首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of opioid peptide ligands containing modified N-terminal tyrosine (Tyr) residues was prepared and evaluated against cloned human mu, delta, and kappa opioid receptors. This work extends the recent discovery that (S)-4-carboxamidophenylalanine (Cpa) is an effective tyrosine bioisostere. Amino acids containing negatively charged functional groups in place of tyrosine's phenolic hydroxyl lacked receptor affinity, while exchange of Tyr for (S)-4-aminophenylalanine was modestly successful. Peptides containing the new amino acids, (S)-4-carboxamido-2,6-dimethylphenylalanine (Cdp) and (S)-beta-(2-aminobenzo[d]thiazol-6-yl)alanine (Aba), displayed binding (K(i)) and functional (EC(50)) profiles comparable to the parent ligands at the three receptors. Cdp represents the best performing Tyr surrogate in terms of overall activity, while Cpa and Aba show a subtle proclivity toward the delta receptor.  相似文献   

2.
Wang YC  Wu YC  Yeh CC  Hwang CC 《Biopolymers》2007,86(3):231-239
Motivated by recent experimental work on Leu-Enkephalin modification with (4-Carboxamido)phenylalanine (Cpa), we perform MD simulations to study the structure-activity relationships of the [Cpa(1), Leu(5)]-enkephalin (Cpa-LE) for better understandings of the binding affinity in delta-selective opioid ligands. Recently, Tyr(1) substituted into Cpa(1) form was experimentally found to be the first example of an amino acid that acts as a surrogate for Tyr(1) in opioid peptide ligands, which challenges a long-standing belief that a phenolic residue is required for high affinity binding. Our simulations show the Cpa-LE structure in aqueous solution revealed that the occurrence of single-bend packed state can be stabilized by an intramolecular hydrogen bond from Leu(5)-NH to Gly(2)-CO (5-->2). In addition, an intramolecular sidechain to backbone hydrogen bond, i.e., hydrogen bond binding between the sidechain carbonyl CO group of the Cpa residue and backbone amide NH group of the Phe residue was examined. Furthermore, the hydration effects of carboxamido group (CONH(2)) for Cpa residue and 5-->2 hydrogen bond were calculated via the solute-solvent radial distribution functions g(alpha-beta) (r), providing direct evidence of strong hydrogen bond interactions. Our simulation results further reveal the chi(1) rotamers of the Cpa(1) and Phe(4) that show preferences for trans and gauche (-), respectively. Finally, we elucidate the probability distributions of two aromatic rings among the Cpa-LE, Leu-enkephalin, and delta pharmacophore model. The results show that modified the Tyr(1) to Cpa(1) can lead to increase the potency and selectivity for delta-opioid receptor (DOR), consistent with experimental findings.  相似文献   

3.
The bivalent ligand approach, which assumes that two pharmacophores are connected by a spacer, was used to design receptor type-selective ligands for opioid receptors. The first two opioid peptide bivalent ligands with different spacer lengths containing different numbers of hydroxyl groups, (Tyr-D-Ala-Gly-Phe-NH-CH2-CHOH-)2 (Tyr-D-Ala-Gly-Phe-NH-CH2-CHOH-CHOH-)2, were synthesized and their binding to mu, delta, and kappa opioid receptors was characterized. Both analogues were found to possess high opioid in vitro activities. The length of the hydrophilic spacer does not affect the affinity for delta receptors, whereas shorter spacer length increases affinity for mu and even more so for kappa receptors. Thus receptor type-selective peptides for opioid receptors can be designed using the bivalent approach.  相似文献   

4.
Three-dimensional structures of the transmembrane, seven alpha-helical domains and extracellular loops of delta, mu, and kappa opioid receptors, were calculated using the distance geometry algorithm, with hydrogen bonding constraints based on the previously developed general model of the transmembrane alpha-bundle for rhodopsin-like G-protein coupled receptors (Biophys. J. 1997. 70:1963). Each calculated opioid receptor structure has an extensive network of interhelical hydrogen bonds and a ligand-binding crevice that is partially covered by a beta-hairpin formed by the second extracellular loop. The binding cavities consist of an inner "conserved region" composed of 18 residues that are identical in delta, mu, and kappa opioid receptors, and a peripheral "variable region," composed of 19 residues that are different in delta, mu, and kappa subtypes and are responsible for the subtype specificity of various ligands. Sixteen delta-, mu-, or kappa-selective, conformationally constrained peptide and nonpeptide opioid agonists and antagonists and affinity labels were fit into the binding pockets of the opioid receptors. All ligands considered have a similar spatial arrangement in the receptors, with the tyramine moiety of alkaloids or Tyr1 of opioid peptides interacting with conserved residues in the bottom of the pocket and the tyramine N+ and OH groups forming ionic interactions or H-bonds with a conserved aspartate from helix III and a conserved histidine from helix VI, respectively. The central, conformationally constrained fragments of the opioids (the disulfide-bridged cycles of the peptides and various ring structures in the nonpeptide ligands) are oriented approximately perpendicular to the tyramine and directed toward the extracellular surface. The results obtained are qualitatively consistent with ligand affinities, cross-linking studies, and mutagenesis data.  相似文献   

