首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetate and hydrogen metabolism by sulfate reducers and methanogens in the profundal sediments of an oligotrophic lake were examined. Inhibition of sulfate reduction with molybdate stimulated methane production from both hydrogen and acetate. Molybdate did not stimulate methane production in sediments that were preincubated to deplete the sulfate pool. Sulfate reduction accounted for 30 to 81% of the total of terminal metabolism proceeding through sulfate reduction and methane production in Eckman grab samples of surface sediments. The ability of sulfate reducers to effectively compete with methanogens for acetate was related to the sulfate reducers' lower half-saturation constant for acetate metabolism at in situ sulfate concentrations. Processes other than sulfate reduction and methanogenesis consumed hydrogen at elevated hydrogen partial pressures and prevented a kinetic analysis of hydrogen uptake by sulfate reducers and methanogens. The demonstration that sulfate reducers can successfully compete with methanogens for hydrogen and acetate in sediments at in situ sulfate concentrations of 60 to 105 μM extends the known range of sediment habitats in which sulfate reduction can be a dominant terminal process.  相似文献   

2.
Mechanisms for inhibition of sulfate reduction and methane production in the zone of Fe(III) reduction in sediments were investigated. Addition of amorphic iron(III) oxyhydroxide to sediments in which sulfate reduction was the predominant terminal electron-accepting process inhibited sulfate reduction 86 to 100%. The decrease in electron flow to sulfate reduction was accompanied by a corresponding increase in electron flow to Fe(III) reduction. In a similar manner, Fe(III) additions also inhibited methane production in sulfate-depleted sediments. The inhibition of sulfate reduction and methane production was the result of substrate limitation, because the sediments retained the potential for sulfate reduction and methane production in the presence of excess hydrogen and acetate. Sediments in which Fe(III) reduction was the predominant terminal electron-accepting process had much lower concentrations of hydrogen and acetate than sediments in which sulfate reduction or methane production was the predominant terminal process. The low concentrations of hydrogen and acetate in the Fe(III)-reducing sediments were the result of metabolism by Fe(III)-reducing organisms of hydrogen and acetate at concentrations lower than sulfate reducers or methanogens could metabolize them. The results indicate that when Fe(III) is in a form that Fe(III)-reducing organisms can readily reduce, Fe(III)-reducing organisms can inhibit sulfate reduction and methane production by outcompeting sulfate reducers and methanogens for electron donors.  相似文献   

3.
The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 micromol of DMS was stoichiometrically converted into 112 micromol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.  相似文献   

4.
The roles of several trophic groups of organisms (methanogens and sulfate- and nitrate-reducing bacteria) in the microbial degradation of methanethiol (MT) and dimethyl sulfide (DMS) were studied in freshwater sediments. The incubation of DMS- and MT-amended slurries revealed that methanogens are the dominant DMS and MT utilizers in sulfate-poor freshwater systems. In sediment slurries, which were depleted of sulfate, 75 μmol of DMS was stoichiometrically converted into 112 μmol of methane. The addition of methanol or MT to DMS-degrading slurries at concentrations similar to that of DMS reduced DMS degradation rates. This indicates that the methanogens in freshwater sediments, which degrade DMS, are also consumers of methanol and MT. To verify whether a competition between sulfate-reducing and methanogenic bacteria for DMS or MT takes place in sulfate-rich freshwater systems, the effects of sulfate and inhibitors, like bromoethanesulfonic acid, molybdate, and tungstate, on the degradation of MT and DMS were studied. The results for these sulfate-rich and sulfate-amended slurry incubations clearly demonstrated that besides methanogens, sulfate-reducing bacteria take part in MT and DMS degradation in freshwater sediments, provided that sulfate is available. The possible involvement of an interspecies hydrogen transfer in these processes is discussed. In general, our study provides evidence for methanogenesis as a major sink for MT and DMS in freshwater sediments.  相似文献   

