首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vascular endothelial growth factor (VEGF) receptor tyrosine kinase subtype kinase insert domain receptor (KDR) contains seven extracellular Ig-like domains, of which the three most amino-terminal contain the necessary structural features required for VEGF binding. To clarify the functional role of KDR Ig-like domains 4-7, we compared VEGF-induced signaling in human embryonic kidney and porcine aortic endothelial cells expressing native versus mutant receptor proteins in which Ig-like domains 4-7, 4-6, or 7 had been deleted. Western blotting using an anti-receptor antibody indicated equivalent expression levels for each of the recombinant proteins. As expected, VEGF treatment robustly augmented native receptor autophosphorylation. In contrast, receptor autophosphorylation, as well as downstream signaling events, were VEGF-independent for cells expressing mutant receptors. (125)I-VEGF(165) bound with equal or better affinity to mutant versus native receptor, although the number of radioligand binding sites was significantly reduced because a significant percentage of mutant, but not native, receptors were localized to the cell interior. As was the case for native KDR, (125)I-VEGF(165) binding to the mutant receptors was dependent upon cell surface heparan sulfate proteoglycans, and (125)I-VEGF(121) bound with an affinity equal to that of (125)I-VEGF(165) to the native and mutant receptors. It is concluded that KDR Ig-like domains 4-7 contain structural features that inhibit receptor signaling by a mechanism that is independent of neuropilin-1 and heparan sulfate proteoglycans. We speculate that this provides a cellular mechanism for blocking unwanted signaling events in the absence of VEGF.  相似文献   

2.
The products of the neuropilin-1 (Np-1) and neuropilin-2 (Np-2) genes are receptors for factors belonging to the class 3 semaphorin family and participate in the guidance of growing axons to their targets. In the presence of heparin-like molecules, both receptors also function as receptors for the heparin-binding 165-amino acid isoform of vascular endothelial growth factor (VEGF(165)). Both receptors are unable to bind to the 121-amino acid isoform of vascular endothelial growth factor (VEGF(121)), which lacks a heparin-binding domain. Interestingly, complexes corresponding in size to (125)I-VEGF(121).neuropilin complexes are formed when (125)I-VEGF(121) is bound and cross-linked to porcine aortic endothelial cells co-expressing VEGFR-1 and either Np-1 or Np-2. These complexes do not seem to represent complexes of (125)I-VEGF(121) with a truncated form of VEGFR-1, presumably formed as a result of the presence of Np-1 or Np-2 in the cells, because such truncated forms could not be detected with anti-VEGFR-1 antibodies. Antibodies directed against VEGFR-1 co-immunoprecipitated the (125)I-VEGF(121).Np-2 sized cross-linked complex along with (125)I-VEGF(121).VEGFR-1 complexes from cells expressing both VEGFR-1 and Np-2 but not from control cells, indicating that VEGFR-1 and Np-2 associate with each other. To perform the reciprocal experiment we have expressed in porcine aortic endothelial cells a Np-2 receptor containing an in-frame myc epitope at the C terminus. Surprisingly, the myc-tagged Np-2 receptor lost most of its VEGF(165) binding capacity but not its semaphorin-3F binding ability. Nevertheless, when Np-2myc was co-expressed in cells with VEGFR-1, it partially regained its VEGF(165) binding ability. Antibodies directed against the myc epitope co-immunoprecipitated (125)I-VEGF(165).Np-2myc and (125)I- VEGF(165).VEGFR-1 complexes from cells co-expressing VEGFR-1 and Np-2myc, indicating again that VEGFR-1 associates with Np-2. Our experiments therefore indicate that Np-2, and possibly also Np-1, associate with VEGFR-1 and that such complexes may be part of a cell membrane-associated signaling complex.  相似文献   

