首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barrientos A 《IUBMB life》2003,55(2):83-95
The yeast Saccharomyces cerevisiae is an excellent model for gaining insights into the molecular basis of human mitochondrial disorders, particularly those resulting from impaired mitochondrial metabolism. Yeast is a very well characterized system and most of our current knowledge about mitochondrial biogenesis in humans derives from yeast genetics and biochemistry. Systematic yeast genome-wide approaches have allowed for the identification of human disease genes. In addition, the functional characterization of a large number of yeast gene products resident in mitochondria has been instrumental for the later identification and characterization of their human orthologs. Here I will review the molecular and biochemical characterization of several mitochondrial diseases that have been ascribed to mutations in genes that were first found in yeast to be necessary for the assembly of the mitochondrial respiratory chain. The usefulness of yeast as a model system for human mitochondrial disorders is evaluated.  相似文献   

2.
Defects in the oxidative phosphorylation system (OXPHOS) are responsible for a group of extremely heterogeneous and pleiotropic pathologies commonly known as mitochondrial diseases. Although many mutations have been found to be responsible for OXPHOS defects, their pathogenetic mechanisms are still poorly understood. An important contribution to investigate the in vivo function of several mitochondrial proteins and their role in mitochondrial dysfunction, has been provided by mouse models. Thanks to their genetic and physiologic similarity to humans, mouse models represent a powerful tool to investigate the impact of pathological mutations on metabolic pathways. In this review we discuss the main mouse models of mitochondrial disease developed, focusing on the ones that directly affect the OXPHOS system.  相似文献   

3.
Parkinson’s disease (PD) is a neurodegenerative disease characterized by the large-scale loss of dopaminergic neurons in the substantia nigra and the formation of protein aggregates that accumulate in the cytoplasm of the remaining dopaminergic neurons. Most cases arise sporadically, while the precise cause remains obscure. This lack of understanding as to the etiology of PD continues to serve as a major barrier for delivering effective therapeutics. Mitochondria are potent integrators and coordinators of apoptosis, necrosis and cell survival. Neurotoxin-based and genetically modified animals, which mimic aspects of the core pathologies seen in human PD, support a role for oxidative stress, production of reactive oxygen species in excess and mitochondrial dysfunction in PD pathogenesis. This and other similar discoveries provide a convergence point for an explosion of morphological, biochemical, molecular, cell and animal model studies for investigating the contribution made by mitochondrial dysfunction to PD pathology. Proteomics screening technologies have proved to be a valuable aid in the investigator’s tool bag, by which to confirm a prominent role for mitochondrial proteins in PD pathology. Here, we discuss how an improved understanding of the mitochondrial proteome through the application of high-throughput proteomics, combined with genetic studies and pharmacological manipulations to influence mitochondrial dynamics and functions, promises to give insights into PD’s underlying disease mechanisms. Ultimately, such insights may pave the way towards designing novel strategies for providing symptomatic, neuroprotective and restorative therapeutic options to PD patients.  相似文献   

4.
Genetic and epigenetic aspects of bladder cancer   总被引:2,自引:0,他引:2  
Transitional cell carcinoma of the urinary bladder has a diverse collection of biologic and functional characteristics. This is reflected in differing clinical courses. The diagnosis of bladder cancer is based on the information provided by cystoscopy, the gold standard in combination with urinary cytology findings. Many tumor markers have been evaluated for detecting and monitoring the disease in serum, bladder washes, and urinary specimens. However, none of these biomarkers reported to date has shown sufficient sensitivity and specificity for the detection of the whole spectrum of bladder cancer diseases in routine clinical practice. The limited value of established prognostic markers requires the analysis of new molecular parameters of interest in predicting the prognosis of bladder cancer patients; in particular, the high-risk patient groups at risk of progression and recurrence. Over the past decade, there has been major progress elucidating of the molecular genetic and epigenetic changes leading to the development of transitional cell carcinoma. This review focuses on the recent advances of genetic and epigenetic aspects in bladder cancer, and emphasizes how molecular biology would be likely to affect the future therapies.  相似文献   