5.
Everglades sediments (wetland soils) near sources of agricultural runoff had low redox potentials, were blackened with sulfide, and displayed high porewater phosphorus (total) concentrations and high water column conductivities. These sediments yielded 10(sup3)- to 10(sup4)-fold-higher numbers of culturable anaerobes, including methanogens, sulfate reducers, and acetate producers, than did sediments from Everglades and Lake Okeechobee comparative control sites not as directly associated with agricultural runoff. These observations demonstrated that there was a general, rather than specific, enhancement of the anaerobic microflora in the sediments most likely influenced by agricultural runoff. Despite these differences in microfloral patterns, methylmercury and total mercury levels were similar among these contrasting sediments. Although available sulfate and phosphorus appeared to stimulate the productivity of sulfate reducers in Everglades sediments, the number of culturable sulfate reducers did not directly correspond to the concentration of sulfate and phosphorus in porewaters. Microcosms supplemented with sulfate, nitrate, and phosphate altered the initial capacities of the sediment microflora to produce acetate and methane from endogenous matter. For sediments nearest sources of agricultural runoff, phosphorus temporarily enhanced acetate formation and initially suppressed methane production, sulfate enhanced acetate formation but did not significantly alter the production of methane, and nitrate totally suppressed the initial production of both methane and acetate. In regards to the latter, microbes capable of dissimilating nitrate to ammonium were present in greater culturable numbers than denitrifiers. In microcosms, acetate was a major source of methane, and supplemental hydrogen was directed towards the synthesis of acetate via CO(inf2)-dependent acetogenesis. These findings demonstrate that Everglades sediments nearest agricultural runoff have enhanced anaerobic microbial profiles and that the anaerobic microflora are poised to respond rapidly to phosphate, sulfate, and nitrate input.  相似文献   

6.
The response of methanogenesis and sulfate reduction to trimethylamine, choline, and glycine betaine was examined in surface sediments from the intertidal region of Lowes Cove, Maine. Addition of these substrates markedly stimulated methanogenesis in the presence of active sulfate reduction, whereas addition of other substrates, including glucose, acetate, and glycine, had no effect on methane production. Sulfate reduction was stimulated simultaneously with methanogenesis by the various quaternary amines and all other substrates examined. Incubation of exogenous trimethylamine, choline, or glycine betaine with either bromoethane sulfonic acid or sodium molybdate was used to establish pathways of degradation of the substrates. Methanogenesis dominated the metabolism of trimethylamine, although limited nonmethanogenic activity, perhaps by sulfate-reducing bacteria, was observed. Acetate was oxidized primarily by sulfate reducers. Both choline and glycine betaine were fermented stoichiometrically to acetate and trimethylamine; apparently, neither substrate could be utilized directly by methanogens or sulfate reducers, and the activities of fermenters, methanogens, and sulfate reducers were all required to effect complete mineralization. These observations support the hypothesis that the presence of quaternary amines can mediate the coexistence of sulfate reduction and methanogenesis in marine surface sediments; they also implicate methanogens in the nitrogen cycle of marine sediments containing quaternary amines.  相似文献   

7.
Thermophilic (55 degrees C) sulfate reduction in a gas lift reactor fed with CO gas as the sole electron donor was investigated. The reactor was inoculated with mesophilic granular sludge with a high activity of CO conversion to hydrogen and carbon dioxide at 55 degrees C. Strong competition for H(2) was observed between methanogens and sulfate reducers, while the homoacetogens present consumed only small amounts of H(2). The methanogens appeared to be more sensitive to pH and temperature shocks imposed to the reactor, but could not be completely eliminated. The fast growth rates of the methanogens (generation time of 4.5 h) enabled them to recover fast from shocks, and they rapidly consumed more than 90% of the CO-derived H(2). Nevertheless, steep increases in sulfide production in periods with low methane production suggests that once methanogenesis is eliminated, sulfate reduction with CO-rich gas as electron donor has great potential for thermophilic biodesulfurization.  相似文献   

8.
14C-tracer techniques were used to examine the metabolism of methanol and methylamines and acetogenesis from hydrogen and carbon dioxide in sediments from the profundal and littoral zones of eutrophic Wintergreen Lake, Michigan. Methanogens were primarily responsible for the metabolism of methanol, monomethylamine, and trimethylamine and maintained the pool size of these substrates below 10 μM in both sediment types. Methanol and methylamines were the precursors for less than 5 and 1%, respectively, of the total methane produced. Methanol and methylamines continued to be metabolized to methane when the sulfate concentration in the sediment was increased to 20 mM. Less than 2% of the total acetate production was derived from carbon dioxide reduction. Hydrogen consumption by hydrogen-oxidizing acetogens was 5% or less of the total hydrogen uptake by acetogens and methanogens. These results, in conjunction with previous studies, emphasize that acetate and hydrogen are the major methane precursors and that methanogens are the predominant hydrogen consumers in the sediments of this eutrophic lake.  相似文献   