3.
Vascular endothelial growth factor B (VEGF-B) is expressed in various tissues, especially strongly in the heart, and binds selectively to one of the VEGF receptors, VEGFR-1. The two splice isoforms, VEGF-B(167) and VEGF-B(186), have identical NH(2)-terminal cystine knot growth factor domains but differ in their COOH-terminal domains which give these forms their distinct biochemical properties. In this study, we show that both splice isoforms of VEGF-B bind specifically to Neuropilin-1 (NRP1), a receptor for collapsins/semaphorins and for the VEGF(165) isoform. The NRP1 binding of VEGF-B could be competed by an excess of VEGF(165). The binding of VEGF-B(167) was mediated by the heparin binding domain, whereas the binding of VEGF-B(186) to NRP1 was regulated by exposure of a short COOH-terminal proline-rich peptide upon its proteolytic processing. In immunohistochemistry, NRP1 distribution was found to be overlapping or adjacent to known sites of VEGF-B expression in several tissues, in particular in the developing heart, suggesting the involvement of VEGF-B in NRP1-mediated signaling.  相似文献   

4.
Vascular endothelial growth factor (VEGF) induces the proliferation of endothelial cells and is a potent angiogenic factor that binds to heparin. We have therefore studied the effect of heparin upon the interaction of VEGF with its receptors. Heparin, at concentrations ranging from 0.1 to 10 micrograms/ml, strongly potentiated the binding of 125I-VEGF to its receptors on endothelial cells. Scatchard analysis of 125I-VEGF binding indicates that 1 microgram/ml heparin induces an 8-fold increase in the apparent density of high affinity binding sites for VEGF, but does not significantly affect the dissociation constant of VEGF. Cross-linking experiments showed that heparin strongly potentiates the formation of the 170-, 195- and 225-kDa 125I-VEGF-receptor complexes on endothelial cells. At high 125I-VEGF concentrations (4 ng/ml), heparin preferentially enhanced the formation of the 170- and 195-kDa complexes. Preincubation of the cells with heparin, followed by extensive washes, produced a similar enhancement of subsequent 125I-VEGF binding. The binding of 125I-VEGF was completely inhibited following digestion of endothelial cells with heparinase and could be restored by the addition of exogenous heparin to the digested cells. The enhancing effect of heparin facilitated the detection of VEGF receptors on cell types that were not known previously to express such receptors. Our results suggest that cell surface-associated heparin-like molecules are required for the interaction of VEGF with its cell surface receptors.  相似文献   

5.
We have previously shown that carboxymethyl dextran benzylamide (CMDB7), a heparin-like molecule, inhibits the growth of tumors xenografted in nude mice, angiogenesis, and metastasis by altering the binding of angiogenic growth factors, including platelet-derived growth factor, transforming growth factor beta, and fibroblast growth factor 2, to their specific receptors. In this study, we explore the effect of CMDB7 on the most specific angiogenic growth factor, vascular endothelial growth factor 165 (VEGF(165)). We demonstrate here that CMDB7 inhibits the mitogenic effect of VEGF(165) on human umbilical vein endothelial cells (HUV-ECs) by preventing the VEGF(165)-induced VEGF receptor-2 (KDR) autophosphorylation and consequently a specific intracellular signaling. In competition experiments, the binding of (125)I-VEGF(165) to HUV-ECs is inhibited by CMDB7 with an IC(50) of 2 microm. Accordingly, CMDB7 inhibits the cross-linking of (125)I-VEGF(165) to the surface of HUV-ECs, causing the disappearance of both labeled complexes, 170-180 and 240-250 kDa. We show that CMDB7 increases the electrophoretic mobility of VEGF(165), thus evidencing formation of a stable complex with this factor. Moreover, CMDB7 reduces the (125)I-VEGF(165) binding to coated heparin-albumin and prevents a heparin-induced increase in iodinated VEGF(165) binding to soluble (125)I-KDR-Fc chimera. Concerning KDR, CMDB7 has no effect on (125)I-KDR-Fc electrophoretic migration and does not affect labeled KDR-Fc binding to coated heparin-albumin. In the presence of VEGF(165), (125)I-KDR-Fc binding to heparin is enhanced, and under these conditions, CMDB7 interferes with KDR binding. These data indicate that CMDB7 effectively inhibits the VEGF(165) activities by interfering with heparin binding to VEGF(165) and VEGF(165).KDR complexes but not by direct interactions with KDR.  相似文献   