5.
Aldrich JV  Zheng QI  Murray TF 《Chirality》2001,13(3):125-129
Analogs of the opioid peptide [D-Ala8]dynorphin A-(1-11)NH2 containing optically pure (R)- and (S)-2-aminotetralin-2-carboxylic acid (Atc) in position 4 were synthesized and evaluated for opioid receptor affinity. These peptides are the first reported dynorphin A analogs containing a conformationally constrained amino acid in place of the important aromatic residue Phe4. By incorporating resolved Atc isomers, the opioid receptor affinity and the stereochemistry of the constrained residue could be unambiguously correlated. Both Dyn A analogs containing Atc in position 4 retained nanomolar affinity for kappa and mu opioid receptors. Unexpectedly the peptide containing (R)-Atc, corresponding to a conformationally constrained D-Phe analog, displaying higher affinity for both kappa and mu receptors than the peptide containing (S)-Atc. In contrast [D-Phe4,D-Ala8]Dyn A-(1-11)NH2 exhibited significantly lower affinity for kappa and mu receptors than the parent peptide, as expected. Conformational restriction of the Phe4 sidechain or incorporation of D-Phe in position 4 had the largest effect on delta receptor affinity, yielding compounds with negligible affinity for these receptors. Thus, there appear to be distinctly different structural requirements for this residue for kappa vs. delta receptors, and it is possible to completely distinguish between these two receptors by changing a single residue in Dyn A.  相似文献   

6.
The previously described cyclic mu opioid receptor-selective tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]NH2 (Et) (JOM-6) was modified at residues 1 and 3 by substitution with various natural and synthetic amino acids, and/or by alteration of the cyclic system. Effects on mu and delta opioid receptor binding affinities, and on potencies and efficacies as measured by the [35S]-GTPgammaS assay, were evaluated. Affinities at mu and delta receptors were not influenced dramatically by substitution of Tyr1 with conformationally restricted phenolic amino acids. In the [35S]-GTPgammaS assay, all of the peptides tested exhibited a maximal response comparable with that of fentanyl at the mu opioid receptor, and all showed high potency, in the range 0.4-9nM. However, potency changes did not always correlate with affinity, suggesting that the conformation required for binding and the conformation required for activation of the opioid receptors are different. At the delta opioid receptor, none of the peptides were able to produce a response equivalent to that of the full delta agonist BW 373,U86 and only one had an EC50 value of less than 100nM. Lastly, we have identified a peptide, D-Hat-c[D-Cys-Phe-D-Pen]NH2 (Et), with high potency and > 1,000-fold functional selectivity for the mu over delta opioid receptor as measured by the [35S]-GTPgammaS assay.  相似文献   

7.
[Gly(4)]deltorphin (Tyr-D-Ala-Phe-Gly-Val-Val-Gly-NH(2)) is a nonselective analogue of the opioid heptapeptides isolated from Phyllomedusa amphibian skin. Its nonselective nature allows for simultaneous characterization of the effects of sequence modification on both delta (delta) and mu (mu) receptor binding. The N-terminal regions of opioid peptides are considered to be responsible for receptor recognition, and the tyrosine at position one is relatively intolerant to alteration. In order to further investigate the role of the phenolic hydroxyl group in receptor interaction, a series of peptides was synthesized in which the position-one tyrosine residue was replaced with analogues of varying electronic, steric, and acid/base character, including ring-substituted tyrosines, para-substituted phenylalanines, and other nonaromatic and heterocyclic amino acids. The effects of these replacements on delta and mu receptor affinities were measured and then analyzed through quantitative structure-activity relationship (QSAR) calculations. Results support a dual hydrogen bond donor/acceptor role for the Tyr(1) hydroxyl moiety, with less acidic hydroxyl groups exhibiting stronger binding to opioid receptors. In addition, steric bulk in the Tyr(1) position independently strengthens mu and possibly delta binding, presumably by either a ligand conformational effect or enhanced van der Waals interactions with a 'loose' receptor site. The pK(a) effect is stronger on delta than on mu binding, generating an increase in delta selectivity with increasing residue-one pK(a).  相似文献   