9.
In anoxic marine sediments fatty acids may be oxidized directly by sulfate reducing bacteria, or may be oxidized by pathways which result in hydrogen production. Some of these latter reactions are quite sensitive to hydrogen concentrations ... in other words if hydrogen concentrations become elevated, fatty acid oxidation will cease. Thus sulfate reducers may actually play two important roles in the metabolism of fatty acids in marine sediments. The sulfate reducers both can utilize fatty acids directly, and also can oxidize hydrogen and thus control hydrogen partial pressures in the sediments. Therefore sulfate reducers may act indirectly to facilitate fatty acid oxidation by hydrogen-producing pathways. We carried out a series of incubations of slurried salt marsh sediment under high and low hydrogen partial pressures and in the presence and absence of molybdate to investigate the relative importance of sulfate reducers and other bacteria mediating hydrogen-sensitive reactions. Our results suggest that both classes of bacteria contribute significantly to fatty acid turnover in marine sediments. Studies of low molecular weight fatty acid turnover in sediment must explicitly recognize that manipulation of sediment (including addition of molydbate to inhibit sulfate reducers) may have a large impact on hydrogen partial pressures in sediment, and may thus significantly alter the pathways and/or rates of fatty acid turnover.  相似文献   

10.
Reductive dehalogenation of polychlorinated biphenyls (PCBs) by indigenous dehalorespiring microorganisms in contaminated sediments may be enhanced via biostimulation by supplying hydrogen generated through the anaerobic corrosion of elemental iron added to the sediment. In this study, the effect of periodic amendment of sediment with various dosages of iron on the microbial community present in sediment was investigated using phospholipid fatty acid analysis (PLFA) over a period of 18 months. Three PCB-contaminated sediments (two freshwater lake sediments and one marine sediment) were used. Signature biomarker analysis of the microbial community present in all three sediments revealed the enrichment of Dehalococcoides species, the population of which was sustained for a longer period of time when the sediment microcosms were amended with the lower dosage of iron (0.01 g iron per g dry sediment) every 6 months as compared to the blank system (without iron). Lower microbial stress levels were reported for the system periodically amended with 0.01 g of iron per g dry sediment every 6 months, thus reducing the competition from other hydrogen-utilizing microorganisms like methanogens, iron reducers, and sulfate reducers. The concentration of hydrogen in the system was found to be an important factor influencing the shift in microbial communities in all sediments with time. Periodic amendment of sediment with larger dosages of iron every 3 months resulted in the early prevalence of Geobacteraceae and sulfate-reducing bacteria followed by methanogens. An average pH of 8.4 (range of 8.2–8.6) and an average hydrogen concentration of 0.75% (range of 0.3–1.2%) observed between 6 and 15 months of the study were found to be conducive to sustaining the population of Dehalococcoides species in the three sediments amended with 0.01 g iron per g dry sediment. Biostimulation of indigenous PCB dechlorinators by the periodic amendment of contaminated sediments with low dosages of iron metal may therefore be an effective technology for remediation of PCB-contaminated sediments.  相似文献   