6.
Co-expression of NRP1 and (VEGFR-2) KDR on the surface of endothelial cells (EC) enhances VEGF165 binding to KDR and EC chemotaxis in response to VEGF165. Overexpression of NRP1 by prostate tumor cells in vivo results in increased tumor angiogenesis and growth. We investigated the molecular mechanisms underlying NRP1-mediated angiogenesis by analyzing the association of NRP1 and KDR. An intracellular complex containing NRP1 and KDR was immunoprecipitated from EC by anti-NRP1 antibodies only in the presence of VEGF165. In contrast, VEGF121, which does not bind to NRP1, did not support complex formation. Complexes containing VEGF165, NRP1, and KDR were also formed in an intercellular fashion by co-culture of EC expressing KDR only, with cells expressing NRP1 only, for example, breast carcinoma cells. VEGF165 also mediated the binding of a soluble NRP1 dimer to cells expressing KDR only, confirming the formation of such complexes. Furthermore, the formation of complexes containing KDR and NRP1 markedly increased 125I-VEGF165 binding to KDR. Our results suggest that formation of a ternary complex of VEGF165, KDR, and NRP1 potentiates VEGF165 binding to KDR. These complexes are formed on the surface of EC and in a juxtacrine manner via association of tumor cell NRP1 and EC KDR.  相似文献   

7.
Therapeutic induction of angiogenesis is a potential treatment for chronic ischemia. Heparan sulfate proteoglycans are known to play an important role by their interactions with proangiogenic growth factors such as vascular endothelial growth factor (VEGF). Low molecular weight fucoidan (LMWF), a sulfated polysaccharide from brown seaweeds that mimic some biological activities of heparin, has been shown recently to promote revascularization in rat critical hindlimb ischemia. In this report, we first used cultured human endothelial cells (ECs) to investigate the possible ability of LMWF to enhance the actions of VEGF(165). Data showed that LMWF greatly enhances EC tube formation in growth factor reduced matrigel. LMWF is a strong enhancer of VEGF(165)-induced EC chemotaxis, but not proliferation. In addition, LMWF has no effect on VEGF(121)-induced EC migration, a VEGF isoform that does not bind to heparan sulfate proteoglycans. Then, with binding studies using (125)I-VEGF(165), we observed that LMWF enhances the binding of VEGF(165) to recombinant VEGFR-2 and Neuropilin-1 (NRP1), but not to VEGFR-1. Surface plasmon resonance analysis showed that LMWF binds with high affinity to VEGF(165) (1.2 nm) and its receptors (5-20 nm), but not to VEGF(121). Pre-injection of LMWF on immobilized receptors shows that VEGF(165) has the highest affinity for VEGFR-2 and NRP1, as compared with VEGFR-1. Overall, the effects of LMWF were much more pronounced than those of LMW heparin. These findings suggested an efficient mechanism of action of LMWF by promoting VEGF(165) binding to VEGFR-2 and NRP1 on ECs that could help in stimulating therapeutic revascularization.  相似文献   