5.
Defects of the mitochondrial genome are widely recognized as important causes of disease in man. Patients may present at any age with clinical symptoms that vary from acute episodes of lactic acidosis in infancy to severe neurodegenerative illness in adulthood. While modern molecular genetic techniques have facilitated major advances in the diagnosis and characterization of specific molecular defects, treatment for the majority of patients remains supportive in the absence of definitive biochemical therapies. As a consequence, the possibilities for mitochondrial DNA gene therapy must be considered. In this review, we will evaluate the current biochemical strategies available to clinicians for the management of patients with mitochondrial disease and examine the possible approaches to the gene therapy of mitochondrial DNA defects.  相似文献   

6.
7.
A timely review series on small heat shock proteins has to appropriately examine their fundamental properties and implications in the cardiovascular system since several members of this chaperone family exhibit robust expression in the myocardium and blood vessels. Due to energetic and metabolic demands, the cardiovascular system maintains a high mitochondrial activity but irreversible oxidative damage might ensue from increased production of reactive oxygen species. How equilibrium between their production and scavenging is achieved becomes paramount for physiological maintenance. For example, heat shock protein B1 (HSPB1) is implicated in maintaining this equilibrium or redox homeostasis by upholding the level of glutathione, a major redox mediator. Studies of gain or loss of function achieved by genetic manipulations have been highly informative for understanding the roles of those proteins. For example, genetic deficiency of several small heat shock proteins such as HSPB5 and HSPB2 is well-tolerated in heart cells whereas a single missense mutation causes human pathology. Such evidence highlights both the profound genetic redundancy observed among the multigene family of small heat shock proteins while underscoring the role proteotoxicity plays in driving disease pathogenesis. We will discuss the available data on small heat shock proteins in the cardiovascular system, redox metabolism and human diseases. From the medical perspective, we envision that such emerging knowledge of the multiple roles small heat shock proteins exert in the cardiovascular system will undoubtedly open new avenues for their identification and possible therapeutic targeting in humans. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.  相似文献   

8.
Mitochondriopathies in childhood represent rather frequent inborn errors of energy metabolism with a broad clinical and genetic spectrum mostly involving several different organs. There are few typical mitochondrial syndromes. The majority of the patients however presents a combination of suspicious but unspecific symptoms that frequently affect the CNS. Only a useful combination of clinical, biochemical, morphological and molecular genetic methods leads to a specific diagnosis. The biochemical analysis of the mitochondrial function in affected tissue (e.g. fresh muscle) plays a central role. New technologies in molecular genetics like next generation sequencing have allowed the identification of a considerable number of new disease genes and have contributed to the understanding of pathomechanisms in mitochondrial diseases. Hopefully this will also provide the basis for the development of new therapeutic approaches as therapy is still mostly symptomatic and not very successful.  相似文献   

9.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the gene encoding thymidine phosphorylase (TP). The disease is characterized clinically by impaired eye movements, gastrointestinal dysmotility, cachexia, peripheral neuropathy, myopathy, and leukoencephalopathy. Molecular genetic studies of MNGIE patients' tissues have revealed multiple deletions, depletion, and site-specific point mutations of mitochondrial DNA. TP is a cytosolic enzyme required for nucleoside homeostasis. In MNGIE, TP activity is severely reduced and consequently levels of thymidine and deoxyuridine in plasma are dramatically elevated. We have hypothesized that the increased levels of intracellular thymidine and deoxyuridine cause imbalances of mitochondrial nucleotide pools that, in turn, lead to the mtDNA abnormalities. MNGIE was the first molecularly characterized genetic disorder caused by abnormal mitochondrial nucleoside/nucleotide metabolism. Future studies are likely to reveal further insight into this expanding group of diseases.  相似文献   

10.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the gene encoding thymidine phosphorylase (TP). The disease is characterized clinically by impaired eye movements, gastrointestinal dysmotility, cachexia, peripheral neuropathy, myopathy, and leukoencephalopathy. Molecular genetic studies of MNGIE patients' tissues have revealed multiple deletions, depletion, and site‐specific point mutations of mitochondrial DNA. TP is a cytosolic enzyme required for nucleoside homeostasis. In MNGIE, TP activity is severely reduced and consequently levels of thymidine and deoxyuridine in plasma are dramatically elevated. We have hypothesized that the increased levels of intracellular thymidine and deoxyuridine cause imbalances of mitochondrial nucleotide pools that, in turn, lead to the mtDNA abnormalities. MNGIE was the first molecularly characterized genetic disorder caused by abnormal mitochondrial nucleoside/nucleotide metabolism. Future studies are likely to reveal further insight into this expanding group of diseases.  相似文献   