11.
The effect of variations in H2 concentrations on methanogenesis from the non-competitive substrates methanol and methylamine (used by methanogens but not by sulfate reducers) was investigated in methanogenic marine sediments. Imposed variations in sulfate concentration and temperature were used to drive systematic variations in pore water H2 concentrations. Specifically, increasing sulfate concentrations and decreasing temperatures both resulted in decreasing H2 concentrations. The ratio of CO2 and CH4 produced from 14C-labelled methylamine and methanol showed a direct correlation with the H2 concentration, independent of the treatment, with lower H2 concentrations resulting in a shift towards CO2. We conclude that this correlation is driven by production of H2 by methylotrophic methanogens, followed by loss to the environment with a magnitude dependent on the extracellular H2 concentrations maintained by hydrogenotrophic methanogens (in the case of the temperature experiment) or sulfate reducers (in the case of the sulfate experiment). Under sulfate-free conditions, the loss of reducing power as H2 flux out of the cell represents a loss of energy for the methylotrophic methanogens while, in the presence of sulfate, it results in a favourable free energy yield. Thus, hydrogen leakage might conceivably be beneficial for methanogens in marine sediments dominated by sulfate reduction. In low-sulfate systems such as methanogenic marine or freshwater sediments it is clearly detrimental--an adverse consequence of possessing a hydrogenase that is subject to externally imposed control by pore water H2 concentrations. H2 leakage in methanogens may explain the apparent exclusion of acetoclastic methanogenesis in sediments dominated by sulfate reduction.  相似文献   

12.
The anaerobic pathway of chitin decomposition by chitinoclastic bacteria was examined with an emphasis on end product coupling to other salt marsh bacteria. Actively growing chitinoclastic bacterial isolates produced primarily acetate, H2, and CO2 in broth culture. No sulfate-reducing or methanogenic isolates grew on chitin as sole carbon source or produced any measurable degradation products. Mixed cultures of chitin degraders with sulfate reducers resulted in positive sulfide production. Mixed cultures of chitin-degrading isolates with methanogens resulted in the production of CH4 with reductions in headspace CO2 and H2. The combination of all three metabolic types resulted in the simultaneous production of methane and sulfide, with more methane being produced in mixed cultures containing CO2-reducing methanogens and acetoclastic sulfate reducers because of less interspecific H2 competition.  相似文献   

13.
The distribution of methanogenic and sulfate-reducing bacteria was examined in sediments from three sites off the coast of eastern Connecticut and five sites in Long Island Sound. Both bacterial groups were detected at all sites. Three distributional patterns were observed: (i) four sites exhibited methanogenic and sulfate-reducing populations which were restricted to the upper 10 to 20 cm, with a predominance of sulfate reducers; (ii) three sites in western Long Island Sound exhibited a methanogenic population most abundant in sediments deeper than those occupied by sulfate reducers; (iii) at one site that was influenced by fresh groundwater, methanogens and sulfate reducers were numerous within the same depths; however, the number of sulfate reducers varied vertically and temporally with sulfate concentrations. It was concluded that the distributions of abundant methanogenic and sulfate-reducing bacteria were mutually exclusive. Methanogenic enrichments yielded all genera of methanogens except Methanosarcina, with the methanobacteria predominating.  相似文献   

14.
Sulfate reduction in methanogenic bioreactors   总被引:9,自引:0,他引:9  
Abstract: In the anaerobic treatment of sulfate-containing wastewater, sulfate reduction interferes with methanogenesis. Both mutualistic and competitive interactions between sulfate-reducing bacteria and methanogenic bacteria have been observed. Sulfate reducers will compete with methanogens for the common substrates hydrogen, formate and acetate. In general, sulfate reducers have better growth kinetic properties than methanogens, but additional factors which may be of importance in the competition are adherence properties, mixed substrate utilization, affinity for sulfate of sulfate reducers, relative numbers of bacteria, and reactor conditions such as pH, temperature and sulfide concentration. Sulfate reducers also compete with syntrophic methanogenic consortia involved in the degradation of substrates like propionate and butyrate. In the absence of sulfate these methanogenic consortia are very important, but in the presence of sulfate they are thought to be easily outcompeted by sulfate reducers. However, at relatively low sulfate concentrations, syntrophic degradation of propionate and butyrate coupled to HZ removal via sulfate reduction rather than via methanogenesis may become important. A remarkable feature of some sulfate reducers is their ability to grow fermentatively or to grow in syntrophic association with methanogens in the absence of sulfate.  相似文献   