8.
Neuropilins (NRPs) are 130-kDa receptors that bind and respond to the class 3 semaphorin family of axon guidance molecules (SEMAs) and to members of the vascular endothelial growth factor (VEGF) family of angiogenic factors. Two NRPs have been reported so far, NRP1 and NRP2. Unlike NRP1, little is known about NRP2 interactions with its ligands, VEGF165 and SEMA3F. Cell binding studies reveal that VEGF165 and SEMA3F bind NRP2 with similar affinities, 5.2 and 3.9 nM, respectively, and are competitive NRP2 ligands. Immunoprecipitation studies show that the B (b1b2) extracellular domain of NRP2 is sufficient for VEGF165 binding, whereas SEMA3F requires both the A (a1a2) and B domains. To identify residues of B-NRP2 involved in VEGF165 binding, point mutations were introduced by site-directed mutagenesis. VEGF165 is a basic protein. Reduction of the electronegative potential of B-NRP2 by exchanging acidic residues for uncharged alanine (B-NRP2 E284A,E291A) in the 280-290 b1-NRP2 loop resulted in a 2-fold reduction in VEGF165 affinity. Conversely, enhancing the electronegative potential (B-NRP2 R287E,N290D and R287E,N290S) significantly increased VEGF165 affinity for B-NRP2 by 8- and 6.6-fold, respectively. The mutagenesis did not affect SEMA3F/B-NRP2 interactions. These results demonstrate that it is possible to alter VEGF165 affinity for NRP2 without affecting SEMA3F affinity. They also identify NRP2 residues involved in VEGF165 binding and suggest that modifications of B-NRP2 could lead to potentially high affinity selective inhibitors of VEGF165/NRP2 interactions.  相似文献   

9.
Glypican-1 is a member of a family of glycosylphosphatidylinositol anchored cell surface heparan sulfate proteoglycans implicated in the control of cellular growth and differentiation. The 165-amino acid form of vascular endothelial growth factor (VEGF165) is a mitogen for endothelial cells and a potent angiogenic factor in vivo. Heparin binds to VEGF165 and enhances its binding to VEGF receptors. However, native HSPGs that bind VEGF165 and modulate its receptor binding have not been identified. Among the glypicans, glypican-1 is the only member that is expressed in the vascular system. We have therefore examined whether glypican-1 can interact with VEGF165. Glypican-1 from rat myoblasts binds specifically to VEGF165 but not to VEGF121. The binding has an apparent dissociation constant of 3 x 10(-10) M. The binding of glypican-1 to VEGF165 is mediated by the heparan sulfate chains of glypican-1, because heparinase treatment abolishes this interaction. Only an excess of heparin or heparan sulfates but not other types of glycosaminoglycans inhibited this interaction. VEGF165 interacts specifically not only with rat myoblast glypican-1 but also with human endothelial cell-derived glypican-1. The binding of 125I-VEGF165 to heparinase-treated human vascular endothelial cells is reduced following heparinase treatment, and addition of glypican-1 restores the binding. Glypican-1 also potentiates the binding of 125I-VEGF165 to a soluble extracellular domain of the VEGF receptor KDR/flk-1. Furthermore, we show that glypican-1 acts as an extracellular chaperone that can restore the receptor binding ability of VEGF165, which has been damaged by oxidation. Taken together, these results suggest that glypican-1 may play an important role in the control of angiogenesis by regulating the activity of VEGF165, a regulation that may be critical under conditions such as wound repair, in which oxidizing agents that can impair the activity of VEGF are produced, and in situations were the concentrations of active VEGF are limiting.  相似文献   

10.
Neuropilin-1 (NP-1) was first identified as a semaphorin receptor involved in neuron guidance. Subsequent studies demonstrated that NP-1 also binds an isoform of vascular endothelial growth factor (VEGF) as well as several VEGF homologs, suggesting that NP-1 may also function in angiogenesis. Here we report in vitro binding experiments that shed light on the interaction between VEGF165 and NP-1, as well as a previously unknown interaction between NP-1 and one of the VEGF receptor tyrosine kinases, VEGFR1 or Flt-1. BIAcore analysis demonstrated that, with the extracellular domain (ECD) of NP-1 immobilized at low density, VEGF165 bound with low affinity (K(d) = 2 microm) and fast kinetics. The interaction was dependent on the heparin-binding domain of VEGF165 and increased the affinity of VEGF165 for its signaling receptor VEGFR2 or kinase insert domain-containing receptor. The affinity of VEGF165 for the NP-1 ECD was greatly enhanced either by increasing the density of immobilized NP-1 (K(d) = 113 nm) or by the addition of heparin (K(d) = 25 nm). We attribute these affinity enhancements to avidity effects mediated by the bivalent VEGF165 homodimer or multivalent heparin. We also show that the NP-1 ECD binds with high affinity (K(d) = 1.8 nm) to domains 3 and 4 of Flt-1 and that this interaction inhibits the binding of NP-1 to VEGF165. Based on these results, we propose that NP-1 acts as a coreceptor for various ligands and that these functions are dependent on the density of NP-1 on the cell membrane. Furthermore, Flt-1 may function as a negative regulator of angiogenesis by competing for NP-1.  相似文献   

