The temperature sensitivities of the relA mutants were associated with decreased thermotolerance; e.g., relA mutants lost viability at 42 degrees C, a temperature that is normally nonlethal. The spoT gene encodes a bifunctional enzyme possessing ppGpp synthetase and ppGpp pyrophosphohydrolase activities. The introduction of the spoT207::cat allele into a strain bearing the relA251::kan mutation completely abolished ppGpp synthesis. This ppGpp null mutant was even more temperature sensitive than the strain carrying the relA251::kan mutation alone. The relA-mediated thermosensitivity was suppressed by certain mutant alleles of rpoB (encoding the beta subunit of RNA polymerase) and spoT that have been previously reported to suppress other phenotypic characteristics conferred by relA mutations. Collectively, these results suggest that ppGpp may be required in some way for the expression of genes involved in thermotolerance.  相似文献   

8.
Characterization of the spoT gene of Escherichia coli   总被引:13,自引:0,他引:13  
  相似文献   

9.
It was known previously that 1) the relA gene of Escherichia coli encodes an enzyme capable of guanosine 3',5'-bispyrophosphate (ppGpp) synthesis, 2) an uncharacterized source of ppGpp synthesis exists in relA null strains, and 3) cellular degradation of ppGpp is mainly due to a manganese-dependent ppGpp 3'-pyrophosphohydrolase encoded by the spoT gene. Here, the effects of spoT gene insertions and deletions are compared with analogous alterations in neighboring genes in the spo operon and found to be lethal in relA+ strains as well as slower growing in relAl backgrounds than delta relA hosts. Cells with null alleles in both the relA and spoT genes are found no longer to accumulate ppGpp after glucose exhaustion or after chelation of manganese ions by picolinic acid addition; the inability to form ppGpp is reversed by a minimal spoT gene on a multicopy plasmid. Strains apparently lacking ppGpp show a complex phenotype including auxotrophy for several amino acids and morphological alterations. We propose that the SpoT protein can either catalyze or control the alternative pathway of ppGpp synthesis in addition to its known role as a (p)ppGpp 3'-pyrophosphohydrolase. We favor the possibility that the SpoT protein is a bifunctional enzyme capable of catalyzing either ppGpp synthesis or degradation.  相似文献   

10.
The spoT gene of Salmonella typhimurium has been identified. Mutations in spoT map between gltC and pyrE at 79 min. The spoT1 mutant has elevated levels of guanosine 5'-diphosphate-3'-diphosphate (ppGpp) during steady-state growth and exhibits a slower than normal decay of ppGpp after reversal of amino acid starvation. The spoT1 mutation elevates his operon expression but is distinct from known his regulatory mutations. Elevated his operon expression in spoT mutants causes resistance to the histidine analogs, 1,2,4-triazole-3-alanine and 3-amino-1,2,4-triazole. These properties of spoT mutants allowed us to identify and characterize additional spoT mutants. Approximately 40% of these mutants are temperature sensitive for growth on minimal medium, suggesting that the spoT function is essential or that excessive accumulation of ppGpp is lethal.  相似文献   

11.
V K Gordeev  M I Turkov 《Genetika》1983,19(9):1433-1438
The rate of adaptation of Escherichia coli K-12 NF930 spoT1 cells with elevated intracellular level of ppGpp to various minimal media was studied. It has been found that the rate of adaptation of spoT cells, like that of parent and rel strains, depends mainly on the rate of derepression of the ilv operon. The maximal rate of the ilv operon derepression was observed when an optimal concentration of ppGpp was maintained in cells. Derepression of the ilv operon is sharply delayed when the level of ppGpp is elevated or reduced. Mutations altering the translation system do not change the rate of adaptation of spoT cells. Rifampicin resistance mutations which altered the structure of RNA polymerase change the rate of adaptation of spoT cells to minimal media, especially to those containing serine at high concentrations. The possible role of serine in the regulation of ppGpp degradation system is discussed.  相似文献   

