首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel syrup containing neofructo-oligosaccharides was produced from sucrose (Brix 70) by whole cells of Penicillium citrinum. The efficiency of fructo-oligosaccharides production was more than 55% and those of the main carbohydrate components, 1-kestose (Fruf 21Fruf 21 Glc), nystose (Fruf 21Fruf 21 Fruf 21 Glc) and neokestose (Fruf 26 Glc12 Fruf), were 22, 14 and 11%, respectively.  相似文献   

2.
The regulation of the expression of enzyme activities catalyzing initial reactions in the anoxic metabolism of various aromatic compounds was studied at the whole cell level in the denitrifying Pseudomonas strain K 172. The specific enzyme activities were determined after growth on six different aromatic substrates (phenol, 4-hydroxybenzoate, benzoate, p-cresol, phenylacetate, 4-hydroxyphenylacetate) all being proposed to be metabolized anaerobically via benzoyl-CoA. As a control cells were grown on acetate, or aerobically on benzoate. The expression of the following enzyme activities was determined.Phenol carboxylase, as studied by the isotope exchange between 14CO2 and the carboxyl group of 4-hydroxybenzoate; 4-hydroxybenzoyl-CoA reductase (dehydroxylating); p-cresol methylhydroxylase; 4-hydroxybenzyl alcohol dehydrogenase; 4-hydroxybenzaldehyde dehydrogenase; coenzymeA ligases for the aromatic acids benzoate, 4-hydroxybenzoate, phenylacetate, and 4-hydroxyphenylacetate; phenylglyoxylate: acceptor oxidoreductase and 4-hydroxyphenylglyoxylate: acceptor oxidoreductase; aromatic alcohol and aldehyde dehydrogenases.The formation of most active enzymes is strictly regulated; they were only induced when required, the basic activities being almost zero. The observed whole cell regulation pattern supports the postulate that the enzyme activities play a role in anoxic aromatic metabolism and that the compounds are degraded via the following intermediates: Phenol 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; benzoate benzoyl-CoA; p-cresol 4-hydroxybenzaldehyde 4-hydroxybenzoate 4-hydroxybenzoyl-CoA benzoyl-CoA; phenylacetate phenylacetyl-CoA phenylglyoxylate benzoyl-CoA plus CO2; 4-hydroxyphenylacetate 4-hydroxyphenylacetyl-CoA 4-hydroxyphenylglyoxylate 4-hydroxybenzoyl-CoA plus CO2 benzoyl-CoA.  相似文献   

3.
Five point mutations were identified in unrelated Japanese Fabry disease hemizygotes: three new missense mutations, C142Y (425 G A), A156V (467 C T), and L166V (496 C G) in exon 3; one new splice site mutation at the 3 end of the consensus sequence in exon 4; one previously reported nonsense mutation, W44X (131 G A). C142Y expressed 50% of the normal enzyme protein in COS-1 cells, but catalytic activity was not detected. Both A156V and L166V expressed significant amounts of residual enzyme activity (6.7% and 9.8%) and enzyme proteins (10% each), the latter were more thermolabile at neutral pH than at acid pH, in vitro.  相似文献   

4.
As part of a program to explore the structural requirement of N-glycans in the carbohydrate-mediated biological interactions, N-linked pentasaccharide core structure was stereochemically modified in terms of glycosidic linkage. Three isomers, -D-Man-(13)-[-D-Man-(16)]--D-Man-(14)--D-GlcNAc-(14)--D-GlcNAc-L-Asn, -D-Man-(13)-[-D-Man-(16)]--D-Man-(14)--D-GlcNAc-(14)--D-GlcNAc-L-Asn, and -D-Man-(13)-[-D-man-(16)]--D-Man-(14)--D-GlcNAc-(14)--D-GlcNAc-L-Asn, were synthesized. Synthesis of the pentasaccharide with natural linkage is also described.  相似文献   