8.
We have screened a synthetic peptide combinatorial library composed of 2 x 10(7) beta-turn-constrained peptides in binding assays on four structurally related receptors, the human opioid receptors mu, delta, and kappa and the opioid receptor-like ORL1. Sixty-six individual peptides were synthesized from the primary screening and tested in the four receptor binding assays. Three peptides composed essentially of unnatural amino acids were found to show high affinity for human kappa-opioid receptor. Investigation of their activity in agonist-promoted stimulation of [(35)S]guanosine 5'-3-O-(thio)triphosphate binding assay revealed that we have identified the first inverse agonist as well as peptidic antagonists for kappa-receptors. To fine-tune the potency and selectivity of these kappa-peptides we replaced their turn-forming template by other turn mimetic molecules. This "turn-scan" process allowed the discovery of compounds with modified selectivity and activity profiles. One peptide displayed comparable affinity and partial agonist activity toward all four receptors. Interestingly, another peptide showed selectivity for the ORL1 receptor and displayed antagonist activity at ORL1 and agonist activity at opioid receptors. In conclusion, we have identified peptides that represent an entirely new class of ligands for opioid and ORL1 receptors and exhibit novel pharmacological activity. This study demonstrates that conformationally constrained peptide combinatorial libraries are a rich source of ligands that are more suitable for the design of nonpeptidal drugs.  相似文献   

9.
J G Pfaus  B B Gorzalka 《Peptides》1987,8(2):309-317
The effects of opioid peptides that are highly selective ligands for mu receptors (morphiceptin). delta receptors (delta-receptor peptide), kappa receptors (dynorphin 1-9), and the mu/delta complex (beta-endorphin), were tested on lordosis behavior in ovariectomized rats primed with estrogen and progesterone. Intracerebroventricular infusions of beta-endorphin or morphiceptin both inhibited and facilitated lordosis in a dose-dependent fashion whereas all doses of delta-receptor peptide facilitated lordosis. Dynorphin 1-9 had no significant effect at any dose, although a trend toward increased lordosis quotients was observed 30 min after infusion. The effects of beta-endorphin, morphiceptin, and delta-receptor peptide were reversed with naloxone, although naloxone alone had no effect on lordosis behavior. These results indicate that the specific activation of opioid receptor subtypes differentially affects lordosis behavior. It appears that binding to high-affinity mu 1 receptors exerts an inhibitory influence on lordosis, whereas binding to low-affinity mu 2 receptors or delta receptors exerts a facilitatory influence. Binding to kappa receptors does not appear to affect lordosis behavior.  相似文献   

10.
We previously reported that the novel dynorphin A (Dyn A, Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Lys-Leu-Lys-Trp-Asp-Asn-Gln) analog arodyn (Ac[Phe(1,2,3),Arg(4),d-Ala(8)]Dyn A-(1-11)NH(2), Bennett, M.A., Murray, T.F. & Aldrich, J.V. (2002) J. Med. Chem. vol. 45, pp. 5617-5619) is a kappa opioid receptor-selective peptide [K(i)(kappa) = 10 nm, K(i) ratio (kappa/mu/delta) = 1/174/583] which exhibits antagonist activity at kappa opioid receptors. In this study, a series of arodyn analogs was prepared and evaluated to explore the structure-activity relationships (SAR) of this peptide; this included an alanine scan of the entire arodyn sequence, sequential isomeric d-amino acid substitution in the N-terminal 'message' sequence, NMePhe substitution individually in positions 1-3, and modifications in position 1. The results for the Ala-substituted derivatives indicated that Arg(6) and Arg(7) are the most important residues for arodyn's nanomolar binding affinity for kappa opioid receptors. Ala substitution of the other basic residues (Arg(4), Arg(9) and Lys(11)) resulted in lower decreases in affinity for kappa opioid receptors (three- to fivefold compared with arodyn). Of particular interest, while [Ala(10)]arodyn exhibits similar kappa opioid receptor binding as arodyn, it displays higher kappa vs. mu opioid receptor selectivity [K(i) ratio (kappa/mu) = 1/350] than arodyn because of a twofold loss in affinity at mu opioid receptors. Surprisingly, the Tyr(1) analog exhibits a sevenfold decrease in kappa opioid receptor affinity, indicating that arodyn displays significantly different SAR than Dyn A; [Tyr(1)]arodyn also unexpectedly exhibits inverse agonist activity in the adenylyl cyclase assay using Chinese hamster ovary cells stably expressing kappa opioid receptors. Substitution of NMePhe in position 1 gave [NMePhe(1)]arodyn which exhibits high affinity [K(i)(kappa) = 4.56 nm] and exceptional selectivity for kappa opioid receptors [K(i) ratio (kappa/mu/delta) = 1/1100/>2170]. This peptide exhibits antagonistic activity in the adenylyl cyclase assay, reversing the agonism of 10 nm Dyn A-(1-13)NH(2). Thus [NMePhe(1)]arodyn is a highly kappa opioid receptor-selective antagonist that could be a useful pharmacological tool to study kappa opioid receptor-mediated activities.  相似文献   