11.
Cackowski FC  Xu L  Hu B  Cheng SY 《Genomics》2004,84(1):82-94
Neuropilin-1 (NRP1) is a coreceptor to a tyrosine kinase receptor for both the vascular endothelial growth factor (VEGF) family and semaphorin (Sema) family members. NRP1 plays versatile roles in angiogenesis, axon guidance, cell survival, migration, and invasion. NRP1 contains three distinct extracellular domains, a1a2, b1b2, and c. We report here the identification of two novel soluble human NRP1 isoforms, which we named sIIINRP1 and sIVNRP1. These soluble NRP1 isoforms were generated by alternative splicing of the NRP1 gene, a common regulatory mechanism occurring in cell surface receptor families. Both sIIINRP1 and sIVNRP1 contain a1a2 and b1b2 domains, but no c domain, and the rest of the NRP1 sequence. Additionally, sIIINRP1 is missing 48 amino acids within the C-terminus of the b2 domain. Both sIIINRP1 and sIVNRP1 are expressed in human cancerous and normal tissues. These molecules are capable of binding to VEGF165 and Sema3A. Furthermore, recombinant sIIINRP1 and sIVNRP1 proteins inhibit NRP1-mediated MDA-MB-231 breast cancer cell migration. These results indicate the multiple levels of regulation in NRP1 function and suggest that these two novel NRP1 isoforms are useful antagonists for NRP1-mediated cellular activities.  相似文献   

12.
Vascular endothelial growth factor (VEGF) represents a target for antiangiogenic therapies in a wide spectrum of diseases, including cancer. As a novel strategy to generate nonanticoagulant antiangiogenic substances exploiting binding to VEGF while preventing receptor engagement, we assessed the VEGF-antagonist activity of a low-molecular-weight (LMW) compound (ST2184, Mw = 5800) generated by depolymerization of an undersulfated glycol-split heparin derivative. The parental compound was obtained by introducing regular sulfation gaps along the prevalently N-sulfated heparin regions, followed by glycol-splitting of all nonsulfated uronic acid residues (approximately 50% of total uronic acid residues). ST2184 was endowed with a negligible anticoagulant activity after S.C. injection in mice. ST2184 binds VEGF165 as evaluated by its capacity to retard 125I-VEGF165 electrophoretic migration in a gel mobility shift assay and to prevent VEGF165 interaction with heparin immobilized onto a BIAcore sensor chip. Unlike heparin, ST2184 was unable to present 125I-VEGF165 to its high-affinity receptors in endothelial cells and inhibited VEGF165-induced neovascularization in the chick embryo chorioallantoic membrane. Undersulfated, LMW glycol-split heparins may therefore provide the basis for the design of novel nonanticoagulant angiostatic compounds.  相似文献   