15.
The relative importance of methanogenesis and sulfate reduction in freshwater sediment supplemented with acetate was investigated. Addition of acetate stimulated both methane formation and sulfate reduction, indicating that an active aceticlastic population of methanogens and sulfate reducers was present in the sediment. Sulfate reducers were most important in the consumption of acetate. However, when sulfate reducers were inhibited, acetate was metabolised at a similar rate by methanogens. Acetate, propionate and valerate accumulated only when both processes were inhibited by the combined addition of 2-bromo-ethane sulfonate and molybdate. The relative amounts of acetate, propionate and valerate were 93, 6 and 1 mol%, respectively. These results demonstrate the role of acetate as a key intermediate in the terminal step of organic matter mineralisation in the sediment. Addition of chloroform inhibited both methanogenesis and sulfate reduction. We studied the inhibitory effect of CHCl(3) on homoacetogenic bacteria, sulfate-reducing bacteria and methanogens. The results showed that inhibition by CHCl(3) correlates with microorganisms, which operate the acetyl-CoA cleavage pathway. We propose that chloroform can be used to elucidate the role of different metabolic types of sulfate reducers to sulfate reduction in natural environments.  相似文献   

16.
Inhibition Experiments on Anaerobic Methane Oxidation   总被引:10,自引:5,他引:5       下载免费PDF全文
Anaerobic methane oxidation is a general process important in controlling fluxes of methane from anoxic marine sediments. The responsible organism has not been isolated, and little is known about the electron acceptors and substrates involved in the process. Laboratory evidence indicates that sulfate reducers and methanogens are able to oxidize small quantities of methane. Field evidence suggests anaerobic methane oxidation may be linked to sulfate reduction. Experiments with specific inhibitors for sulfate reduction (molybdate), methanogenesis (2-bromoethanesulfonic acid), and acetate utilization (fluoroacetate) were performed on marine sediments from the zone of methane oxidation to determine whether sulfate-reducing bacteria or methanogenic bacteria are responsible for methane oxidation. The inhibition experiment results suggest that methane oxidation in anoxic marine sediments is not directly mediated by sulfate-reducing bacteria or methanogenic bacteria. Our results are consistent with two possibilities: anaerobic methane oxidation may be mediated by an unknown organism or a consortium involving an unknown methane oxidizer and sulfate-reducing bacteria.  相似文献   

17.
The carbon and electron flow pathways and the bacterial populations responsible for the transformation of H2-CO2, formate, methanol, methylamine, acetate, ethanol, and lactate were examined in eutrophic sediments collected during summer stratification and fall turnover. The rate of methane formation averaged 1,130 μmol of CH4 per liter of sediment per day during late-summer stratification versus 433 μmol of CH4 per liter of sediment per day during the early portion of fall turnover, whereas the rate of sulfate reduction was 280 μmol of sulfate per liter of sediment per day versus 1,840 μmol of sulfate per liter of sediment per day during the same time periods, respectively. The sulfate-reducing population remained constant while the methanogenic population decreased by one to two orders of magnitude during turnover. The acetate concentration increased from 32 to 81 μmol per liter of sediment while the acetate transformation rate constant decreased from 3.22 to 0.70 per h, respectively, during stratification versus turnover. Acetate accounted for nearly 100% of total sedimentary methanogenesis during turnover versus 70% during stratification. The fraction of 14CO2 produced from all 14C-labeled substrates examined was 10 to 40% higher during fall turnover than during stratification. The addition of sulfate, thiosulfate, or sulfur to stratified sediments mimicked fall turnover in that more CO2 and CH4 were produced. The addition of Desulfovibrio vulgaris to sulfate-amended sediments greatly enhanced the amount of CO2 produced from either [14C]methanol or [2-14C]acetate, suggesting that H2 consumption by sulfate reducers can alter methanol or acetate transformation by sedimentary methanogens. These data imply that turnover dynamically altered carbon transformation in eutrophic sediments such that sulfate reduction dominated over methanogenesis principally as a consequence of altering hydrogen metabolism.  相似文献   