11.
The preferential conformations of the delta selective opioid peptides DPLPE (Tyr-c[D X Pen-Gly-Phe-Pen]) and DTLET (Tyr-D X Thr-Gly-Phe-Leu-Thr) were studied by 400 MHz 1H n.m.r. spectroscopy in DMSO-d6 solution. In neutral conditions, the weak NH temperature coefficients of the C-terminal residue (Pen5 or Thr6), associated with interproton NH-NH and alpha-NH NOE's (ROESY experiments), indicated large analogies between the backbone folding tendency of both the linear and cyclic peptides. Various gamma and/or beta turns may account for these experimental data. A similar orientation of the N-terminal tyrosine related to the folded backbones is observed for the two agonists, with a probable gamma turn around the amino acid in position 2. Finally, a short distance, about 10 A, between Tyr and Phe side chains and identical structural roles for threonyl and penicillamino residues are proposed for both peptides. These results suggest the occurrence of similar conformers in solution for the constrained peptide DPLPE and the flexible hexapeptide DTLET. Therefore, it may be hypothesized that the enhanced delta selectivity of DPLPE is related to a very large conformational expense of energy needed to interact with the mu opioid receptor, a feature not encountered in the case of DTLET. These findings might allow peptides to be designed retaining a high affinity for delta opioid receptors associated with a very low cross-reactivity with mu binding sites.  相似文献   

12.
BACKGROUND: Tyr-Tic (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) and Tyr-Tic-Ala were the first peptides with delta opioid antagonist activity lacking Phe, considered essential for opioid activity based on the N-terminal tripeptide sequence (Tyr-D-Xaa-Phe) of amphibian skin opioids. Analogs were then designed to restrain the rotational flexibility of Tyr by the substitution of 2,6-dimethyl-L-tyrosine (Dmt). MATERIALS AND METHODS: Tyr and Dmt peptides were synthesized by solid phase and solution methods using Fmoc technology or condensing Boc-Dmt-OH or Boc-Tyr(But)-OH with H-L-Tic-OBut or H-D-Tic-OBut, respectively. Peptides were purified (> 99%) by HPLC and characteristics determined by 1H-NMR, FAB-MS, melting point, TLC, and amino acid analyses. RESULTS: H-Dmt-Tic-OH had high affinity (Ki delta = 0.022 nM) and extraordinary selectivity (Ki mu/Ki delta = 150,000); H-Dmt-Tic-Ala-OH had a Ki delta = 0.29 nM and delta selectivity = 20,000. Affinity and selectivity increased 8700- and 1000-fold relative to H-Tyr-Tic-OH, respectively. H-Dmt-Tic-OH and H-Dmt-Tic-NH2 fitted one-site receptor binding models (eta = 0.939-0.987), while H-Dmt-Tic-ol, H-Dmt-Tic-Ala-OH and H-Dmt-Tic-Ala-NH2 best fitted two-site models (eta = 0.708-0.801, F 18.9-26.0, p < 0.0001). Amidation increased mu affinity by 10- to 100-fold and acted synergistically with D-Tic2 to reverse selectivity (delta-->mu). Dmt-Tic di- and tripeptides exhibited delta antagonist bioactivity (Ke = 4-66 nM) with mouse vas deferens and lacked agonist mu activity (> 10 microM) in guinea-pig ileum preparations. Dmt-Tic analogs weakly interacted with kappa receptors in the 1 to > 20 microM range. CONCLUSIONS: Dmt-Tic opioidmimetic peptides represent a highly potent class of opioid peptide antagonists with greater potency than the nonopioid delta antagonist naltrindole and have potential application as clinical and therapeutic compounds.  相似文献   