13.
Neuropilin-1 (Npn-1) is a receptor for both semaphorin 3A (Sema3A) and vascular endothelial growth factor 165 (VEGF(165)). To understand the role Npn-1 plays as a receptor for these structurally and functionally unrelated ligands, we set out to identify structural features of Npn-1 that confer binding to Sema3A or VEGF(165). We constructed Npn-1 variants containing deletions within the "a" and "b" domains of Npn-1. More than 16 variants were expressed in COS-1 cells and tested for alkaline phosphatase-Sema3A as well as alkaline phosphatase-VEGF(165) binding. Our results indicate that each of the two Npn-1 CUB domains and the amino-terminal coagulation factor V/VIII domain (CF V/VIII) are essential for Sema3A binding, but only the amino-terminal Npn-1 CF V/VIII domain is required for binding to VEGF(165). Guided by the structure of the bovine spermadhesin CUB domain, point mutants targeting defined surfaces of the Npn-1 a1 CUB domain were generated and tested for Sema3A and VEGF(165) binding. One Npn-1 variant, Npn-1(2ABC), exhibits complete loss of Sema3A binding while retaining normal VEGF(165) binding. Moreover, co-immunoprecipitation experiments show that Npn-1(2ABC) can form a signaling complex with the VEGF(165) signaling receptor KDR/VEGFR-2. These results establish the identity of contact sites between Npn-1 and its semaphorin ligands, and they provide a foundation for understanding how Npn-1 functions as a receptor for distinct classes of ligands in vivo.  相似文献   

14.
Vascular endothelial growth factor (VEGF) directly stimulates endothelial cell proliferation and migration via tyrosine kinase receptors of the split kinase domain family. It mediates vascular growth and angiogenesis in the embryo but also in the adult in a variety of physiological and pathological conditions. The potential binding site of VEGF with its receptor was identified using cellulose-bound overlapping peptides of the extracytosolic part of the human vascular endothelial growth factor receptor II (VEGFR II). Thus, a peptide originating from the third globular domain of the VEGFR II comprising residues 247RTELNVGIDFNWEYP261 was revealed as contiguous sequence stretch, which bound 125I-VEGF165. A systematic replacement with L-amino acids within the peptide representing the putative VEGF-binding site on VEGFR II indicates Asp255 as the hydrophilic key residue for binding. The dimerized peptide (RTELNVGIDFNWEYPAS)2K inhibits VEGF165 binding with an IC50 of 0.5 microM on extracellular VEGFR II fragments and 30 microM on human umbilical vein cells. VEGF165-stimulated autophosphorylation of VEGFR II as well as proliferation and migration of microvascular endothelial cells was inhibited by the monomeric peptide RTELNVGIDFNWEYPASK at a half-maximal concentration of 3-10, 0.1, and 0.1 microM, respectively. We conclude that transduction of the VEGF165 signal can be interrupted with a peptide derived from the third Ig-like domain of VEGFR II by blockade of VEGF165 binding to its receptor.  相似文献   

15.
The mechanism(s) by which localized vascular permeability and angiogenesis occur at the sites of implantation is not clearly understood. Vascular endothelial growth factor (VEGF) is a key regulator of vasculogenesis during embryogenesis and angiogenesis in adult tissues. VEGF is also a vascular permeability factor. VEGF acts via two tyrosine kinase family receptors: VEGFR1 (Flt-1) and VEGFR2 (KDR/Flk-1). Recent evidence suggests that neuropilin-1 (NRP1), a receptor involved in neuronal cell guidance, is expressed in endothelial cells, binds to VEGF(165) and enhances the binding of VEGF(165) to VEGFR2. We examined the spatiotemporal expression of vegf isoforms, nrp1 and vegfr2 as well as their interactions in the periimplantation mouse uterus. We observed that vegf(164) is the predominant isoform in the mouse uterus. vegf(164) mRNA accumulation primarily occurred in epithelial cells on days 1 and 2 of pregnancy. On days 3 and 4, the subepithelial stroma in addition to epithelial cells exhibited accumulation of this mRNA. After the initial attachment reaction on day 5, luminal epithelial and stromal cells immediately surrounding the blastocyst exhibited distinct accumulation of vegf(164) mRNA. On days 6-8, the accumulation of this mRNA occurred in both mesometrial and antimesometrial decidual cells. These results suggest that VEGF(164) is available in mediating vascular changes and angiogenesis in the uterus during implantation and decidualization. This is consistent with coordinate expression of vegfr2, and nrp1, a VEGF(164)-specific receptor, in uterine endothelial cells. Their expression was low during the first 2 days of pregnancy followed by increases thereafter. With the initiation and progression of implantation (days 5-8), these genes were distinctly expressed in endothelial cells of the decidualizing stroma. Expression was more intense on days 6-8 at the mesometrial pole, the presumptive site of heightened angiogenesis and placentation. However, the expression was absent in the avascular primary decidual zone immediately surrounding the implanting embryo. Crosslinking experiments showed that (125)I-VEGF(165) binds to both NRP1 and VEGFR2 present in decidual endothelial cells. These results suggest that VEGF(164), NRP1 and VEGFR2 play a role in VEGF-induced vascular permeability and angiogenesis in the uterus required for implantation. genesis 26:213-224, 2000.  相似文献   