18.
J. Kim  G. Rhee 《Applied microbiology》1997,63(5):1771-1776
The growth dynamics of polychlorinated biphenyl (PCB)-dechlorinating microorganisms were determined for the first time, along with those of sulfate reducers and methanogens, by using the most-probable-number technique. The time course of Aroclor 1248 dechlorination mirrored the growth of dechlorinators; dechlorination ensued when the dechlorinating population increased by 2 orders of magnitude from 2.5 x 10(sup5) to 4.6 x 10(sup7) cells g of sediment(sup-1), at a specific growth rate of 6.7 day(sup-1) between 2 and 6 weeks. During this period, PCB-dechlorinating microorganisms dechlorinated Aroclor 1248 at a rate of 3.9 x 10(sup-8) mol of Cl g of sediment(sup-1) day(sup-1), reducing the average number of Cl molecules per biphenyl from 3.9 to 2.8. The growth yield was 4.2 x 10(sup13) cells mol of Cl dechlorinated(sup-1). Once dechlorination reached a plateau, after 6 weeks, the number of dechlorinators began to decrease. On the other hand, dechlorinators inoculated into PCB-free sediments decreased over time from their initial level, suggesting that PCBs are required for their selective enrichment. The numbers of sulfate reducers and methanogens increased in both PCB-free and contaminated sediments, showing little difference between them. The maximum population size of sulfate reducers was about an order of magnitude higher than that of dechlorinators, whereas that of methanogens was slightly less. Unlike those of dechlorinators, however, numbers of both sulfate reducers and methanogens remained high even when dechlorination ceased. The results of this study imply that PCB concentrations may have to exceed a certain threshold to maintain the growth of PCB dechlorinators.  相似文献   

19.
Addition of dimethylsulfide (DMS), dimethyldisulfide (DMDS), or methane thiol (MSH) to a diversity of anoxic aquatic sediments (e.g., fresh water, estuarine, alkaline/hypersaline) stimulated methane production. The yield of methane recovered from DMS was often 52 to 63%, although high concentrations of DMS (as well as MSH and DMDS) inhibited methanogenesis in some types of sediments. Production of methane from these reduced methylated sulfur compounds was blocked by 2-bromoethanesulfonic acid. Sulfate did not influence the metabolism of millimolar levels of DMS, DMDS, or MSH added to sediments. However, when DMS was added at approximately 2-muM levels as [C]DMS, metabolism by sediments resulted in a CH(4)/CO(2) ratio of only 0.06. Addition of molybdate increased the ratio to 1.8, while 2-bromoethanesulfonic acid decreased it to 0, but did not block CO(2) production. These results indicate the methanogens and sulfate reducers compete for DMS when it is present at low concentrations; however, at high concentrations, DMS is a "noncompetitive" substrate for methanogens. Metabolism of DMS by sediments resulted in the appearance of MSH as a transient intermediate. A pure culture of an obligately methylotrophic estuarine methanogen was isolated which was capable of growth on DMS. Metabolism of DMS by the culture also resulted in the transient appearance of MSH, but the organism could grow on neither MSH nor DMDS. The culture metabolized [C]-DMS to yield a CH(4)/CO(2) ratio of approximately 2.8. Reduced methylated sulfur compounds represent a new class of substrates for methanogens and may be potential precursors of methane in a variety of aquatic habitats.  相似文献   

20.
The reductive dechlorination of pentachloroaniline (PCA) was investigated in the absence and presence of sulfate in batch assays using a PCA-dechlorinating mixed anaerobic culture with methanol as the external electron donor at neutral pH and 22°C. PCA at an initial concentration of 7.8 μM was sequentially dechlorinated to dichlorinated anilines in the sulfate-free culture and the culture amended with 300 mg sulfate-S/L. At an initial concentration of 890 mg sulfate-S/L, a higher sulfate reduction rate was achieved, but PCA dechlorination was not observed until the sulfate concentration dropped to about 100 mg S/L. The transient inhibition of PCA is attributed to competition between sulfate reducing and dechlorinating species for electron donor, more likely for H2 resulting from methanol fermentation. A long-term (118 days) PCA dechlorination assay with the sulfate-amended culture, which included five feeding cycles, resulted in accumulation of both sulfide (886 mg S/L) and acetate (1,900 mg COD/L). Under these conditions, the sulfate reducers were inhibited, while the rate and pathway of PCA dechlorination were not affected. The results of this study show that the rate of sulfate reduction rather than the sulfate concentration alone dictates the outcome of the competition between sulfate reducers and either dechlorinators or methanogens. The findings of the present study have significant implications relative to the fate and transport of PCA and its dechlorination products in sulfate-laden subsurface systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号