11.
Mitochondria damage checkpoint in apoptosis and genome stability   总被引:3,自引:0,他引:3  
  相似文献   

12.
Mutations of mitochondrial DNA (mtDNA) are frequent in humans and are implicated in many different types of pathology. The high substitution rate and the maternal, asexual mode of transmission of mtDNA make it more likely to accumulate deleterious mutations. Here, we discuss recent evidence that mtDNA transmission is subject to strong purifying selection in the mammalian female germ line, limiting the accumulation of such mutations. This process shapes mitochondrial sequence diversity and is therefore probably of fundamental importance for animal evolution and in human mitochondrial disease.  相似文献   

13.
The results of previous studies in the baboon have suggested that HPTP, the tetrahydropyridinyl analog of haloperidol causes a urinary biochemical marker profile similar to those seen in humans suffering from inborn errors of mitochondrial respiration. In order to identify a possible relationship between compromised cellular energy production and neuronal damage we now have compared the urinary profiles of rats treated with the pro-neurotoxin, MPTP as well as with HPTP. Significantly increased urinary excretion of lactic acid and 2-ethylhydracrylic acid in MPTP and HPTP treated rats was observed, indicating that both MPTP and HPTP and/or their respective metabolites cause mitochondrial inhibition in the rat.  相似文献   

14.
Mitochondrial medicine   总被引:4,自引:0,他引:4  
After reviewing the history of mitochondrial diseases, I follow a genetic classification to discuss new developments and old conundrums. In the field of mitochondrial DNA (mtDNA) mutations, I argue that we are not yet scraping the bottom of the barrel because: (i) new mtDNA mutations are still being discovered, especially in protein-coding genes; (ii) the pathogenicity of homoplasmic mutations is being revisited; (iii) some genetic dogmas are chipped but not broken; (iv) mtDNA haplotypes are gaining interest in human pathology; (v) pathogenesis is still largely enigmatic. In the field of nuclear DNA (nDNA) mutations, there has been good progress in our understanding of disorders due to faulty intergenomic communication. Of the genes responsible for multiple deletions and depletion of mtDNA, mutations in POLG have been associated with a great variety of clinical phenotypes in humans and to precocious aging in mice. Novel pathogenetic mechanisms include alterations in the lipid milieu of the inner mitochondrial membrane and mutations in genes controlling mitochondrial motility, fission, and fusion.  相似文献   

15.
Chang LK  Putcha GV  Deshmukh M  Johnson EM 《Biochimie》2002,84(2-3):223-231
Programmed cell death (PCD) contributes to development, maintenance, and pathology in various tissues, including the nervous system. Many molecular, biochemical, and genetic events occur within cells undergoing PCD. Some of these events are incompatible with long-term cell survival because they have irreversible, catastrophic consequences. The onset of such changes marks the point of no return, a decisive regulatory event termed 'the commitment-to-die.' In this review, we discuss events that underlie the commitment-to-die in nerve growth factor-deprivation-induced death of sympathetic neurons. Findings in this model system implicate the mitochondrion as an important site of regulation for the commitment-to-die in the presence or absence of caspase inhibition.  相似文献   

16.
Although much attention is paid to urinary incontinence, the condition of incomplete bladder emptying is becoming more common with the aging of the US population and the widespread use of anticholinergic drugs to treat overactive bladder. This disorder can often be silent until end-stage presentation of overflow incontinence. In this article, we review the pathophysiologic conditions of the bladder and urethra that can cause impaired bladder emptying and discuss how to evaluate and screen the patient with a bladder that does not empty. In addition, we provide an overview of treatment options available for impaired bladder emptying and consider the research that is under way to find the best therapies for the failing bladder.  相似文献   

17.

Background

The diagnosis of mitochondrial disease requires a complex synthesis of clinical, biochemical, histological, and genetic investigations. An expanding number of mitochondrial diseases are being recognized, despite their phenotypic diversity, largely due to improvements in methods to detect mutations in affected individuals and the discovery of genes contributing to mitochondrial function. Improved understanding of the investigational pitfalls and the development of new laboratory methodologies that lead to a molecular diagnosis have necessitated the field to rapidly adopt changes to its diagnostic approach.