5.
Novel O-serotypes were revealed among Pseudomonas syringae pv. garcae strains by using a set of mouse monoclonal antibodies specific to the lipopolysaccharide O-polysaccharide. Structural studies showed that the O-polysaccharide of P. syringae pv. garcae NCPPB 2708 is a hitherto unknown linear L-rhamnan lacking strict regularity and having two oligosaccharide repeating units I and II, which differ in the position of substitution in one of the rhamnose residues and have the following structures: I:3)--L Rha (12)-- L Rha (12)--L-Rha-(13)--L Rha (1;II: 2)--L-Rha-(13) -L-Rha-(12)--L-Rha-(13)--L Rha (1.The branched O-polysaccharides of P. syringae pv. garcae ICMP 8047 and NCPPB 588T have the same L-rhamnan backbone with repeating units I and II and a lateral chain of 14)- or 13)-linked residues of 3-acetamido-3,6-dideoxy-D-galactose (D-Fuc3NAc). Several monoclonal antibody epitopes associated with the L-rhamnan backbone or the lateral -D-Fuc3NAc residues were characterized.Translated from Mikrobiologiya, Vol. 73, No. 6, 2004, pp. 777–789.Original Russian Text Copyright © 2004 by Ovod, Zdorovenko, Shashkov, Kocharova, Knirel.  相似文献   

6.
Our recent studies have revealed the existence of two distinct Gal: 3-O-sulfotransferases capable of acting on the C-3 position of galactose in a Core 2 branched structure, e.g., Gal14GlcNAc16(Gal13)GalNac1OBenzyl as acceptor to give 3-O-sulfoGal14GlcNAc13(Gal13)GalNAc1OB 20 and Gal14GlcNAc16(3-O-sulfoGal13)GalNAc1OB 23. We herein report the synthesis of these two compounds and also that of other modified analogs that are highly specific acceptors for the two sulfotransferases. Appropriately protected 1-thio-glycosides 7, 8, and 10 were employed as glycosyl donors for the synthesis of our target compounds.  相似文献   

7.
Recombinant Penicillium citrinum -1,2-mannosidase, expressed in Aspergillus oryzae, was employed to carry out regioselective synthesis of -d-mannopyranosyl-(12)-d-mannose. Yields (w/w) of 16.68% disaccharide, 3.07% trisaccharide and 0.48% tetrasaccharide were obtained, with 12 linkages present at 98.5% of the total linkages formed. Non-specific -mannosidase from almond was highly efficient in reverse hydrolysis and oligosaccharide yields of 45–50% were achieved. The products of the almond mannosidase were a mixture of disaccharides (30.75%, w/w), trisaccharides (12.26%, w/w) and tetrasaccharides (1.89%, w/w) with 12, 13 and 16 isomers. -1,2-linkage specific mannosidase from P. citrinum and -1,6-linkage-specific mannosidase from Aspergillus phoenicis were used in combination to hydrolyse the respective linkages from the mixture of isomers, resulting in -d-mannopyranosyl-(13)-d-mannose in 86.4% purity. The synthesised oligosaccharides can potentially inhibit the adhesion of pathogens by acting as "decoys" of receptors of type-1 fimbriae carried by enterobacteria.  相似文献   

8.
Summary On t.l.c. plates 125I-cholera toxin binds to a disialoganglioside tentatively identified as GDlb with about 10 times less capacity than to ganglioside GM1. Binding of labeled toxin to both gangliosides was abolished in presence of excess amounts of unlabeled B subunit. Ganglioside extracts from human or pig intestinal mucosa showed toxin binding to gangliosides GM1 and GD1b. In ganglioside-containing lipid monolayers the penetration of the toxin was independent of the ganglioside binding capacity.Abbreviations GM2 Gal-NAc14Gal(3-2NeuAc)14G1c1Cer - GM1 Gal3Ga1-NAc14Gal(32NeuAc)14G1c11Cer - GD1a NeuAc23Ga113Gal-NAc14Gal(32NeuAc)14G1c11Cer - GD1b Gall3Gal-NAcl4Gal(32NeuAc82NeuAc)14Glc11Cer - GT1b NeuAc23Ga113Ga1-NAcal4Gal(3-2NeuAc82NeuAc)14G1c11Cer - dpPC 1,2-hexadecanoyl-sn-glycero-3-phosphocholine - dpPE 1,2-hexadecanoyl-sn-glycero-3-phosphoethanolamine  相似文献   