16.
Neuropilin-1 (NRP1) is a receptor for two unrelated ligands with disparate activities, vascular endothelial growth factor-165 (VEGF165), an angiogenesis factor, and semaphorin/collapsins, mediators of neuronal guidance. To determine whether semaphorin/collapsins could interact with NRP1 in nonneuronal cells, the effects of recombinant collapsin-1 on endothelial cells (EC) were examined. Collapsin-1 inhibited the motility of porcine aortic EC (PAEC) expressing NRP1 alone; coexpressing KDR and NRP1 (PAEC/KDR/NRP1), but not parental PAEC; or PAEC expressing KDR alone. The motility of PAEC expressing NRP1 was inhibited by 65-75% and this inhibition was abrogated by anti-NRP1 antibody. In contrast, VEGF165 stimulated the motility of PAEC/KDR/NRP1. When VEGF165 and collapsin-1 were added simultaneously to PAEC/KDR/NRP1, dorsal root ganglia (DRG), and COS-7/NRP1 cells, they competed with each other in EC motility, DRG collapse, and NRP1-binding assays, respectively, suggesting that the two ligands have overlapping NRP1 binding sites. Collapsin-1 rapidly disrupted the formation of lamellipodia and induced depolymerization of F-actin in an NRP1-dependent manner. In an in vitro angiogenesis assay, collapsin-1 inhibited the capillary sprouting of EC from rat aortic ring segments. These results suggest that collapsin-1 can inhibit EC motility as well as axon motility, that these inhibitory effects on motility are mediated by NRP1, and that VEGF165 and collapsin-1 compete for NRP1-binding sites.  相似文献   

17.
Vascular endothelial growth factor (VEGF) displays neurotrophic and neuroprotective activities, but the mechanisms underlying these effects have not been defined. Neuropilin-1 (NP-1) is a receptor for VEGF165 and placental growth factor-2 (PlGF-2), but the role of NP-1 in VEGF-dependent neurotrophic actions is unclear. Dorsal root ganglion (DRG) neurons expressed high levels of NP-1 mRNA and protein, much lower levels of KDR, and no detectable Flt-1. VEGF165 and PlGF-2 promoted DRG growth cone formation with an effect similar to that of nerve growth factor, whereas the Flt-1-specific ligand, PlGF-1, and the KDR/Flt-4 ligand, VEGF-D, had no effect. The chemorepellent NP-1 ligand, semaphorin 3A, antagonized the response to VEGF and PlGF-2. The specific KDR inhibitor, SU5614, did not affect the anti-chemorepellent effects of VEGF and PlGF-2, whereas a novel, specific antagonist of VEGF binding to NP-1, called EG3287, prevented inhibition of growth cone collapse. VEGF stimulated prostacyclin and prostaglandin E2 production in DRG cultures that was blocked by inhibitors of cyclooxygenases; the anti-chemorepellent activities of VEGF and PlGF-2 were abrogated by cyclooxygenase inhibitors, and a variety of prostacyclin analogues and prostaglandins strikingly inhibited growth cone collapse. These findings support a specific role for NP-1 in mediating neurotrophic actions of VEGF family members and also identify a novel role for prostanoids in the inhibition of neuronal chemorepulsion.  相似文献   