Scope of review

We review the clinical, investigational and genetic challenges that have resulted in shifts to the way we define and diagnose mitochondrial disease. Incorporation of changes, including the use of fibroblast growth factor 21 (FGF-21) and next generation sequencing techniques, may allow affected patients access to earlier molecular diagnosis and management.

Major conclusions

There have been important shifts in the diagnostic paradigm for mitochondrial disease. Diagnosis of mitochondrial disease is no longer reliant on muscle biopsy alone, but should include clinical assessment accompanied by the use of serological biomarkers and genetic analysis. Because affected patients will be defined on a molecular basis, oligosymptomatic mutation carriers should be included in the spectrum of mitochondrial disease. Use of new techniques such as the measurement of serum FGF-21 levels and next-generation-sequencing protocols should simplify the diagnosis of mitochondrial disease.

General significance

Improvements in the diagnostic pathway for mitochondrial disease will result in earlier, cheaper and more accurate methods to identify patients with mitochondrial disease. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.  相似文献   

18.
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases. The development of pathology is associated with the loss of dopaminergic neurons, mainly in substantia nigra pars compacta. Dopamine deficiency causes a whole range of severe motor symptoms, including bradykinesia, postural instability, muscle rigidity, and tremor. Studies have shown the primary role of the alpha-synuclein protein in this neurodegenerative disease. A large amount of data indicates different mechanisms of the toxic effect of alpha-synuclein. The process of neurodegeneration in PD is the result of significant disturbances in mitochondrial functions and/or genetic mutations. The number of mutated genes in hereditary and sporadic forms of Parkinson’s disease includes genes encoding PINK1 and Parkin, which are the main participants in the mitochondrial “quality control” system. The earliest biochemical hallmarks of the disease are disturbances of the mitochondrial interaction with endoplasmic reticulum, mitochondrial dynamics, Ca2+ homeostasis, and an increase in the level of mitochondrial reactive oxygen species. All these factors exert damaging effects on dopaminergic neurons.  相似文献   

19.
In recent years, mouse models for human metabolic diseases have become commonplace because the information gained from in vivo study of biochemical pathways is invaluable, and many metabolic diseases are relatively easy to recreate in mice through gene knockout technology in embryonic stem cells. In certain cases, however, the knockout mice may reproduce only some of the human disease phenotype, may be more severely affected than human cases, or may have no clinical phenotype at all. Under these circumstances, the disease pathology can become more complex, causing the researcher to evaluate basic differences in mouse and human biology as well as questions of genetic background, alternate pathways, and possible gene interactions. This review is a brief analysis of gene knockout models for Lesch-Nyhan syndrome, Lowe syndrome, X-linked adrenoleukodystrophy, Fabry disease, galactosemia, glycogen storage disease type II, metachromatic leukodystrophy, and Tay-Sachs disease, which produce a biochemical model of disease but often do not reproduce clinical symptoms. These mice may be useful for studying the biochemical and physiological pathways in which certain metabolites function toward embryonic and fetal development, as well as specific functions in various organs, and they may provide an inexpensive and useful model system for development of new therapeutic techniques.  相似文献   

20.
Increased arterial stiffness and blood pressure are characteristic of humans and adult mice with reduced elastin levels caused by aging or genetic disease. Direct associations have been shown between increased arterial stiffness and hypertension in humans, but it is not known whether changes in mechanical properties or increased blood pressure occur first. Using genetically modified mice with elastin haploinsufficiency (Eln(+/-)), we investigated the temporal relationship between arterial mechanical properties and blood pressure throughout postnatal development. Our results show that some mechanical properties are maintained constant regardless of elastin amounts. The peak diameter compliance for both genotypes occurs near the physiologic pressure at each age, which acts to provide maximum pulse dampening. The stress-strain relationships are similar between genotypes and become nonlinear near the systolic pressure for each age, which serves to limit distension under high pressure. Our results also show that some mechanical properties are affected by reduced elastin levels and that these changes occur before measurable changes in blood pressure. Eln(+/-) mice have decreased aortic diameter and compliance in ex vivo tests that are significant by postnatal day 7 and increased blood pressure that is not significant until postnatal day 14. This temporal relationship suggests that targeting large arteries to increase diameter or compliance may be an effective treatment for human hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号