9.
Geshi N  Jørgensen B  Ulvskov P 《Planta》2004,218(5):862-868
The subcellular localization and topology of rhamnogalacturonan I (RG-I) (14)galactosyltransferase(s) ([14]GalTs) from potato (Solanum tuberosum L.) were investigated. Using two-step discontinuous sucrose step gradients, galactosyltransferase (GalT) activity that synthesized 70%-methanol-insoluble products from UDP-[14C]Gal was detected in both the 0.5 M sucrose fraction and the 0.25/1.1 M sucrose interface. The former fraction contained mainly soluble proteins and the latter was enriched in Golgi vesicles that contained most of the UDPase activity, a Golgi marker. By gel-filtration analysis, products of 180–2,000 Da were found in the soluble fraction, whereas in the Golgi-enriched fraction the products were larger than 80 kDa and could be digested with rhamnogalacturonan lyase and (1,4)endogalactanase to yield smaller rhamnogalacturonan oligomers, galactobiose and galactose. The endogalactanase requires (14)galactans with at least three galactosyl residues for cleavage, indicating that the enzyme(s) present in the 0.25/1.1 M Suc interface transferred one or more galactosyl residues to pre-existing (14)galactans producing RG-I side chains in total longer than a trimer. Thus, the (14)GalT activity that elongates (14)-linked galactan on RG-I was located in the Golgi apparatus. This (14)GalT activity was not reduced after treatment of the Golgi vesicles with proteinase, but approximately 75% of the activity was lost after treatment with proteinase in the presence of Triton X-100. In addition, the (14)GalT activity was recovered in the detergent phase after treatment of Golgi vesicles with Triton X-114. Taken together, these observations supported the view that the RG-I (14)GalT that elongates (14)galactan was mainly located in the Golgi apparatus and integrated into the membrane with its catalytic site facing the lumen.Abbreviations GalT Galactosyltransferase - (14)GalT (14)-Galactosyltransferase - H + -ATPase Proton ATPase - HG Homogalacturonan - HSP70 ER resident Bip - mMDH Mitochondrial malate dehydrogenase - RG-I Rhamnogalacturonan I - RG-II Rhamnogalacturonan II - RGP Reversibly glycosylated polypeptide - RG-Lyase Rhamnogalacturonan lyase - Suc Sucrose - UDPase Uridine-5-diphosphatase  相似文献   

10.
A bacterium isolated from soil and identified asAgrobacterium sp produced a water-soluble extracellular polysaccharide capable of producing highly viscous solutions. Gas chromatographic analysis revealed a sugar composition of glucose, galactose and mannose in the molar ratio of 7.52.41, together with 3.7% (w/w) pyruvic acid. Methylation analyses showed the presence of (13)-, (14)- and (16)-linked glucose, (13)- and (14, 16)-linked galactose and a small portion of (13)-linked mannose residues. Succinic acid was not present. The molecular weight of the polysaccharide was estimated by light scattering to be 2×106 Da. The viscosity of solutions containing the polysaccharide remained constant from pH 3 to 11, and decreased by 50% when heated from 5 to 55°C. Maximum yield of the polysaccharide, 20 g L–1, was reached in 48 h at 30°C incubation.  相似文献   