18.
Neuropilin-1 (NRP1) was first described as a receptor for the axon guidance molecule, Semaphorin3A, regulating the development of the nervous system. It was later shown that NRP1 is an isoform-specific receptor for vascular endothelial growth factor (VEGF), specifically VEGF(165). Much interest has been placed on the role of the various VEGF isoforms in vascular biology. Here we report that blocking NRP1 function, using a recently described antibody that inhibits VEGF(165) binding to NRP1, surprisingly reduces VEGF(121)-induced migration and sprout formation of endothelial cells. Intrigued by this observation, direct binding studies of NRP1 to various VEGF isoforms were performed. We show that VEGF(121) binds directly to NRP1; however, unlike VEGF(165), VEGF(121) is not sufficient to bridge the NRP1.VEGFR2 complex. Additionally, we show that VEGFR2 enhances VEGF(165), but not VEGF(121) binding to NRP1. We propose a new model for NRP1 interactions with various VEGF isoforms.  相似文献   

19.
In endothelial cells, neuropilin-1 (NRP1) binds vascular endothelial growth factor (VEGF)-A and is thought to act as a coreceptor for kinase insert domain-containing receptor (KDR) by associating with KDR and enhancing VEGF signaling. Here we report mutations in the NRP1 b1 domain (Y297A and D320A), which result in complete loss of VEGF binding. Overexpression of Y297A and D320A NRP1 in human umbilical vein endothelial cells reduced high-affinity VEGF binding and migration toward a VEGF gradient, and markedly inhibited VEGF-induced angiogenesis in a coculture cell model. The Y297A NRP1 mutant also disrupted complexation between NRP1 and KDR and decreased VEGF-dependent phosphorylation of focal adhesion kinase at Tyr407, but had little effect on other signaling pathways. Y297A NRP1, however, heterodimerized with wild-type NRP1 and NRP2 indicating that nonbinding NRP1 mutants can act in a dominant-negative manner through formation of NRP1 dimers with reduced binding affinity for VEGF. These findings indicate that VEGF binding to NRP1 has specific effects on endothelial cell signaling and is important for endothelial cell migration and angiogenesis mediated via complex formation between NRP1 and KDR and increased signaling to focal adhesions. Identification of key residues essential for VEGF binding and biological functions provides the basis for a rational design of antagonists of VEGF binding to NRP1.  相似文献   

20.
Previous findings suggest that both the Tat polypeptide encoded by HIV-1 and Tat-derived peptides can induce angiogenesis via activation of the KDR receptor for Vascular Endothelial Growth Factor (VEGF). We identified 20 amino acids and 12 amino acid peptides corresponding to the cysteine-rich and basic domains of HIV-1 Tat which inhibited (125)I-VEGF(165) binding to KDR and neuropilin-1 (NP-1) receptors in endothelial cells. Cysteine-rich and basic Tat peptides inhibited VEGF-induced ERK activation and mitogenesis in endothelial cells, and inhibited angiogenesis in vitro at concentrations similar to those which inhibited VEGF receptor binding. These peptides also inhibited proliferation, angiogenesis, and ERK activation induced by basic fibroblast growth factor with similar potency and efficacy. Surprisingly, we found that both cysteine-rich and basic domain Tat peptides strikingly induced apoptosis in endothelial cells, independent of their effects on VEGF and bFGF. Furthermore, we found no evidence for direct biological effects of recombinant Tat on VEGF receptor binding, ERK activation, endothelial cell survival, or mitogenesis. These findings demonstrate novel properties of Tat-derived peptides and indicate that their major effect in endothelial cells is apoptosis independent of specific inhibition of VEGF receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号