13.
[3H]Naltrindole binding characteristics were determined using homogenized rat brain tissue. Saturation binding studies at 25 degrees C measured an equilibrium dissociation constant (Kd) value of 37.0 +/- 3.0 pM and a receptor density (Bmax) value of 63.4 +/- 2.0 fmol/mg protein. Association binding studies showed that equilibrium was reached within 90 min at a radioligand concentration of 30 pM. Naltrindole, as well as the ligands selective for delta (delta) opioid receptors, such as pCI-DPDPE and Deltorphin II inhibited [3H]naltrindole binding with nanomolar IC50 values. Ligands selective for mu (mu) and kappa (kappa) opioid receptors were only effective in inhibiting [3H]naltrindole binding at micromolar concentrations. From these data, we conclude that [3H]naltrindole is a high affinity, selective radioligand for delta opioid receptors.  相似文献   

14.
The reaction of regulatory peptides with their membrane-bound receptors often occurs via a membrane-associated state of the peptide. From infrared studies on thin lipid films, we have shown that several ligands of the opioid kappa receptor and the neurokinin NK-1 receptor insert their message segments as an alpha-helix, more or less perpendicularly, into the membrane. The binding parameters for these membrane-associated states were determined from the capacitance minimization potential of lipid bilayers. A theory has been developed to account for the observed binding constants and the preferred conformation and orientation of these peptides. In contrast to the kappa and NK-1 receptors, ligands of the opioid mu and delta, and the neurokinin NK-2 and NK-3 receptors, are predicted not to form the inserted alpha-helical structure. A selection between the mu and delta (or NK-2 and NK-3) receptors appears to be made on the basis of an electrostatic gradient near the membrane surface. The molecular mechanism of receptor selection thus appears to be based to a large extent on the membrane-induced compartmentalization of ligands for the different receptors.  相似文献   

15.
Hruby VJ  Agnes RS 《Biopolymers》1999,51(6):391-410
The discovery of endogenous opioid peptides 25 years ago opened up a new chapter in efforts to understand the origins and control of pain, its relationships to other biological functions, including inflammatory and other immune responses, and the relationships of opioid peptides and their receptors to a variety of undesirable or toxic side effects often associated with the nonpeptide opiates such as morphine including addiction, constipation, a variety of neural toxicities, tolerance, and respiratory depression. For these investigations the need for potent and highly receptor selective agonists and antagonists has been crucial since they in principle allow one to distinguish unequivocally the roles of the different opioid receptors (mu, delta, and kappa) in the various biological and pathological roles of the opioid peptides and their receptors. Conformational and topographical constraint of the linear natural endogenous opioid peptides has played a major role in developing peptide ligands with high selectivity for mu, delta, and kappa receptors, and in understanding the conformational, topographical, and stereoelectronic structural requirements of the opioid peptides for their interactions with opioid receptors. In turn, this had led to insights into the three-dimensional pharmacophore for opioid receptors. In this article we review and discuss some of the developments that have led to potent, selective, and stable peptide and peptidomimetic ligands that are highly potent and selective, and that have delta agonist, mu antagonist, and kappa agonist biological activities (other authors in this issue will discuss the development of other types of activities and selectivities). These have led to ligands that provide unique insight into opioid pharmacophores and the critical roles opioid ligands and receptor scan play in pain, addiction, and other human maladies.  相似文献   

16.
Metorphamide is a [Met]-enkephalin-containing opioid octapeptide with a C-terminal alpha-amide group. It is derived from proenkephalin and is, so far, the only endogenous opioid peptide with a particularly high affinity for mu opioid (morphine) receptors, a somewhat lesser affinity for kappa opioid receptors, and a relatively low affinity for delta opioid receptors. The concentrations of metorphamide in the bovine caudate nucleus, the hypothalamus, the spinal cord, and the neurointermediate pituitary were determined by radioimmunoassay and chromatography separation procedures. Metorphamide concentrations were compared with the concentrations of eight other opioid peptides from proenkephalin and prodynorphin in identical extracts. The other opioid peptides were [Met]-enkephalyl-Arg6-Phe7 and [Met]-enkephalyl-Arg6-Gly7-Leu8 from proenkephalin; alpha-neoendorphin, beta-neoendorphin, dynorphin A(1-8), dynorphin A(1-17), and dynorphin B from prodynorphin; and [Leu]-enkephalin, which can be derived from either precursor. All opioid peptides were present in all four bovine neural tissues investigated. Metorphamide concentrations were lower than the concentrations of the other proenkephalin-derived opioid peptides. They were, however, similar to the concentrations of the prodynorphin-derived opioid peptides in the same tissues. Marked differences in the relative ratios of the opioids derived from prodynorphin across brain regions were observed, a finding suggesting differential posttranslational processing. Differences in the ratios of the proenkephalin-derived opioids across brain regions were less pronounced. The results from this study together with previous findings on metorphamide's mu opioid receptor binding and bioactivities suggest that the amounts of metorphamide in the bovine brain are sufficient to make this peptide a candidate for a physiologically significant endogenous mu opioid receptor ligand.  相似文献   