11.
A cellular (LPS I) and extracellular (LPS II) lipopolysaccharide were isolated from Moraxella glucidolytica cells grown on ethanol and from the culture fluid, respectively. Both LPS were toxic when injected to mice and chick embryos. These LPS contained glucose, galactose, glucosamine, galactosamine, 2-keto-3-deoxyoctonate and lipids. By permethylation studies, glucose was found to be linked (16) and (13) in LPS I and only (16) in LPS II. Galactose was the terminal non-reducing sugar. Branching occurred at positions 3 and 4 of galactose residues. LPS I was rich in - and -hydroxylauric and -hydroxymyristic acids and LPS II contained mainly stearic and -hydroxymyristic acids. LPS I was detoxified by mild acid and alkaline treatments. It was also dissociated by sodium deoxycholate and chromatographed on Sephadex G-75. The main fraction was reassociated by removing the surfactant by dialysis. The morphology of LPS I and LPS II was examined by electron microscopy. LPS I (original and reassociated fractions) consisted exclusively of ribbons while LPS II contained ribbons and vesicles.Non-Standard Abbreviations KDO 2-Keto-3-deoxyoctonic acids - LPS Lipopolysaccharide - NaD Sodium deoxycholate  相似文献   

12.
Structures of acidic N-glycans released from porcine zona pellucida glycoproteins by hydrazinolysis were studied. The results indicated that the acidic glycans are of mono- to tetraantennary complex-type with and without N-acetyllactosamine repeating units. Sulfated residues are not only located at the C-6 position of GlcNAc included in the N-acetyllactosamine repeating units, but also at the C-6 position of GlcNAc in the non-repeated antennae and at the C-3 position of reducing terminal GlcNAc residue. Analysis of the oligosaccharide fragments released by endo--galactosidase digestion and by hydrazine/nitrous acid treatment also revealed that various sulfated and non-sulfated forms of fucosylated structures such as Fuc12Gal14(±SO–36)GlcNAc (type 2H), Gal14(Fuc13)(±SO–36)GlcNAc(Lex) and Fuc13 or 4(±SO–36)GlcNAc, are expressed in the repeated outer chain moieties.  相似文献   

13.
The lipopolysaccharides (LPSs) extracted from the outer membrane of Azospirillum brasilense Sp245 and its Omegon-Km mutants KM018 and KM252 with a hot aqueous solution of phenol were found to differ in the content of carbohydrates, glucosamine, and total phosphorus and in the proportion of octadecenoic and hexadecanoic acids in the lipid moieties of the LPSs. The carbohydrate moieties of the LPSs were heterogeneous in charge. The analysis of the O-specific polysaccharides (O-PSs) of the mutants KM018 and KM252 by gas–liquid chromatography, IR spectroscopy, and NMR spectroscopy showed that they are composed of the same linear pentasugar repeating units 2)--D-Rhap-(1 3)--D-Rhap-(1 3)--D-Rhap-(1 2)--D-Rhap-(1 2)--D-Rhap-(1 as the O-PSs of the parent strain Sp245. The reported differences in the biological activity of the LPSs of the parent and mutant strains can be due to their different chemical composition.  相似文献   

14.
A newly isolated strain, MU-2, which produces very high -fructofuranosidase activity, was identified asAspergillus japonicus. For enzyme production by the strain, sucrose at 20% (w/v) was the best carbon source and yeast extract at 1.5 to 3% (w/v) the best nitrogen source. Total enzymatic activity and cell growth were at maximum after 48 h, at 1.57×104 U/flask and 0.81 g dry cells/flask, respectively. The optimum pH value of the enzymatic reaction was between 5.0 and 5.5 and the optimum temperature 60 to 65°C. The enzyme produced 1-kestose (O--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) and nystose (O--d-fructofuranosyl-(21)--d-fructofuranosyl-(21)--d-fructofuranosyl -d-glucopyranoside) from sucrose by fructosyl-transferring activity. The strain was found to be very useful for industrial production of -fructofuranosidase.  相似文献   

15.
Three structural classes of (13)--d-glucans are encountered in some important soil-dwelling, plant-associated or human pathogenic bacteria. Linear (13)--glucans and side-chain-branched (13,12)--glucans are major constituents of capsular materials, with roles in bacterial aggregation, virulence and carbohydrate storage. Cyclic (13,16)--glucans are predominantly periplasmic, serving in osmotic adaptation. Curdlan, the linear (13)--glucan from Agrobacterium, has unique rheological and thermal gelling properties, with applications in the food industry and other sectors. This review includes information on the structure, properties and molecular genetics of the bacterial (13)--glucans, together with an overview of the physiology and biotechnology of curdlan production and applications of this biopolymer and its derivatives.  相似文献   