12.
RelA and SpoT of Gram-negative organisms critically regulate cellular levels of (p)ppGpp. Here, we have dissected the spoT gene function of the cholera pathogen Vibrio cholerae by extensive genetic analysis. Unlike Escherichia coli , V. cholerae Δ relA Δ spoT cells accumulated (p)ppGpp upon fatty acid or glucose starvation. The result strongly suggests RelA-SpoT-independent (p)ppGpp synthesis in V. cholerae . By repeated subculturing of a V. cholerae Δ relA Δ spoT mutant, a suppressor strain with (p)ppGpp0 phenotype was isolated. Bioinformatics analysis of V. cholerae whole genome sequence allowed identification of a hypothetical gene ( VC1224 ), which codes for a small protein (∼29 kDa) with a (p)ppGpp synthetase domain and the gene is highly conserved in vibrios; hence it has been named relV . Using E. coli Δ relA or Δ relA Δ spoT mutant we showed that relV indeed codes for a novel (p)ppGpp synthetase. Further analysis indicated that relV gene of the suppressor strain carries a point mutation at nucleotide position 676 of its coding region (Δ relA Δ spoT relV676 ), which seems to be responsible for the (p)ppGpp0 phenotype. Analysis of a V. cholerae Δ relA Δ spoT Δ relV triple mutant confirmed that apart from canonical relA and spoT genes, relV is a novel gene in V. cholerae responsible for (p)ppGpp synthesis.  相似文献   

13.
F'-episomes carrying the Salmonella typhimurium wild-type or attenuator-deleted histidine (his) operons were introduced into Escherichia coli strains containing relA or spoT single and double mutations known to affect guanosine 3'-diphosphate 5'-diphosphate (ppGpp) and guanosine 3'-triphosphate 5'-diphosphate (pppGpp) levels. Expression of the his operon and expression of the gene for 6-phosphogluconate dehydrogenase (gnd) were measured during balanced growth in amino acid-rich and minimal media. The data were consistent with the interpretation that ppGpp is a positive effector of his operon expression, whereas pppGpp is not an essential effector. The conclusion that his operon expression is maximally stimulated at a lower than maximum intracellular ppGpp concentration was further confirmed. Neither ppGpp nor pppGpp appeared to influence gnd gene expression. The metabolic regulation of the E. coli his operon was found to be similar to the ppGpp-meidated metabolic regulation of the S. typhimurium his operon.  相似文献   

14.
15.
16.
17.
18.
To assess the contribution of ppGpp in antibiotic tolerance to quinolone in Pseudomonas aeruginosa, knockout mutants of the genes involved or linked with the stringent response, such as relA, spoT and dksA, were constructed and investigated for their antibiotic susceptibility to quinolones. The survival of the dksA and spoT mutants in the presence of 8 microg/ml of ofloxacin and 1 microg/ml of ciprofloxacin were shown to be approximately 20-180 and 10-40 times respectively, higher than the same for the wild type strain. The intracellular levels of ppGpp determined with high performance liquid chromatography (HPLC) demonstrated that spoT and dksA mutants possess higher basal levels of ppGpp. The data suggest that elevated basal levels of ppGpp may be responsible for rendering these mutants tolerant to quinolones and expand the importance of ppGpp as an antimicrobial target in P. aeruginosa.  相似文献   

19.
Arthrofactin is a biosurfactant produced by Pseudomonas sp. MIS38. We have reported that transposon insertion into spoT (spoT::Tn5) causes moderate accumulation of guanosine 3',5'-bispyrophosphate (ppGpp) and abrogates arthrofactin production. To analyze the linkage of SpoT function and ablation of arthrofactin production, we examined the spoT::Tn5 mutation. The results showed that spoT::Tn5 is not a null mutation, but encodes separate segments of SpoT. Deletion of the 3' region of spoT increased the level of arthrofactin production, suggesting that the C-terminal region of SpoT plays a suppressive role. We evaluated the expression of a distinct segment of SpoT. Forced expression of the C-terminal region that contains the ACT domain resulted in the accumulation of ppGpp and abrogated arthrofactin production. Expression of the C-terminal segment also reduced MIS38 swarming and resulted in extensive biofilm formation, which constitutes the phenocopy of the spoT::Tn5 mutant.  相似文献   

20.
E A Heinemeyer  D Richter 《Biochemistry》1978,17(25):5368-5372
Guanosine 5'-triphosphate 3'-diphosphate (pppGpp) and guanosine 5'-diphosphate 3'-diphosphate (ppGpp) are specifically degraded by a manganese-dependent pyrophosphorylase present in spoT+ but not in spoT- strains of Escherichia coli, indicating that the enzyme is the spoT gene product. The enzyme catalyzes the release of pyrophosphate from the 3' position of ppGpp or pppGpp, yielding ppG and pppG, respectively; pppGpp could not be detected as an intermediate in the decay reaction. Degradation of (p)ppGpp is optimal in the presence of 200 to 300 mM potassium or sodium acetate, at a pH of 7.5 to 8 and a temperature of 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号