17.
Standard radioiodination methods lack site-selectivity and either mask charges (Bolton-Hunter) or involve oxidative reaction conditions (chloramine-T). Opioid peptides are very sensitive to certain structural modifications, making these labeling methods untenable. In our model opioid peptide, α-neoendorphin, we replaced a tyrosyl hydroxyl with an iodine, and in cell lines stably expressing mu, delta, or kappa opioid receptors, we saw no negative effects on binding. We then optimized a repurposed Sandmeyer reaction using copper(I) catalysts with non-redoxing/non-nucleophilic ligands, bringing the radiochemical yield up to around 30%, and site-selectively incorporated radioactive iodine into this position under non-oxidizing reaction conditions, which should be broadly compatible with most peptides. The 125I- and 131I-labeled versions of the compound bound with high affinity to opioid receptors in mouse brain homogenates, thus demonstrating the general utility of the labeling strategy and of the peptide for exploring opioid binding sites.  相似文献   

18.
Opioid receptor selectivity of peptide models of beta-endorphin   总被引:1,自引:0,他引:1  
Two peptides, designed to contain structural models of the proposed hydrophilic linker domain (residues 6-12) and amphiphilic alpha-helical domain (residues 13-29) in beta-endorphin, have been tested for their abilities to mimic the opioid receptor selectivity profile of the natural hormone. In competitive binding assays employing guinea-pig brain membranes, both peptides displayed a much higher affinity for mu- and delta-opioid receptors than for kappa opioid receptors. Relative to beta-endorphin, the peptide models were 2-3 times more potent in the mu and kappa receptor binding assays, and about equipotent in the delta receptor binding assay. In guinea-pig ileum assays, one peptide was equipotent to beta-endorphin and the other was twice as potent. Like beta-endorphin, their actions on this tissue were highly sensitive to naloxone antagonism, indicating that they were mediated by mu receptors and not kappa receptors. In view of the design of the two peptide models, and their minimal homology to the natural hormone, these results provide additional evidence in support to our proposal for the functional conformation of beta-endorphin.  相似文献   

19.
A series of 2-amino-oxazole (7 and 8) analogs and 2-one-oxazole analogs (9 and 10) were synthesized from cyclorphan (1) or butorphan (2) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors and compared with their 2-aminothiozole analogs 5 and 6. Ligands 7-10 showed decreased affinities at kappa and mu receptors. Urea analogs (11-14) were also prepared from 2-aminocyclorphan (3) or 2-aminobutorphan (4) and evaluated in-vitro by their binding affinity at mu, delta, and kappa opioid receptors. The urea derived opioids retained their affinities at mu receptors while showing increased affinities at delta receptors and decreased affinities at kappa receptors. Functional activities of these compounds were measured in the [35S]GTPgammaS binding assay, illustrating that all of these ligands were kappa agonists. At the mu receptor, compounds 11 and 12 were mu agonist/antagonists.  相似文献   

20.
New analogues of deltorphin I (DT I), in which the Phe residue in position 3, and the Val residue in position 5 or 6 are replaced with respective amphiphilic alpha-hydroxymethylamino acid residues (HmAA), were synthesized and tested for receptor affinity and selectivity to mu and delta opioid receptors. The analogue with (R)-HmPhe at position 3 lost receptor selectivity, as a result of a partial decrease of affinity to delta and a significant increase of affinity to mu receptors. In contrast, an analogue with (S)-HmPhe in the same position, was very potent and more specific to delta receptors than parent DT I. The analogue with (R)-HmVal at position 5 expressed higher delta affinity and selectivity than parent DT I. The analogue with other possible isomer (S)-HmVal was less selective for delta opioid receptors, as a result of decreasing affinity to delta and increasing affinity to mu receptors. The analogues with (R)- or (S)-HmVal in position 6 expressed equally low receptor affinity and selectivity. The data obtained support a previously proposed model of active conformation of deltorphins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号