16.
Globo H (Fuc12Gal13GalNAc13Gal14Gal14Glc) is a carbohydrate structure that shows enhanced expression in many human carcinomas. From mice immunized with a globo H-KLH (keyhole limpet hemocyanin) synthetic conjugate an IgG3 monoclonal antibody (mAb VK-9) was derived that recognizes the globo H structure. Serological analysis showed that the minimal structure recognized by this mAb was the tetrasaccharide sequence Fuc12Gal13GalNAc13Gal. An isomeric structure with an internal GalNAc linkage was also recognized but less efficiently. mAb VK-9 did not react with many related structures, such as galactosylgloboside, globoside, H type 1, H type 2 blood group structures or fucosyl-gangliotetraosyl ceramide, but did react weakly with globo A ceramide. Not only did mAb VK-9 react with carbohydrate-protein conjugates but it could also recognize globo H-ceramide and human tumor cells expressing globo H. These results suggest that globo H-KLH could be explored as a vaccine in the treatment of carcinoma patients.  相似文献   

17.
Anthocyanins isolated and characterized from the wild carrot suspension cultures used here were 3-O--D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D<-galactopyranosylcyanidin (1), 3-O-[-D- xylopyranosyl-(12)--D-galactopyranosyl]cyanidin (2), 3-O-(6-O-sinapoyl)--D-glucopyranosyl-(16)-[-D- xylopyranosyl-(12)-]-D-galactopyranos ylcyanidin (3), 3-O-(6-O-feruoyl)--D-glucopyranosyl-(16)-[- D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (4), 3-O-(6-O-coumaroyl)--D-glucopyranosyl-(16)- [-D-xylopyranosyl-(12)-]-D-galactopyrano sylcyanidin (5), 3-O-[6-O-(3,4,5-trimethoxycinnamoyl)]-- D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (6), 3-O-[6-O-(3,4-dime- thoxycinnamoyl)]--D-glucopyranosyl-(16)-[-D-xylopyranosyl-(12)-]-D-galactopyranosylcyanidin (7), 3-O-[(6-O-sinapoyl)--D-glucopyranosyl-(16)--D-galactopyranosyl]cyanidin (8), and 3-O-(-D-galactopyranosyl)cyanidin (9). Except when cinnamic acids were provided in the culture medium, the major anthocyanin present in the two clones examined was 2. When the naturally occurring and some non-naturally occurring cinnamic acids were provided individually in the medium, 1 and 2 were minor components and the anthocyanin acylated with the supplied cinnamic acid, namely 3, 4, 5, 6, or 7 was the major anthocyanin present in the tissue. When caffeic acid was provided the major anthocyanin in the tissue was 4, thereby suggesting that the caffeic acid was methylated before its use in anthocyanin biosynthesis. Other cinnamic acids supplied had limited effects on the anthocyanins accumulated and appeared not to result in the accumulation of new anthocyanins by the tissue. Thus the tissue can use some but not all analogues of sinapic acid to acylate anthocyanins. Additional anthocyanins were detected in extracts of the wild carrot tissue cultures using mass spectrometry (both MS/MS and HPLC/MS). The additional compounds detected have also been found in cultures of black carrot, an Afghan cultivar of Daucus carota ssp. sativa and the flowers of wild carrot giving no evidence for qualitative differences in the anthocyanins synthesized by subspecies, cell cultures from subspecies, or clones from cell cultures. There are major differences in the amounts of individual anthocyanins found in cultures from different subspecies and in different clones from cell cultures. Here anthocyanins without acyl groups were usually found in the tissues and their accumulation is discussed. On the basis of the structures of the isolated anthocyanins, a likely pathway from cyanidin to the accumulated anthocyanins is proposed and discussed.Abbreviations Sin sinapoyl - Fer feruoyl - 4-Coum. 4-coumaroyl - 3,4-MeO2Cin 3,4-dimethoxyeinnamoyl - 3,4,5-MeO3Cin 3,4,5-trimethoxycinnamoyl - Cya cyanidin  相似文献   

18.
Sphingomonas elodea ATCC 31461 produces gellan, a capsular polysaccharide that is useful as a gelling agent for food and microbiological media. Complementation of nonmucoid S. elodea mutants with a gene library resulted in identification of genes essential for gellan biosynthesis. A cluster of 18 genes spanning 21 kb was isolated. These 18 genes are homologous to genes for synthesis of sphingan polysaccharide S-88 from Sphingomonas sp. ATCC 31554, with predicted amino acid identities varying from 61% to 98%. Both polysaccharides have the same tetrasaccharide repeat unit, comprised of [4)--l-rhamnose-(13)--d-glucose-(14)--d-glucuronic acid-(14)--d-glucose-(1]. Polysaccharide S-88, however, has mannose or rhamnose in the fourth position and has a rhamnosyl side chain, while gellan has no sugar side chain but is modified by glyceryl and acetyl substituents. Genes for synthesis of the precursor dTDP-l-rhamnose were highly conserved. The least conserved genes in this cluster encode putative glycosyl transferases III and IV and a gene of unknown function, gelF. Three genes (gelI, gelM, and gelN) affected the amount and rheology of gellan produced. Four additional genes present in the S-88 sphingan biosynthetic gene cluster did not have homologs in the gene cluster for gellan biosynthesis. Three of these gene homologs, gelR, gelS, and gelG, were found in an operon unlinked to the main gellan biosynthetic gene cluster. In a third region, a gene possibly involved in positive regulation of gellan biosynthesis was identified.  相似文献   

19.
Homogenized tissues and their alkali-soluble and alkali-insoluble fractions of fruiting bodies of the basidiomycetes Laetiporus sulphureus and Piptoporus betulinus were investigated using X-ray diffraction, infrared spectrometry and chemical methods. The presence of (13)--d-glucan, (13)--d-glucan and chitin was established. The relative amounts of these polysaccharides were different in the two species and differences were also found between context and trama. The proportion of (13)--d-glucan was exceptionally high in the context of L. sulphureus (about 78%). In addition, the trama of both species contained a substance resembling a cyclic wax by its X-ray pattern and solubility properties. The substances identified are considered to belong to the hyphal wall  相似文献   

20.
A (13)--D-glucan 3-glucanonydrolase (EC 3.2.1.39) of apparent M r 32 000, designated GII, has been purified from germinated barley grain and characterized. The isoenzyme is resolved from a previously purified isoenzyme (GI) on the basis of differences in their isoelectric points; (13)--glucanases GI and GII have pI values of 8.6 and 10.0, respectively. Comparison of the sequences of their 40 NH2-terminal amino acids reveals 68% positional identity. A 1265 nucleotide pair cDNA encoding (13)--glucanase isoenzyme GII has been isolated from a library prepared with mRNA of 2-day germinated barley scutella. Nucleotide sequence analysis of the cDNA has enabled the complete primary structure of the 306 amino acid (13)--glucanase to be deduced, together with that of a putative NH2-terminal signal peptide of 28 amino acid residues. The (13)--glucanase cDNA is characterized by a high (G+C) content, which reflects a strong bias for the use of G or C in the wobble base position of codons. The amino acid sequence of the (13)--glucanase shows highly conserved internal domains and 52% overall positional identity with barley (13, 14)--glucanase isoenzyme EII, an enzyme of related but quite distinct substrate specificity. Thus, the (13)--glucanases, which may provide a degree of protection against microbial invasion of germinated barley grain through their ability to degrade fungal cell wall polysaccharides, appear to share a common evolutionary origin with the (13, 14)--glucanases, which function to depolymerize endosperm cell walls in the germinated grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号